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Introduction



Why study operating systems?

Tangible reasons

– Build/modify one - OSs are everywhere

– Administer and use them well

– Tune your favorite application performance

– Great capstone course

Intangible reasons

– Curiosity

– Use/gain knowledge from other areas

– Challenge of designing large, complex systems
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A computer system - Where's the OS?

Hardware provides basic computing resources

Applications define ways in which resources 

are used to solve users' problems

OS controls & coordinates use of hardware by 

users’ applications

A few vantage points

– End user

– Programmer

– OS Designer systems and application programs

compiler text editor DBMS…

operating system

machine language
microarchitecture
physical devices

User 1 …User 1 User 1
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What is an operating system?

Extended machine – top-down/user-view

– Hiding the messy details, presenting a virtual machine 

that's easier to program than the HW

Resource manager – bottom-up/system-view

– Everybody gets a fair-share of time/space from a 

resource (multiplexing in space/time)‏

– A control program – to prevent errors & improper use 

(CP/M?)‏

A bundle of helpful, commonly used things

Goals

– Convenience – make solving user problems easier

– Efficiency – use hardware in an efficient manner ($$$ 

machines demand efficient use)‏
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What's part of the OS?

Trickier than you think: file system, device 

drivers, shells, window systems, browser, ...

Everything a vendor ships with your order?

The one program running at all times, or running 

in kernel mode

– Everything else is either a system program (ships with 

the OS) or an application program

– Can the user change it?

Why does it matter? In 1998 the US 

Department of Justice filed suit against MS 

claiming its OS was too big
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The evolution of operating systems

A brief history & a framework to introduce OS 

principles

Early attempts – Babbage's (1702-1871)‏

– Analytical Engine (Ada Lovelace – World's first 

programmer)‏

1945-55 – Vacuum tubes and plugboards

– ABC, MARK 1, ENIAC

– No programming 

languages, no OS

– A big problem

• Scheduling –

signup sheet 

on the wall
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Evolution ... Batch systems (1955)‏

Transistors → machs. reliable enough to sell

– Separation of builders & programmers

Getting your program to run

– Write it in paper (maybe in FORTRAN)‏

– Punch it on cards & drop cards in input room

– Operator may have to mount/dismount tapes, setting up 

card decks, ... setup time!

Batch systems

– Collect a tray of full jobs, read them all into tape with a 

cheap computer

– Bring them to the main computer‏where‏the‏“OS”‏will‏go‏

over each jobs one at a time

– Print output offline
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Evolution ... Spooling (1965)‏

Disks much faster than card readers & printers

Spool (Simultaneous Peripheral Operations 

On-Line)‏

– While one job is executing, spool next one from card 

reader onto disk

• Slow card reader I/O overlapped with CPU

– Can even spool multiple programs onto disk

• OS must choose which one to run next (job sched)‏

– But CPU still idle when program interact with a 

peripheral during execution

– Buffering, double buffering
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Evolution ... Multiprogramming (1965)‏

To increase system utilization

– Keeps multiple runnable jobs loaded in memory at once

– Overlap I/O of a job with computing of another

– Needs asynchronous I/O devices

• Some way to know when devices are done

– Interrupt or polling

• Goal- optimize system throughput

– Cost on response time

IBM OS/360 & the tar pit
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Evolution ... Timesharing (1965)‏

To support interactive use

– Multiple terminals into one machine

– Each user has the illusion of owing the entire machine

Time-slicing

– Dividing CPU equally among users

– If jobs are truly interactive, CPU can jump between them 

without users noticing it

– Recovers interactivity for the user (why do you care?)‏

CTSS (Compatible Time Sharing System), 

MULTICS and UNIX
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Evolution ... PCs (1980)‏

Large-scale integration >> small & cheap machines

1974 – Intel's 8080 & Gary Kildall's CP/M

Early 1980s – IBM PC, BASIC, CP/M & MS-DOS

User interfaces, XEROX Altos, MACs and Windows
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Evolution ... Distributed & pervasive

Facilitate use of geographically distributed 
resources
– Workstations on a LAN or across the Internet

Support communication between programs

Speed up is not really the issue, but access to 
resources

Architectures
– Client/servers 

• Mail server, print server, web server

– Peer-to-peer

• (Most) everybody is both, server and client

Pervasive computing & embedded devices
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“Ontogeny recapitulates phylogeny”*
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The development of an embryo repeats the 
evolution of the species (* Ernst Haeckel)‏

But new problems arise 
and others redefine 
themselves



Course overview …

Overall structure

– Lectures

– TA Sessions

• Once a week and focused on projects

– Homework (5)‏

• Look at them as reading enforcers
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1: Introduction to Operating Systems 09/25 10/02

2: Processes and Threads 10/16 10/23

3: Memory Management and Virtual Memory 11/06 11/13

4: I/O and File Systems 11/20 12/02

5: Research in Operating Systems 12/04 12/04 (in-class)



Course overview

Overall structure

– …

– Projects (4)‏

• First one out next Tuesday!

– Exams (2)‏

Course book & other material

– Read before class

Other recommended sources

– Stevens' book

Grading, policies
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Bus

Monitor

Computer systems structure

Abstract model of a simple computer



Basic operation cycle 

– Fetch next instruction

– Decode it to determine type & operands

– Execute it

Set of instructions 

– Architecture specific - Pentium != SPARC

– Includes: combine operands (ADD), control flow, data 
movement, etc

Since memory access is slow … registers

– General registers to hold variables & temp. results

– Special registers: Program Counter (PC), Stack Pointer 
(SP), Program Status Word (PSW)‏

Moving away from basic operation cycle: 
pipeline architectures, superscalar, …
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Memory

Ideally – fast, large & cheap

Reality – storage hierarchy

– Registers

• Internal to the CPU & 

just as fast

• 32x32 in a 32 bit machine

– Cache

• Split into cache lines

• If word needs is in cache, get in ~2 cycles

– Main memory

– Hard disk

– Magnetic tape

– Coherency?

First core-based memory: IBM 405 
Alphabetical Accounting Machine
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OS protection

Multiprogramming & timesharing are useful but
– How to protect programs from each other & kernel from all?

– How to handle relocation?

Some instructions are restricted to the OS
– e.g. Directly access I/O devices

– e.g. Manipulate memory state management

How does the CPU know if a protected 

instructions should be executed?
– Architecture must support 2+ mode of operation

– Mode is set by status bit in a protected register (PSW)‏

• User programs execute in user mode, OS in kernel mode

Protected instructions can only be executed in 

kernel mode
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Crossing protection boundaries

How can apps. do something privileged?
– e.g. how do you write to disk if you can't do I/O?

User programs must call an OS procedure
– OS defines a sequence of system calls

– How does the user to kernel-mode transition happen?

There must be a system call instruction, which
– Causes an exception (throws a soft interrupt) which vector to 

a kernel handler

– Passes a parameter indicating which syscall is

– Saves caller's state so it can be restored

– OS must verify caller's parameters

– Must be a way to go back to user once done
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Memory relocation

Relocation simplest solution
– Base (start) of program + limit registers

– Solves both problems; cost 2 registers + cycle time incr

Check and mapping to virtual address done by 

MMU (memory management unit)‏

More sophisticated alternatives
– 2 base and 2 limit registers for text 

& data; allow sharing program text

– Paging, segmentation, virtual memory
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I/O devices: magnetic disks

1+ platters rotating at >5,400 RPM

Mechanical arm (arm assembly)‏

Platter logically divided in tracks, sectors

Cylinder – tack for a given head position

Moving & transfer times
– To next cylinder ~1msec

– To random cylinder ~5-10msec

– For sector to get under 

~5-10msec

– Transfer once in the right 

place 5-160MB/sec



I/O Device

– Device + Controller (simpler I/F to OS; think SCSI)‏

• Read sector x from disk y → (disk, cylinder, sector, 
head), …

Device driver – SW to talk to controller

– To use it, must be part of kernel: ways to include it 

• Re-link kernel with new driver and reboot (UNIX)‏

• Make an entry in an OS file & reboot (OS finds it at boot 
time and loads it)‏

• Dynamic load – OS takes new driver while running & 
installs it

I/O can be done in 3 different ways

– Busy waiting/synchronous

– Interrupt-based/asynchronous

– Direct Memory Access (DMA)‏
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I/O devices



OSs are event driven
– Once booted, all entry to kernel happens as result of 

an event (e.g. signal by an interrupt), which

• Immediately stops current execution

• Changes to kernel mode, event handler is called

Kernel defines handlers for each event type
– Specific types are defined by the architecture

•e.g. timer event, I/O interrupt, system call trap

Handling the interrupt
– Push PC & PSW onto stack and switch to kernel mode

– Device # is index in interrupt vector - get handler

– Interrupt handler

•Stores stack data

•Handles interrupt 

•Returns to user program after restoring program state
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Three main types of events: interrupts & 
exceptions

– Exceptions/traps caused by SW executing 
instructions

• e.g., the x86 „int‟ instruction

• e.g., a page fault, or an attempted write to a read-only 
page

• An expected exception is a “trap”, unexpected is a “fault”

– Interrupts caused by HW devices

• e.g., device finishes I/O, timer fires
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How can the OS prevent runaway user 
programs from hogging the CPU (infinite 

loops?)‏

– Use a hardware timer that generates a periodic 
interrupt

– Before it transfers to a user program, the OS loads 
the timer with a time to interrupt

– When time's up, interrupt transfers control back to OS

• OS decides which program to schedule next

• Interesting policy question: 1+ class scheduled for that

Should the timer be privileged?

– for reading or for writing?
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Synchronization

Issues with interrupts
– May occur any time, causing code to execute that interferes 

with the interrupted code

– OS must be able to synchronize concurrent processes

Synchronization
– Guarantee that short instruction sequences (e.g. read-modify-

write) execute atomically

– Two methods

• Turn off interrupts, execute sequence, reenable interrupts

• Have  special, complex atomic instructions – test-and-set

Management of concurrency & asynchronous 

events is the biggest difference bet/ systems-

level & traditional application programming.
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Summary

In this class you will learn
– Major components of an OS

– How are they structured

– The most important interfaces

– Policies typically used in an OS

– Algorithms used to implement those policies

Philosophy
– You many not ever build an OS, but

– As a CS/CE you need to understand the foundations

– Most importantly, OSs exemplify the sorts of engineering 

tradeoffs you'll need to make throughout your careers


