
Today
• OS services

• OS interface to programmers/users

• OS components & interconnects

• Structuring OSs

Next time

• Processes

OS Concepts and structure

OS Views

Vantage points

– OS as the services it provides

• To users and applications

– OS as its components and interactions

OS provides a number of services

– To users via a command interpreter/shell or GUI

– To application programs via system calls

– Some services are for convenience

• Program execution, I/O operation, file system

management, communication

– Some to ensure efficient operation

• Resource allocation, accounting, protection and security

EECS 343 Operating Systems
Northwestern University

Command interpreter (shell) & GUI

Command interpreter

– Handle (interpret and execute) user commands

– Could be part of the OS: MS DOS, Apple II

– Could be just a special program: UNIX, Windows XP

• In this way, multiple options – shells – are possible

– The command interpreter could

• Implement all commands

• Simply understand what program to invoke and how (UNIX)‏

GUI

– Friendlier, through a desktop metaphor, if sometimes limiting

– Xerox PARK Alto >> Apple >> Windows >> Linux

EECS 343 Operating Systems
Northwestern University

4

Shell – stripped down

while (TRUE) { /* repeat forever */

type_prompt(); /* display prompt */

read_command(command, parameters) /* input from terminal */

if (fork() != 0) { /* fork off child process */

/* Parent code */

waitpid(-1, &status, 0); /* wait for child to exit */

} else {

/* Child code */

execve (command, parameters, 0); /* execute command */

}

}

EECS 343 Operating Systems
Northwestern University

System calls

Low-level interface to services for applications

Higher-level requests get translated into sequence of

system calls

Writing cp – copy source to destination

– Get file names

– Open source

– Create destination

– Loop

• Read from source

• Copy to destination

– Close destination

– Report completion

– Terminate

Making the system call: read(fd, buffer, nbytes)‏

EECS 343 Operating Systems
Northwestern University

Before calling the syscall,

push parameters onto the stack

Then call the library procedure,

which places the syscall number

in a register, an executes a TRAP

Kernel runs the right

sys call handler

Before returning to

the user program as

a procedure call

Major OS components & abstractions

Processes

Memory

I/O

Secondary storage

File systems

Protection

Accounting

Shells & GUI

Networking

EECS 343 Operating Systems

EECS, Northwestern University 6

A program in execution

– Address space

– Set of registers

To get a better sense of it

– What data do you need to (re-) start a suspended process?

– Where do you keep this data?

– What is the process abstraction I/F offered by the OS

• Create, delete, suspend, resume & clone a process

• Inter-process communication & synchronization

• Create/delete a child process

7

Processes

Call Description

pid = fork() Create a child process identical to the parent

pid = waitpid(pid, &statloc, options) Wait for a child to terminate

s = execve(name, argv, environp) Replace‏a‏process’‏core‏image

exit(status) Terminate process execution & return status

EECS 343 Operating Systems
Northwestern University

8

Memory management

Main memory – the directly accessed storage for CPU

– Programs must be stored in memory to execute

– Memory access is fast (e.g., 60 ns to load/store)‏

• but‏memory‏doesn’t‏survive‏power‏failures

OS must:

– Allocate memory space for programs (explicitly and implicitly)‏

– Deallocate space when needed by rest of system

– Maintain mappings from physical to virtual memory

• e.g. through page tables

– Decide how much memory to allocate to each process

– Decide when to remove a process from memory

Call Description

void *sbrk(intptr_t increment) Increments‏program‏data‏space‏by‏‘increment’‏bytes

EECS 343 Operating Systems
Northwestern University

9

I/O

A big chunk of the OS kernel deals with I/O

– Hundreds of thousands of lines in NT

The OS provides a standard interface between

programs & devices

– file system (disk), sockets (network), frame buffer (video)‏

Device drivers are the routines that interact with

specific device types

– Encapsulates device-specific knowledge

• e.g., how to initialize a device, request I/O, handle errors

– Examples: SCSI device drivers, Ethernet card drivers, video

card‏drivers,‏sound‏card‏drivers,‏…

EECS 343 Operating Systems
Northwestern University

10

Secondary storage

Secondary storage (disk, tape) is persistent memory

– Often magnetic media, survives power failures (hopefully)‏

Routines that interact with disks are typically at a very

low level in the OS

– Used‏by‏many‏components‏(file‏system,‏VM,‏…)‏

– Handle scheduling of disk operations, head movement, error

handling, and often management of space on disks

Usually independent of file system

– Although there may be cooperation

– File system knowledge of device details can help optimize

performance

• e.g., place related files close together on disk

EECS 343 Operating Systems
Northwestern University

11

File systems

Secondary storage devices are hard to work with

File system offers a convenient abstraction

– Defines logical abstractions/objects like files & directories

– As well as operations on these objects

A file is the basic unit of long-term storage

– File: named collection of persistent information

A directory is just a special kind of file

– Directory: file containing names of other files & metadata

Interface:

– File/directory creation/deletion, manipulation, copy, lock

Other higher level services: accounting & quotas,

backup, indexing or search, versioning

EECS 343 Operating Systems
Northwestern University

12

System calls

Call Description

fd‏=‏open(file,‏how,‏…)‏ Open a file for reading, writing or both.

s = close(fd)‏ Close an open file

n = read(fd, buffer, nbytes)‏ Read data from a file into a buffer

n = write(fd, buffer, nbytes)‏ Write data from a buffer into a file

pos = lseek(fd, offest, whence)‏ Move the file pointer

s = stat(name,&buf)‏ Get‏a‏file’s‏status‏info

File management

Call Description

s = mkdir(name, mode)‏ Create a new directory

s = rmdir(name)‏ Remove an empty directory

s = link(name1, name2)‏ Create a new entry, name2, pointing to name1

s = unlink(name)‏ Remove a directory entry

s = mount(special, name, flag)‏ Mount a file system

s = unmount(special)‏ Unmount a file system

Directory & file system management

EECS 343 Operating Systems
Northwestern University

13

Protection

Protection is a general mechanism used

throughout the OS

– All resources needed to be protected

• memory

• processes

• files

• devices

• …

– Protection mechanisms help to detect and contain

errors, as well as preventing malicious destruction

EECS 343 Operating Systems
Northwestern University

OS design & implementation

A design task – start from goals & specification

Affected by choice of hardware, type of system

User goals and System goals
– User – convenient to use, easy to learn, reliable, safe, fast

– System – easy to design, implement, & maintain, also flexible,
reliable, error-free & efficient

Clearly conflicting goals, no unique solution

Some other issues complicating this
– Size: Windows XP ~40G SLOC, RH 7.1 17G SLOC

– Concurrency – multiple users and multiple devices

– Potentially hostile users, but some users want to collaborate

– Long expected lives & no clear ideas on future needs

– Portability and support to thousands of device drivers

– Backward compatibility

EECS 343 Operating Systems

EECS, Northwestern University 14

15

OS design & implementation

A software engineering principle – separate

policy & mechanism

– Policy: What will be done?

– Mechanism: How to do it?

– Why do you care? Maximum flexibility, easier to

change policies

Implementation on high-level language

– Early on – assembly (e.g. MS-DOS – 8088), later

Algol (MCP), PL/1 (MULTICS),‏C‏(Unix,‏…)‏

– Advantages – faster to write, more compact, easier

to maintain & debug, easier to port

– Cost – Slower, but who cares?!

EECS 343 Operating Systems
Northwestern University

16

OS made of number of components
– Process & memory management,‏file‏system,‏…

– and System programs

• e.g.,‏bootstrap‏code,‏the‏init‏program,‏…

Major design issue
– How do we organize all this?

– What are the modules, and where do they exist?

– How do they interact?

Massive software engineering
– Design a large, complex program that:

• performs well, is reliable, is extensible, is backwards
compatible,‏…

EECS 343 Operating Systems
Northwestern University

OS Structure

17

Major advantage:
– Cost of module

interactions is low
(procedure call)‏

Disadvantages:
– Hard to understand

– Hard to modify

– Unreliable (no isolation between system modules)‏

– Hard to maintain

Alternative?
– How to organize the OS in order to simplify its

design and implementation?

EECS 343 Operating Systems
Northwestern University

Monolithic design

18

Layering

The traditional approach
– Implement OS as a set of layers

– Each layer shows an‏enhanced‏‘virtual‏mach’‏to
layer above

Each layer can be tested and verified
independently

Layer Description

5: Job managers Execute‏users’‏programs

4: Device managers Handle device & provide buffering

3: Console manager Implements virtual consoles

2: Page manager Implements virtual memory for each process

1: Kernel Implements a virtual processor for each process

0: Hardware

EECS 343 Operating Systems
Northwestern University

Dijkstra’s THE system

19

Problems with layering

Imposes hierarchical structure

– but real systems have complex interactions

– Strict layering‏isn’t‏flexible‏enough

Poor performance

– Each layer crossing implies overhead

Disjunction between model and reality

– Systems modelled as layers, but not built that way

EECS 343 Operating Systems
Northwestern University

20

Microkernels

Popular in the late 80’s,‏early90‏’s

– Recent resurgence

Goal:

– Minimize what goes
in kernel

– Organize rest of OS as user-level processes

This results in:

– Better reliability (isolation between components)‏

– Ease of extension and customization

– Poor performance (user/kernel boundary crossings)‏

First microkernel system was Hydra (CMU, 1970)‏

– Follow-ons: Mach (CMU), Chorus (French UNIX-like OS), OS
X (Apple), in some ways NT (Microsoft)‏

EECS 343 Operating Systems
Northwestern University

Virtual machines

Initial release of OS/360 were strictly batch but users

wanted timesharing

– IBM CP/CMS, later renamed VM/370 (‘79)

Note that timesharing systems provides (1)

multiprogramming & (2) extended (virtual) machine

Essence of VM/370 – separate the two

– Heart of the system (VMM) does multiprogramming &

provides to next layer up multiple exact copies of bare HW

– Each VM can run any OS

More recently – Java VM, VMWare

21

370 Bare hardware

VM/370

CMS CMS CMSI/O instruction here

Trap here

System call here

Trap here

EECS 343 Operating Systems
Northwestern University

22

Operating system generation

OS design for a class of machines; need to configure it

for yours - SYSGEN

SYSGEN program gets info on specific configuration

– CPU(s), memory, devices, other parameters

• Either asking the user or probing the hardware

Once you got it you could

– Modify source code & recompile kernel

– Modify tables and select precompiled modules

– Modify tables but everything is there & selection is at run time

Trading size & generality for ease of modification

EECS 343 Operating Systems
Northwestern University

23

System boot

How does the OS gets started?

Booting: starting a computer by loading the kernel

Instruction register loaded with predefined memory
location – bootstrap loader (ROM)‏

– Why not just put the OS in ROM? Cell phones & PDAs

Bootstrap loader

– Run diagnostics

– Initialize registers & controllers

– Fetch second bootstrap program form disk

• Why do you need a second bootstrap loader?

Second bootstrap program loads OS & gets it going

– A disk with a boot partition – boot/system disk

EECS 343 Operating Systems
Northwestern University

24

Summary & preview

Today

– The mess under the carpet

– Basic concepts in OS

– Structuring OS - a few alternatives

Next‏…

– Process – the central concept in OS

• Process model and implementation

– Threads – a light-weight process

• Thread model, usage & implementation

EECS 343 Operating Systems
Northwestern University

