Scheduling

Today

® Introduction to scheduling
® Classical algorithms

® Thread scheduling

® Evaluating scheduling

® OS example

Next Time
® Process interaction & communication

Scheduling

* Problem

Several ready processes & much fewer CPUs

* A choice has to be made

By the scheduler, using a scheduling algorithm

» Scheduling through time

Early batch systems — Just run the next job in the tape

Early timesharing systems — Scarce CPU time so scheduling
IS critical

PCs — Commonly one active process so scheduling is easy;
with fast & per-user CPU scheduling is not critical

Networked workstations & servers — All back again, multiple
ready processes & expensive CS, scheduling is critical

EECS 343 Operating Systems
Northwestern University

Process behavior

» Bursts of CPU usage alternate with periods of 1/O wait
— A property key to scheduling
— CPU-bound & I/O bound process

* As CPU gets faster — more 1/0O bound processes

i \ Histogram of CPU-burst times

Long CPU burst Waiting for /O -
\ 140 A Large number of
-—-TI—I—-—-—I—-—I—I- 120 I\ short CPU bursts
L
g 100 \
Short CPU burst S &0 \\
60
\ Small number of
0 \ long CPU bursts
20 7 —
0 8 16 24 32 40

burst duration (milliseconds)

EECS 343 Operating Systems
Northwestern University

Multilevel scheduling

» Batch systems allow scheduling at 3 levels

Arriving
job
Input
queue

Z Select a ready
process and allocate

the CPU to it

O [Tl =—>| ey &

Look for mix of CPU- &
I/O-bound jobs or
Shortest job first

(1) Admission
scheduler

(Job Scheduler) \ /

5
>

Memory Disk

scheduler

/N

Too many processes & not

These two determine the
degree of multiprogramming

enough memory — swap
somebody out; when there’s

EECS 343 Operating Systems
Northwestern University

room: which one to bring in?

When to schedule?

* When?
1. At process creation
When a process exits
When a process blocks on 1/0O, a semaphore, etc
When an /O interrupts occurs
A fix periods of time — Need a HW clock interrupting

* Preemptive and non-preemptive

— No-preemptive: An allocated CPU is not release until the
process terminates or switches to waiting

(1) . (2)

I/O or event
completion

a bk own

EECS 343 Operating Systems
Northwestern University

Dispatcher

» Dispatcher module gives control of CPU to process
selected by short-term scheduler
— Switching context
— Switching to user mode
— Jumping to proper location in user program to restart it

» Dispatch latency — time for the dispatcher to stop one
process & start another running

avant response 1o evant

[k response interval '

process made
intarrupt available

———— dizpateh latansy ———————m

raal-lime
proGess
axacution

m— conflicts T digpatch —m

—
tima

EECS 343 Operating Systems
Northwestern University

Environments and goals

» Different scheduling algorithms for different
application areas

» Worth distinguishing
— Batch
— Interactive
— Real-time

» All systems

— Fairness — comparable processes getting
comparable service

— Policy enforcement — seeing that stated policy is
carried out

— Balance — keeping all parts of the system busy (mix
pool of processes)

EECS 343 Operating Systems
Northwestern University

Environments and goals

» Batch systems
— Throughput — max. jobs per hour

— Turnaround time — min. time bet/ submission & termination
» Waiting time — sum of periods spent waiting in ready queue

— CPU utilization — keep the CPU busy all time

* Interactive systems

— Response time — respond to requests quickly (time to start
responding)

— Proportionality — meet users’ expectations
* Real-time system

— Meeting deadlines — avoid losing data

— Predictability — avoid quality degradation in multimedia
systems

* Average, maximum, minimum or variance?

EECS 343 Operating Systems
Northwestern University

First-Come First-Served scheduling

» First-Come First-Served
— Simplest, easy to implement, non-preemptive

— Problem:
« 1 CPU-bound process (burst of 1 sec.)

* Many I/O-bound ones (needing to read 1000 records to
complete)

« Each I/O-bound process reads one block per sec!
(' 00 @

EECS 343 Operating Systems
Northwestern University

FCFS scheduling

Order of arrival: P1 , P2 , P3
Gantt Chart for schedule

Pl P2 P3 Process Burst

0 24 27 30 Time
Waiting times: P1 =0; P2 =24; P3 =27 Pl 24
Average waiting time: (0 + 24 + 27)/3 = 17 P2 3
P3 3

Order of arrival: P, , P5, P;
Gantt chart for schedule is

I:)2 PB Pl
0 3 6 30

Waiting times: P1 =6; P2 =0; P3 =3
Average waiting time: (6 +0 + 3)/3 =3

Preemptive or not?

EECS 343 Operating Systems
Northwestern University

Shortest Job/Remaining Time First sched.

* Shortest-Job First

— Assumption — total time needed (or length of next
CPU burst) is known

— Provably optimal
First job finishes at time a
Second job attime a + b

Mean turnaround time
(4a+3b+2c+d)d

3

Job #

Finish time

a

AIWIDN

b
c
d

Biggest Preempetive or not?

contributor

* A preemptive variation — Shortest Remaining

Time (or SRPT)

EECS 343 Operating Systems
Northwestern University

SJF and SRT

* SJF Non-preemptive

P, Ps P, P,
O I I 3I I I I _] 8 I I I]-2 I I I 16
avg. waitingtime = (0+ 6+ 3+ 7)/4 =4 |
Process Arrival Burst
Time
P1 0.0 7
P2 2.0 4
* SRT Preemptive P3 4.0 1
P4 5.0 4
P, P, |Ps | P> P, P,
I I i —+—1 ——+—
O 2 4 5 7 11 16

avg. waitingtime=(9+ 1+ 0 +2)/4 =3

EECS 343 Operating Systems
Northwestern University

Determining length of next CPU burst

» Can only estimate length

» Can be done using length of previous CPU
bursts and exponential averaging

-t_ =actual lenght of n"™ CPU burst
-7,.,, = predicted value for thenext CPU burst

-a,0<a <1
12
- Define: Weight of history
) 7 10
! |
T.,=at +(1—a)z'n. -
--/
T .
Most recent 2
information . ! . !
Past history time —»

CPU burst (1) / 6 4 13 13 13
"guess” (1)) 6 6 5 9 11 12
EECS 343 Operating Systems
Northwestern University

Examples of Exponential Averaging

¢ a :O z-n+1=05tn+(1_05)z-n'

— Th+1 — Tn
— Recent history does not count
e a=1

— Th+1 — tn
— Only the actual last CPU burst counts

» |f we expand the formula, we get:
T =at+Hl-a)at, ;+..+1-a)Yat, ;+...+#(1-a)* 1
* Since both o and (1 - o) are less than or equal to 1,

each successive term has less weight than its
predecessor

EECS 343 Operating Systems
Northwestern University

Priority scheduling

» SJF Is a special case of priority-based scheduling
— Priority = reverse of predicted next CPU burst

» Pick process with highest priority (lowest number)
* Problem

. . Process Burst Priority
— Starvation — low priority processes time
may never execute P1 10 3
« Solution: P2 L !
— Aging — increases priority (Unix’s nice) °3 ° :
: . P4 1 5
— Assigned maximum quantum P5 5 2
P2 P5 P]_ P3 P4
] 1 1 I I A | 1 1 |
O 4 5 16 18

avg. waiting time=(6+0+ 16 +18 + 1)/5=8.2

EECS 343 Operating Systems
Northwestern University

Round-robin scheduling

» Simple, fair, easy to implement, & widely-used
» Each process gets a fix qguantum or time slice
* When quantum expires, if running preempt CPU

» With n processes & guantum ¢, each one gets 1/n of
the CPU time, no-one waits more than (n-1) g

q=4
Process Burst
P, |P,|Ps| P, |P,|P,|Py| Py Time
P1 24
O 4 7 10 14 18 22 26 30 5o
avg. waiting time = (6 + 4 +7)/3 = 5.66 P3

Preempetive or not?

EECS 343 Operating Systems
Northwestern University

Quantum & Turnaround time

» Length of quantum
— Too short — low CPU efficiency (why?)

— Too long — low response time
(really long, what do you get?)

— Commonly ~ 50-100 msec.

process | time

125 P, :

12.0 / 2 5
£ 115 \ P, 7
£ 110 g S~
o
g 105 Largest quantums
2 f0 don’t imply shortest
g turnaround times
S 95

9.0

1 2 3 4 5 6 7
time quantum

EECS 343 Operating Systems
Northwestern University

Combining algorithms

» |n practice, any real system uses some hybrid
approach, with elements of each algorithm

» Multilevel queue
— Ready queue partitioned into separate queues
— Each queue has its own scheduling algorithm

— Scheduling must be done between the queues
» Fixed priority scheduling; (i.e., foreground first); starvation?

« Time slice — each queue gets a certain amount of CPU time which it can
schedule amongst its processes

Highest

priority
) System processes)
=) Interactive processes)
P Interactive editing processes)
=) Batch processes)

Lowest
priority

EECS 343 Operating Systems
Northwestern University

Multiple (feedback) queues

» Multiple queues, allow processes to move bet/ queues

» Example CTSS - Idea: separate processes based on
CPU bursts
— 7094 had only space for 1 process in memory (switch = swap)
— Goals: low context switching cost & good response time
— Priority classes: class i gets 2! quantas (i: 0 ...)

— Scheduler executes first all processes in queue 0; if empty, all
in queue 1, ...

— If process uses all its quanta — move to next lower queue
(leave I/O-bound & interact. processes in high-priority queue)

— What about process with long start but interactive after that?

Carriage-return hit — promote process to top class K

i
—udli

EECS 343 Operating Systems
Northwestern University

Some other algorithms

» Guaranteed sched. - e.g. proportional to # processes
— Priority = amount used / amount promised
— Lower ratio — higher priority

» Lottery scheduling — simple & predictable
— Each process gets lottery tickets for resources (CPU time)
— Scheduling — lottery, i.e. randomly pick a ticket
— Priority — more tickets means higher chance
— Processes may exchange tickets

» Fair-Share scheduling
— Schedule aware of ownership
— Owners get a % of CPU, processes are picked to enforce it

EECS 343 Operating Systems
Northwestern University

Real-time scheduling

» Different categories
— Hard RT — not on time ~ not at all
— Soft RT — important to meet guarantees but not critical

» Scheduling can be static or dynamic

» Schedulable real-time system
— m periodic events
— event i occurs within period P; and requires C, seconds

Then the load can only be handled if

n C P1: C =50 msec, P = 100msec (.5)
Z <1 P2: C = 30 msec, P = 200msec (.15)
P P3: C =100 msec, P = 500msec (.2)
|

P4: C = 200 msec, P=1000msec (.2)

EECS 343 Operating Systems
Northwestern University

Multiple-processor scheduling

» Scheduling more complex w/ multiple CPUs

* Asymmetric/symmetric (SMP) multiprocessing

— Supported by most OSs (common or independent ready
gueues)

» Processor affinity — benefits of past history in a
processor

» Load balancing — keep workload evenly distributed

— Push migration — specific task periodically checks load in
processors & pushes processes for balance

— Pull migration — idle processor pulls processes from busy one

» Symmetric multithreading (hyperthreading or SMT)
— Multiple logical processors on a physical one
— Each w/ own architecture state, supported by hardware
— Shouldn’t require OS to know about it (but could benefit from)

EECS 343 Operating Systems
Northwestern University

Scheduling the server-side of P2P systems

* Response time experienced by users of P2P services is
dominated by downloading process.

— >80% of all download requests in Kazaa are rejected due to capacity
saturation at server peers

— >50% of all requests for large objects (>100MB) take more than one day &
~20% take over one week to complete

* Most implementations « 10 Mean Respense Time For Objects Downloading

12
use FCFS or PS
FCFS
* Apply SRPT! Work by 7'
. PS
Qiao et al. @ Nortwestern g \
& 4
» PS — Process Sharing
E FCFS — First-Come First-Serve
E Gl SRPT — Shortest-Remaining Processing-Time
2
g
g 4 SRPT-RS
= e sl T
Mean response time of g b - SrpT_p SRPT_SS :
object download as a 2r PPN e e S S W
. _ _.u,.--ﬂ'-..__._ i ==l
function of system load. o SRPT -
%.5 1 1.5 2 2.5 3
System Load

EECS 343 Operating Systems
Northwestern University

Thread scheduling

» Now add threads — user or kernel level?

» User-level (process-contention scope)
— Context switch is cheaper
— You can have an application-specific scheduler at user level
— Kernel doesn’t know of your threads

» Kernel-level (system-contention scope)

— Any scheduling of threads is possible (since the kernel knows
of all)

— Switching threads inside same process is cheaper than
switching processes

EECS 343 Operating Systems
Northwestern University

Pthread scheduling API

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5

/* Each thread begin control in this function */
void *runner (void *param)
{
printf ("I am a thread\n");
pthread exit(0) ;
}

int main(int argc, char *argv][])

{
int i;
pthread t tid[NUM THREADS]; pthread attr t attr;
pthread attr init(&attr); /* get the default attributes */

pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM); /* set the sched algo */
pthread attr setschedpolicy(&attr, SCHED OTHER); /* set the sched policy */

for (i = 0; i < NUM _THREADS; i++) /* create the threads */
pthread create(&tid[i], &attr,runner, NULL) ;

for (i = 0; i < NUM _THREADS; i++) /* now join on each thread */
pthread join(tid[i], NULL);

EECS 343 Operating Systems
Northwestern University

Policy vs. mechanism

* Separate what is done from how it is done
— Think of parent process with multiple children

— Parent process may knows relative importance of children (if,
for example, each one has a different task)

* None of the algorithms presented takes the parent
process input for scheduling

» Scheduling algorithm parameterized
— Mechanism in the kernel

» Parameters filled in by user processes
— Policy set by user process
— Parent controls scheduling w/o doing it

EECS 343 Operating Systems
Northwestern University

Algorithm evaluation

» First problem: criteria to be used in selection
— E.g. Max CPU usage, but w/ max. response time of 1 sec.

+ Evaluation forms

— Analytic evaluation - deterministic modeling:
» Given workload & algorithm — number or formula
« Simple & fast, but workload specific
— Queueing models
« Computer system described as a network of servers
» Load characterized by distributions

* Applicable to limited number of algorithms — complicated math &
guestionable assumptions

— Simulations
» Distribution-driven or trace-based

— Implementation
» Highly accurate & equally expensive

EECS 343 Operating Systems
Northwestern University

Next time

* Process synchronization
— Race condition & critical regions
— Software and hardware solutions
— Review of classical synchronization problems

» What really happened in Mars?

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

EECS 343 Operating Systems
Northwestern University

OS examples — Linux

* Preemptive, priority-based scheduling
— Two separate priority ranges mapping to a global priority
scheme
* Real-time [0,99] & nice [100,140]
» Two algorithms
— Time-sharing
 Perioritized credit-based — process w/ most credits is scheduled next
« Credit subtracted when timer interrupt occurs
« When credit = 0, another process chosen

* When all processes have credit = 0, re-crediting occurs
— Based on factors including priority and history
— (Soft) Real-time
« Static priority for RT tasks
« Two classes
— FCFS (2+ task w/ = priority RR) and RR (FCFS w/ quantum)
— Highest priority process always runs first

EECS 343 Operating Systems
Northwestern University

OS examples — Linux (Ingo Molnar’s O(1))

» Perfect SMP scalablility & improved SMP affinity

* O(1) scheduling — constant-time, regardless of # of
running processes
— One run queue per processor
— Two priority arrays: Active (tasks w/ remaining quantum) &
Expired
— Each array includes 1 queue of runable processes per priority
level

— Recalculation of task’s dynamic priority done when task has
exhausted its time quantum & moved to expired

— When active is empty — swap active expired
array array
priority task lists priority task lists
[O] 0—0 [0] 0—0—0
[1] 0—0—0 [1] o
[140] @) [140] o—0O

EECS 343 Operating Systems
Northwestern University

