
Threads

Today
Why threads

Thread model & usage

Implementing threads

Scheduler activations

Making single-threaded code

multithreaded

Next time
CPU Scheduling

EECS 343 Operating Systems

Northwestern University

2

The problem with processes

A process consists of (at least):

– An address space

– The code for the running program

– The data for the running program

– An execution stack and stack pointer (SP)

• Traces state of procedure calls made

– The program counter (PC), indicating the next instruction

– A set of general-purpose processor registers and their values

– A set of OS resources

• open files, network connections, sound channels, …

A lot of concepts bundled together!

EECS 343 Operating Systems

Northwestern University

3

The problem with processes

Many programs need to perform mostly independent

tasks that do not need to be serialized

– e.g. web server, text editor, database server, …

In each examples

– Everybody wants to run the same code

– … wants to access the same data

– … has the same privileges

– … uses the same resources (open files, net connections, etc.)

But you‟d like to have multiple HW execution states:

– An execution stack & SP

– PC indicating the next instruction

– A set of general-purpose processor registers & their values

How can we get this?

Given the process abstraction as we know it

– fork several processes

– cause each to map to the same address space to share data

• see the shmget() system call for one way to do this (kind of)

Not very efficient

– Space: PCB, page tables, etc.

– Time: creating OS structures, fork and copy addr space, etc.

Some equally bad alternatives for some of the cases:

– Entirely separate web servers

– Finite-state machine or event-driven – a single process and

asynchronous programming (non-blocking I/O)

4EECS 343 Operating Systems

Northwestern University

5

The thread model

Traditionally

– Process = 1 address space + 1 thread of execution

– Process = resource grouping + execution stream

• Resources: program text, data, open files, child processes,

pending alarms, accounting info, …

Key idea with threads

– Separate the concept of a process (address space, etc.)

– From that of a minimal “thread of control” (execution state)

EECS 343 Operating Systems

Northwestern University

Kernel space

User space

Kernel space

User space

Three traditional

single-threaded

processes

One multithreaded

process

6

The thread model

Concurrency & parallelism
– Concurrency – what‟s possible with infinite processors

• Provided at the

– System level: Kernel recognizes multiple threads of control within a
process & schedules them independently

– Application level: Through user-level thread library; a good
structuring tool

– Parallelism – your actual degree of parallel exec.

Threads states ~ processes states

One stack per thread – w/ one frame per procedure
called but not yet returned from

Common calls
– thread_create()

– thread_exit()

– thread_wait()

– thread_yield() (why would you need this?)

EECS 343 Operating Systems

Northwestern University

7

The thread model

Share and private items

No protection bet/ threads

(Should they be?)

Per process

Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers

Accounting information

Per thread

Program counter

Registers

Stack

State

EECS 343 Operating Systems

Northwestern University

Old and new process address space

8

0x00000000

0xFFFFFFFF

address space

code

(text segment)

static data

(data segment)

heap

(dynamic allocated mem)

stack

(dynamic allocated mem)

PC

SP

code

(text segment)

static data

(data segment)

heap

(dynamic allocated mem)

thread 1 stack

PC (T2)

SP (T2)
thread 2 stack

SP (T1)

PC (T1)

Old one without threads New one with threads

EECS 343 Operating Systems

Northwestern University

9

A simple example

void do_wrap_up(int one, int
another)

{

int total;

total = one + another;

printf(“wrap up: one %d, another
%d and total %d\n”, one,
another, total);

}

int main (int argc, char *argv[])

{

do_one_thing(&r1);

do_another_thing(&r2);

do_wrap_up(r1,r2);

return 0;

} /* main! */

int r1 = 0, r2 = 0;

void do_one_thing(int *ptimes)

{

int i, j, k;

for (i = 0; i < 4; i++) {

printf(“doing one\n”);

for (j = 0; j < 1000; j++)

x = x + i;

(*ptimes)++;

} /* do_one_thing! */

void do_another_thing(int *ptimes)

{

int i, j, k;

for (i = 0; i < 4; i++) {

printf(“doing another\n”);

for (j = 0; j < 1000; j++)

x = x + i;

(*ptimes)++;

} /* do_another_thing! */

EECS 343 Operating Systems

Northwestern University

10

Registers SP

PC

GP0

GP1

…

Layout in memory & threading

Identity

Resources

PID

UID

GID

…

Open Files

Locks

Sockets

…

do_one_thing()

i, j, k

main()

main()

--

--

do_one_thing()

--

--

do_another_thing()

--

--

Lowest address

Stack

Text

Data

Heap

Highest address

r1

r2

Virtual Address Space

Thread 1

Registers SP

PC

GP0

GP1

…

do_another_thing()

i, j, k

Thread 2

Stack

EECS 343 Operating Systems

Northwestern University

11

Benefits of threads

A web server
– Single-threaded: no parallelism, blocking

system calls

– Event-driven: parallelism, non-blocking

system calls, interrupts

– Multithreaded: parallelism, blocking

system calls

Reasons for threads
– Simpler programming model when application has multiple,

concurrent activities

– Easy/cheaper to create/destroy than processes since they have no

resources attached to them

– With good mix of CPU and I/O bound activities, better performance

– Even better if you have multiple CPUs

User space

Kernel space

Dispatcher

thread

Web server

process

Worker

threads

Network

connection

Cache

EECS 343 Operating Systems

Northwestern University

12

Implementing threads in user space

Kernel unaware of threads – no modification required

(many-to-one model)

Run-time system: a collection of procedures

Each process needs its own thread table

Pros

– Thread switch is very fast

– No need for kernel support

– Customized scheduler

– Each process ~ virtual processor

Cons - „real world‟ factors
– Multiprogramming, I/O, Page faults

– Blocking system calls?

Can you check?

EECS 343 Operating Systems

Northwestern University

13

Implementing threads in the kernel

One-to-one model

No need for runtime system

No wrapper for system calls

But … creating threads is more expensive – recycle

And system calls are expensive

EECS 343 Operating Systems

Northwestern University

14

Hybrid thread implementations

Trying to get the best of both worlds

Multiplexing user-level threads onto kernel- level

threads (many-to-many model)

One popular variation – two-level model (you can

bound a user-level thread to a kernel one)

EECS 343 Operating Systems

Northwestern University

15

Costs of threads (creation)

Creation time User-level

threads

LWP/Kernel-

level threads

Processes

SPARCstation 2, Solaris 52μsec 350μsec 1700μsec

700MHz Pentium, Linux 2.2.* 4.5μsec

create/join

94μsec

create/join

251μsec

fork/exit

EECS 343 Operating Systems

Northwestern University

16

Scheduler activations*

Goal

– Functionality of kernel threads &

– Performance of user-level threads

– Without special non-blocking system calls

Problem : needed control & scheduling information

distributed bet/ kernel & each app‟s address space

Basic idea

– When kernel finds out a thread is about to block, upcalls the

runtime system (activates it at a known starting address)

– When kernel finds out a thread can run again, upcalls again

– Run-time system can now decide what to do

Pros – fast & smart

Cons – upcalls violate layering approach

*Anderson et al., “Scheduler Activations: effective

Kernel Support for the User-level Management of

Parallelism,” SOSP, Oct. 1991.
EECS 343 Operating Systems

Northwestern University

17

Thread libraries

Pthreads – POSIX standard (IEEE 1003.1c) API for

thread creation & synchronization

– API specifies behavior of the thread library, implementation is

up to the developers of the library

– Common in UNIX OSs (Solaris, Linux, Mac OS X)

Win32 threads – slightly different (more complex API)

Java threads

– Managed by the JVM

– May be created by

• Extending Thread class

• Implementing the Runnable interface

– Implementation model depends on OS (1-to-1 in Windows but

many-to-many in early Solaris)

EECS 343 Operating Systems

Northwestern University

18

Multithreaded C/POSIX

/* shared by thread(s) */

int sum;

/* runner: the thread */

void *runner(void *param)

{

int i, upper = atoi(param);

sum = 0;

for (i = 1; i < upper; i++)

sum += 1;

pthread_exit(0);

} /* runner! */

int main (int argc, char *argv[])

{

pthread_t tid; /* thread id */

/* set of thread attrs */

pthread_attr_t attr;

if (argc != 2 || atoi(argv[1]) < 0) {

fprintf (stderr, "usage: %s
<int>\n", argv[0]);

exit(1);

}

/* get default attrs */

pthread_attr_init(&attr);

pthread_create(&tid, &attr, runner,
argv[1]);

/* wait to exit */

pthread_join(tid, NULL);

printf("sum = %d\n", sum);

exit(0);

} /* main! */

N

i
isum

0

EECS 343 Operating Systems

Northwestern University

19

Complications with threads

Semantics of fork() & exec() system calls
– Duplicate all threads or single-threaded child?

– Are you planning to invoke exec()?

Other system calls (closing a file, lseek, …?)

Signal handling, handlers and masking
1. Send signal to each thread – too expensive

2. A master thread per process – asymmetric threads

3. Send signal to an arbitrary thread (control C?)

4. Use heuristics to pick thread (SIGSEGV & SIGILL – caused
by thread, SIGTSTP & SIGINT – caused by external events)

5. Create a thread to handle each signal – situation specific

Visibility of threads

Stack growth

EECS 343 Operating Systems

Northwestern University

20

Threads and global variables

– An example problem

– Prohibit global variables? Legacy code?

– Assign each thread its own global variables

• Allocate a chunk of memory and pass it around

• Create new library calls to create/set/destroy global

variables

Single-threaded to multithreaded

EECS 343 Operating Systems

Northwestern University

21

Single-threaded to multithreaded

Many library procedures are not reentrant

Re-entrant: able to handle a second call while

not done with previous one

e.g. assemble msg in a buffer before sending it

Solutions

– Rewrite library?

– Wrappers for each call?

Signal handling

EECS 343 Operating Systems

Northwestern University

22

Summary

You really want multiple threads per address space

Kernel threads are more efficient than processes, but

they‟re still not cheap

– all operations require a kernel call and parameter verification

User-level threads are:

– Really fast

– Great for common-case operations, but

– Can suffer in uncommon cases due to kernel obliviousness

Scheduler activations are a good answer

Next time

– Multiple processes in the ready queue, but only one processor

… which you should you pick next?

EECS 343 Operating Systems

Northwestern University

