
Today

 Welcome to OS

 Administrivia

 OS overview and history

 Computer system overview

Next time

 OS components & structure

Introduction

Why study operating systems?

Tangible reasons

– Build/modify one - OSs are everywhere

– Administer and use them well

– Tune your favorite application performance

– Great capstone course

Intangible reasons

– Curiosity

– Use/gain knowledge from other areas

– Challenge of designing large, complex systems

EECS 343 Operating Systems

Northwestern University

A computer system - Where's the OS?

Hardware provides basic computing resources

Applications define ways in which resources

are used to solve users' problems

OS controls & coordinates use of hardware by

users’ applications

A few vantage points

– End user

– Programmer

– OS Designer systems and application programs

compiler text editor DBMS…

operating system

machine language
microarchitecture
physical devices

User 1 …User 1 User 1

EECS 343 Operating Systems

Northwestern University

What is an operating system?

Extended machine – top-down/user-view

– Hiding the messy details, presenting a virtual machine

that's easier to program than the HW

Resource manager – bottom-up/system-view

– Everybody gets a fair-share of time/space from a

resource (multiplexing in space/time)‏

– A control program – to prevent errors & improper use

(CP/M?)‏

A bundle of helpful, commonly used things

Goals

– Convenience – make solving user problems easier

– Efficiency – use hardware in an efficient manner ($$$

machines demand efficient use)‏

EECS 343 Operating Systems

Northwestern University

What's part of the OS?

Trickier than you think: file system, device

drivers, shells, window systems, browser, ...

Everything a vendor ships with your order?

The one program running at all times, or running

in kernel mode

– Everything else is either a system program (ships with

the OS) or an application program

– Can the user change it?

Why does it matter? In 1998 the US

Department of Justice filed suit against MS

claiming its OS was too big

EECS 343 Operating Systems

Northwestern University

The evolution of operating systems

A brief history & a framework to introduce OS

principles

Early attempts – Babbage's (1702-1871)‏

– Analytical Engine (Ada Lovelace – World's first

programmer)‏

1945-55 – Vacuum tubes and plugboards

– ABC, MARK 1, ENIAC

– No programming

languages, no OS

– A big problem

• Scheduling –

signup sheet

on the wall

EECS 343 Operating Systems

Northwestern University

Evolution ... Batch systems (1955)‏

Transistors → machs. reliable enough to sell

– Separation of builders & programmers

Getting your program to run

– Write it in paper (maybe in FORTRAN)‏

– Punch it on cards & drop cards in input room

– Operator may have to mount/dismount tapes, setting up

card decks, ... setup time!

Batch systems

– Collect a tray of full jobs, read them all into tape with a

cheap computer

– Bring them to the main computer‏where‏the‏“OS”‏will‏go‏

over each jobs one at a time

– Print output offline

EECS 343 Operating Systems

Northwestern University

Evolution ... Spooling (1965)‏

Disks much faster than card readers & printers

Spool (Simultaneous Peripheral Operations

On-Line)‏

– While one job is executing, spool next one from card

reader onto disk

• Slow card reader I/O overlapped with CPU

– Can even spool multiple programs onto disk

• OS must choose which one to run next (job sched)‏

– But CPU still idle when program interact with a

peripheral during execution

– Buffering, double buffering

EECS 343 Operating Systems

Northwestern University

Evolution ... Multiprogramming (1965)‏

To increase system utilization

– Keeps multiple runnable jobs loaded in memory at once

– Overlap I/O of a job with computing of another

– Needs asynchronous I/O devices

• Some way to know when devices are done

– Interrupt or polling

• Goal- optimize system throughput

– Cost on response time

IBM OS/360 & the tar pit

EECS 343 Operating Systems

Northwestern University

Evolution ... Timesharing (1965)‏

To support interactive use

– Multiple terminals into one machine

– Each user has the illusion of owing the entire machine

Time-slicing

– Dividing CPU equally among users

– If jobs are truly interactive, CPU can jump between them

without users noticing it

– Recovers interactivity for the user (why do you care?)‏

CTSS (Compatible Time Sharing System),

MULTICS and UNIX

EECS 343 Operating Systems

Northwestern University

Evolution ... PCs (1980)‏

Large-scale integration >> small & cheap machines

1974 – Intel's 8080 & Gary Kildall's CP/M

Early 1980s – IBM PC, BASIC, CP/M & MS-DOS

User interfaces, XEROX Altos, MACs and Windows

EECS 343 Operating Systems

Northwestern University

IBM PC circa 1981

X
e
ro

x
 A

lt
o

 1
9

7
3

Evolution ... Distributed & pervasive

Facilitate use of geographically distributed
resources
– Workstations on a LAN or across the Internet

Support communication between programs

Speed up is not really the issue, but access to
resources

Architectures
– Client/servers

• Mail server, print server, web server

– Peer-to-peer

• (Most) everybody is both, server and client

Pervasive computing & embedded devices

EECS 343 Operating Systems

Northwestern University

“Ontogeny recapitulates phylogeny”*

EECS 343 Operating Systems

Northwestern University

The development of an embryo repeats the
evolution of the species (* Ernst Haeckel)‏

But new problems arise
and others redefine
themselves

Course overview …

Overall structure

– Lectures

– TA Sessions

• Once a week and focused on projects

– Homework (5)‏

• Look at them as reading enforcers

EECS 343 Operating Systems

Northwestern University

1: Introduction to Operating Systems 09/25 10/02

2: Processes and Threads 10/16 10/23

3: Memory Management and Virtual Memory 11/06 11/13

4: I/O and File Systems 11/20 12/02

5: Research in Operating Systems 12/04 12/04 (in-class)

Course overview

Overall structure

– …

– Projects (4)‏

• First one out next Tuesday!

– Exams (2)‏

Course book & other material

– Read before class

Other recommended sources

– Stevens' book

Grading, policies

EECS 343 Operating Systems

Northwestern University

EECS 343 Operating Systems

Northwestern University

16

Bus

Monitor

Computer systems structure

Abstract model of a simple computer

Basic operation cycle

– Fetch next instruction

– Decode it to determine type & operands

– Execute it

Set of instructions

– Architecture specific - Pentium != SPARC

– Includes: combine operands (ADD), control flow, data
movement, etc

Since memory access is slow … registers

– General registers to hold variables & temp. results

– Special registers: Program Counter (PC), Stack Pointer
(SP), Program Status Word (PSW)‏

Moving away from basic operation cycle:
pipeline architectures, superscalar, …

17EECS 343 Operating Systems

Northwestern University

Processor

Memory

Ideally – fast, large & cheap

Reality – storage hierarchy

– Registers

• Internal to the CPU &

just as fast

• 32x32 in a 32 bit machine

– Cache

• Split into cache lines

• If word needs is in cache, get in ~2 cycles

– Main memory

– Hard disk

– Magnetic tape

– Coherency?

First core-based memory: IBM 405
Alphabetical Accounting Machine

EECS 343 Operating Systems

Northwestern University

OS protection

Multiprogramming & timesharing are useful but
– How to protect programs from each other & kernel from all?

– How to handle relocation?

Some instructions are restricted to the OS
– e.g. Directly access I/O devices

– e.g. Manipulate memory state management

How does the CPU know if a protected

instructions should be executed?
– Architecture must support 2+ mode of operation

– Mode is set by status bit in a protected register (PSW)‏

• User programs execute in user mode, OS in kernel mode

Protected instructions can only be executed in

kernel mode

EECS 343 Operating Systems

Northwestern University

Crossing protection boundaries

How can apps. do something privileged?
– e.g. how do you write to disk if you can't do I/O?

User programs must call an OS procedure
– OS defines a sequence of system calls

– How does the user to kernel-mode transition happen?

There must be a system call instruction, which
– Causes an exception (throws a soft interrupt) which vector to

a kernel handler

– Passes a parameter indicating which syscall is

– Saves caller's state so it can be restored

– OS must verify caller's parameters

– Must be a way to go back to user once done

EECS 343 Operating Systems

Northwestern University

Memory relocation

Relocation simplest solution
– Base (start) of program + limit registers

– Solves both problems; cost 2 registers + cycle time incr

Check and mapping to virtual address done by

MMU (memory management unit)‏

More sophisticated alternatives
– 2 base and 2 limit registers for text

& data; allow sharing program text

– Paging, segmentation, virtual memory

EECS 343 Operating Systems

Northwestern University

22EECS 343 Operating Systems

Northwestern University

I/O devices: magnetic disks

1+ platters rotating at >5,400 RPM

Mechanical arm (arm assembly)‏

Platter logically divided in tracks, sectors

Cylinder – tack for a given head position

Moving & transfer times
– To next cylinder ~1msec

– To random cylinder ~5-10msec

– For sector to get under

~5-10msec

– Transfer once in the right

place 5-160MB/sec

I/O Device

– Device + Controller (simpler I/F to OS; think SCSI)‏

• Read sector x from disk y → (disk, cylinder, sector,
head), …

Device driver – SW to talk to controller

– To use it, must be part of kernel: ways to include it

• Re-link kernel with new driver and reboot (UNIX)‏

• Make an entry in an OS file & reboot (OS finds it at boot
time and loads it)‏

• Dynamic load – OS takes new driver while running &
installs it

I/O can be done in 3 different ways

– Busy waiting/synchronous

– Interrupt-based/asynchronous

– Direct Memory Access (DMA)‏

EECS 343 Operating Systems

Northwestern University

23

I/O devices

OSs are event driven
– Once booted, all entry to kernel happens as result of

an event (e.g. signal by an interrupt), which

• Immediately stops current execution

• Changes to kernel mode, event handler is called

Kernel defines handlers for each event type
– Specific types are defined by the architecture

•e.g. timer event, I/O interrupt, system call trap

Handling the interrupt
– Push PC & PSW onto stack and switch to kernel mode

– Device # is index in interrupt vector - get handler

– Interrupt handler

•Stores stack data

•Handles interrupt

•Returns to user program after restoring program state

24EECS 343 Operating Systems

Northwestern University

OS control flow

Three main types of events: interrupts &
exceptions

– Exceptions/traps caused by SW executing
instructions

• e.g., the x86 „int‟ instruction

• e.g., a page fault, or an attempted write to a read-only
page

• An expected exception is a “trap”, unexpected is a “fault”

– Interrupts caused by HW devices

• e.g., device finishes I/O, timer fires

25EECS 343 Operating Systems

Northwestern University

Interrupts and exceptions

How can the OS prevent runaway user
programs from hogging the CPU (infinite

loops?)‏

– Use a hardware timer that generates a periodic
interrupt

– Before it transfers to a user program, the OS loads
the timer with a time to interrupt

– When time's up, interrupt transfers control back to OS

• OS decides which program to schedule next

• Interesting policy question: 1+ class scheduled for that

Should the timer be privileged?

– for reading or for writing?

26EECS 343 Operating Systems

Northwestern University

Timers

27EECS 343 Operating Systems

Northwestern University

Synchronization

Issues with interrupts
– May occur any time, causing code to execute that interferes

with the interrupted code

– OS must be able to synchronize concurrent processes

Synchronization
– Guarantee that short instruction sequences (e.g. read-modify-

write) execute atomically

– Two methods

• Turn off interrupts, execute sequence, reenable interrupts

• Have special, complex atomic instructions – test-and-set

Management of concurrency & asynchronous

events is the biggest difference bet/ systems-

level & traditional application programming.

EECS 343 Operating Systems

Northwestern University

28

Summary

In this class you will learn
– Major components of an OS

– How are they structured

– The most important interfaces

– Policies typically used in an OS

– Algorithms used to implement those policies

Philosophy
– You many not ever build an OS, but

– As a CS/CE you need to understand the foundations

– Most importantly, OSs exemplify the sorts of engineering

tradeoffs you'll need to make throughout your careers

