
Processes & Threads

Today
Process concept

Process model

Implementing processes

Multiprocessing once again

Next Time
More of the same 

EECS 343 Operating Systems

Northwestern University

2

The process model

Most computers can do more than one thing at a time

– Hard to keep track of multiple tasks

How do you call each of them?

– Process - program in execution

– a.k.a. job, task

CPU switches back & forth among processes

– Pseudo-parallelism

Multiprogramming on a single CPU

– At any instant of time one CPU means

one executing task, but over time …

– Every processes as if having its own CPU

Process rate of execution – not reproducible

A
B

C
D

A

B

C

D

Four programs

One PC

Context

switch

3

Process creation

Principal events that cause process creation

– System initialization

– Execution of a process creation system

– User request to create a new process

– Initiation of a batch job

In all cases – a process creates another one

– Running user process, system process or batch manager

process

Process hierarchy

– UNIX calls this a "process group"

– No hierarchies in Windows - all created equal (parent does

get a handle to child, but this can be transferred)

EECS 343 Operating Systems

Northwestern University

4

Process creation

Resource sharing

– Parent and children share all resources, a subset or none

Execution

– Parent and children execute concurrently or parent waits

Address space

– Child duplicate of parent or one of its own from the start

UNIX example

– fork system call creates new process; a clone of parent

– Both processes continue execution at the instruction after the

fork

– execve replaces process’ memory space with new one

Why two steps?

EECS 343 Operating Systems

Northwestern University

5

Process identifiers

Every process has a unique ID

Since it’s unique sometimes used to guarantee

uniqueness of other identifiers (tmpnam)

Special process IDs: 0 – swapper, 1 – init

Creating process in Unix – fork
– pid_t fork(void);

– Call once, returns twice

– Returns 0 in child, pid in parent, -1 on error

Child is a copy of the parent

– Another option - COW (copy-on-write)?

EECS 343 Operating Systems

Northwestern University

6

Hierarchy of processes in Solaris

sched is first process

Its children pageout, fsflush, init …

csh (pid = 7778), user logged using telnet

…

EECS 343 Operating Systems

Northwestern University

Sched

pid = 0

init

pid = 1
pageout

pid = 2

fsflush

pid = 3

inetd

pid = 140

dtlogin

pid = 251

telnetdaemon

pid = 7776

Csh

pid = 7778

Firefox

pid = 7785

xemacs

pid = 8105

xsession

pid = 294

std_shel

pid = 340

Csh

pid = 140

ls

pid = 2123

cat

pid = 2536

7

Process termination

Conditions which terminate processes

Normal exit (voluntary)
– the job is done

Error exit (voluntary)
– oops, missing file?

Fatal error (involuntary)
– Referencing non-existing memory perhaps?

Killed by another process (involuntary)
– “kill -9”

Unix – ways to terminate

Normal – return from main, calling exit (or _exit)

Abnormal – calling abort, terminated by a signal

EECS 343 Operating Systems

Northwestern University

8

Process states

Possible process states (in Unix run ps)

– New – being created

– Ready – waiting to get the processor

– Running – being executed

– Waiting – waiting for some event to occur

– Terminated – finished executing

Transitions between states

Which state is a process in most of the time?

new

ready

admitted
interrupt

running

dispatched

terminatedexit

waiting
I/O or

event wait

I/O or event

completion

EECS 343 Operating Systems

Northwestern University

9

Process states in Unix

User

running

Kernel

running

asleep

Stopped

+ asleep

Ready

Initial

(idle)

Stopped

zombie

fork

fork

Syscall,

interrupt

Return from

syscall or interrupt

waitexit

continuestopstop

wakeup

stop continue

swtch

swtch
sleep

wakeup

From U. Vahalia, UNIX Internal,

Prentice-Hall, 1996

In 4.2/4.3

BSD, not in

SVR2/SVR3

EECS 343 Operating Systems

Northwestern University

Process terminated

but parent did not

wait for it

10

Execution mode and context

Applications

(user) code

System calls,

exceptions

Not allowed

Interrupts,

system tasks

(access process space only) (access process & system space)

(access system space only)

User mode Kernel mode

Process context

System context

Kernel acts on

behalf of the process

Kernel performs some

system-wide task

EECS 343 Operating Systems

Northwestern University

Execution context

Mode of execution

11

Implementing processes

Process

– A program in execution (i.e. more than code, text section)

– Program: passive; process: active

Current activity

– Program counter & content of processor’s registers

– Stack – temporary data including function parameters, return

address, …

– Data section – global variables

– Heap – dynamically allocated memory

EECS 343 Operating Systems

Northwestern University

12

Implementing processes

OS maintains a process table of Process Control

Blocks (PCB)

PCB: information associated with each process

– Process state: ready, waiting, …

– Program counter: next instruction to execute

– CPU registers

– CPU scheduling information: e.g. priority

– Memory-management information

– Accounting information

– I/O status information

– …

http://minnie.tuhs.org/UnixTree/V6/usr/sys/proc.h.html

EECS 343 Operating Systems

Northwestern University

http://minnie.tuhs.org/UnixTree/V6/usr/sys/proc.h.html

13

Switch between processes

Save current process’ state before

Restore the state of a different one

Context

switch

EECS 343 Operating Systems

Northwestern University

14

Handling interrupts - again

What gets done when an interrupt occurs

1. HW stacks PC, etc

2. HW loads new PC from interrupt vector

3. Assembly lang. procedure saves registers

4. Assembly lang. procedure sets up new stack

5. C interrupt service runs

6. Scheduler decides which process to run next

7. C procedure returns to assembly code

8. Assembly code starts up new current process

EECS 343 Operating Systems

Northwestern University

15

State queues

OS maintains a collection of queues that

represent the state of processes in the system

– Typically one queue for each state

– PCBs are queued onto state queues according to

current state of the associated process

– As a process changes state, its PCB is unlinked

from one queue, and linked onto another

There may be many wait queues, one for each

type of wait (devices, timer, message, …)

EECS 343 Operating Systems

Northwestern University

16

Process creation in UNIX

#include <stdio.h>

#include <sys/types.h>

int tglob = 6;

int main (int argc, char* argv[])

{

int pid, var;

var = 88;

printf("write to stdout\n");

fflush(stdout);

printf("before fork\n");

…

…

if ((pid = fork()) < 0){

perror("fork failed");

return 1;

} else {

if (pid == 0){

tglob++;

var++;

} else /* parent */

sleep(2);

}

printf("pid = %d, tglob = %d, var

= %d\n",

getpid(), tglob, var);

return 0;

} /* end main */

[fabianb@eleuthera tmp]$./creatone

a write to stdout

before fork

pid = 31848, tglob = 7, var = 89

pid = 31847, tglob = 6, var = 88

EECS 343 Operating Systems

Northwestern University

17

Process creation in UNIX

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

int main (void)

{

pid_t childpid;

pid_t mypid;

mypid = getpid();

childpid = fork();

if (childpid == -1) {

perror("Failed to fork\n");

return 1;

}

if (childpid == 0) /* child code */

printf(“Child %ld, ID = %ld\n”, (long) getpid(), (long) mypid);

else /* parent code */

printf(“Parent %ld, ID = %ld\n”, (long) getpid(), (long) mypid);

return 0;

}

[fabianb@eleuthera tmp]$./badpid 4

Child 3948, ID = 3947

Parent 3947, ID = 3947

EECS 343 Operating Systems

Northwestern University

18

Process creation in UNIX

...

if ((pid = fork()) < 0) {

perror(“fork failed”);

return 1;

} else {

if (pid == 0) {

printf(“Child before exec … now the ls output\n”);

execlp("/bin/ls", "ls", NULL);

} else {

wait(NULL); /* block parent until child terminates */

printf("Child completed\n");

return 0;

}

}

} /* end main */

[fabianb@eleuthera tmp]$./creattwo

Child before exec ... now the ls output

copy_shell creatone.c~ p3id skeleton

copy_shell.tar creattwo p3id.c uwhich.tar

creatone creattwo.c p3id.c~

creatone.c creattwo.c~

Child completed

EECS 343 Operating Systems

Northwestern University

19

Summary

Today

– The process abstraction

– Its implementation

– Processes in Unix

Next time

– Threads

EECS 343 Operating Systems

Northwestern University

