
Deadlocks

Today
Resources & deadlocks

Dealing with deadlocks

Other issues

Next Time
Memory management

EECS 343 Operating Systems

Northwestern University

2

System model

System – a collection of resources to be shared
among a set of processes

Resources partitioned in types, each with multiple
instances (printers, files, memory,…)

Resources can be
– Preemptable - can be taken away from process w/o ill effects

e.g. memory

– Nonpreemptable - process will fail if resource was taken away

e.g. CD recorder

A request for resource type R can be satisfied by any
instance of the type

3

System model

A process must request a resource before using it &

release it once done (open/close, malloc/free, …)

Sequence of events to use a resource

1. request it – if not granted then block or return error
down(semaphore)

2. use it

3. release it
up(semaphore)

Suppose

– Process A holds resource R & requests S

– Process B holds resources S and requests R

– A & B are now blocked

EECS 343 Operating Systems

Northwestern University

A B

R

S

4

Introduction to deadlocks

Formal definition
A set of processes is deadlocked if each process in the set is

waiting for an event that only another process in the set can
cause

None of the processes can …
– run

– release resources

– be awakened

Assumptions
– Processes are single threaded

– There are no interrupts possible to wake up a blocked process

A “cute” example
“When two trains approach each other at a crossing, both shall

come to a full stop and neither shall start up until the other has
gone.” An actual law passed by the Kansas legislature …

EECS 343 Operating Systems

Northwestern University

5

Conditions for deadlock

1. Mutual exclusion - Each resource assigned to 1

process or available

2. Hold and wait - A process holding resources can

request others

3. No preemption - Previously granted resources

cannot forcibly be taken away

4. Circular wait – A circular chain of 2+ processes, each

waiting for resource held by next one

All conditions must hold for a deadlock to occur.

Each of the 1-3 conditions is associated with a policy the

system can or not have; break one condition → no

deadlock

EECS 343 Operating Systems

Northwestern University

6

Deadlock modeling

Modeled with directed graphs

– Process B is requesting/waiting for resource S

– Resource R assigned to process A

– Process C & D in deadlock over resources T & U

You can generalize it to multiple resource

instances per class

T U

C

D

A R

A

R

Assignment

B

S

Request

EECS 343 Operating Systems

Northwestern University

7

Basic facts

If graph contains no cycles no deadlock.

If graph contains a cycle

– if only one instance per resource type, then

deadlock.

– if several instances per resource type, maybe a

deadlock.

CBA

R1 R2

R2
R4

A

B

C

D

R1

R2

No deadlock here

Deadlock here

EECS 343 Operating Systems

Northwestern University

8

Deadlock modeling

A

Request R

Request S

Release R

Release S

B

Request S

Request T

Release S

Release T

C

Request T

Request R

Release T

Release R

1.A requests R

2.B requests S

3.C requests T

4.A requests S

5.B requests T

6.C requests R

….

deadlock

1.A requests R

2.C requests T

3.A requests S

4.C requests R

5.A releases R

6.A releases S

....

no deadlock

A

R S

B C

T

Requests and releases

of each process

Two

possible

orderings

EECS 343 Operating Systems

Northwestern University

Clearly, the ordering of operations plays a role

9

Dealing with deadlocks

Possible strategies

Ignore the problem altogether – ostrich “algorithm”

Detection and recovery – do not stop it; let it happen,

detect it and recover from it

Dynamic avoidance - careful resource allocation

Prevention - negating one of the four necessary

conditions

EECS 343 Operating Systems

Northwestern University

10

The ostrich algorithm

Pretend there is no problem

Reasonable if

– deadlocks occur very rarely

– cost of prevention is high

UNIX’s & Windows’ approach

A clear trade off between

– convenience

– correctness

EECS 343 Operating Systems

Northwestern University

11

Deadlock detection – single instance

How, when & what

Simplest case

1.L ← empty

all arcs set as unmarked

2.For each node N

/* depth-first search */

2.1.Add N to L & check

if N in L twice there’s a

deadlock; exit

2.2.Pick one arc at random,

mark it & follow it to next

current node

3.At end, if no arc no deadlock

Arcs:
A→S, A←R, B→T, C→S

D→S, D←T, E→V, E←T

F→S, F←W, G→V, G←V

L:[R], L:[R,A], L:[R,A,S]

L:[B], L:[B,T], L:[B,T,E], …

A

F

D

G

E

BR

S

W

U

T

V

C

EECS 343 Operating Systems

Northwestern University

12

Detection - multiple instances

n processes, m classes of
resources

E – vector of existing resources

A – vector of available resources

C – matrix of currently allocated
resources

R – request matrix

Cij – Pi holds Cij instances of
resource class j

Rij – Pi wants Cij instances of
resource class j

Invariant – Σi Cij + Aj = Ej

(Currently allocated + available = existing)

i.e. all resources are either
allocated or available

Algorithm:

All processes unmarked

1.Look for unmarked process
Pi for which Ri ≤ A

2.If found, add Ci. to A,
mark the process and go
to 1

3.If not, exit

All unmarked processes, if
any, are deadlock

Idea: See if there’s any process that
can be run to completion with
available resources, mark it and
free its resources …

EECS 343 Operating Systems

Northwestern University

13

Detection

(existing) (available)

E = (4 2 3 1) A = (2 1 0 0)

C = R =

Three processes and 4 resource

types

After running process 3

A = (2 2 2 0)

Now you can run process 2

A = (4 2 2 1)

2 0 0 1

1 0 1 0

2 1 0 0

0 0 1 0

2 0 0 1

0 1 2 0

Algorithm:

All processes unmarked

1.Look for unmarked
process Pi for which
Ri ≤ A

2.If found, add Ci. to A,
mark the process and go
to 1

3.If not, exit

All unmarked processes, if
any, are deadlock

Idea: See if there’s any process
that can be run to completion
with available resources, mark
it and free its resources …

EECS 343 Operating Systems

Northwestern University

What process 1 has

What process 1 needs

14

When to check & what to do

When to try
– Every time a resource is requested

– Every fixed period of times or when CPU utilization drops

What to do then - recovery
– Through preemption

• depends on nature of the resource

– Through rollback
• Need to checkpoint processes periodically

– By killing a process
• Crudest but simplest way to break a deadlock

• Kill one in or not in the deadlock cycle

EECS 343 Operating Systems

Northwestern University

15

Deadlock avoidance

Dynamically make sure not to get into a deadlock

Two process resource trajectories

printer

I1 I2 I3 I4qp

I5

I6

I7

I8

B

A

* u (Both

processes done)

printer plotter

plotter

s
r

t

impossible

deadlock

Your only option here

is to run A up to I4

impossible

EECS 343 Operating Systems

Northwestern University

16

Safe and unsafe states

Safe if

– There is no deadlock

– There is some scheduling order by which all processes can

run to completion

Un-safe is not deadlock – just no guarantee

Example with one resource (10 instances of it)

A 3 9

B 2 4

C 2 7

Free: 3

A 3 9

B 2 4

C 2 7

Free: 3

A requests and is granted

another instance

Safe

Unsafe

Has Needs

Has Needs

In retrospect, A’s request should

not have been grantedEECS 343 Operating Systems

Northwestern University

A 3 9

B 4 4

C 2 7

Free: 1

Has Needs

A 3 9

B 0 -

C 2 7

Free: 5

Has Needs

A 3 9

B 0 -

C 7 7

Free: 0

Has Needs

A 3 9

B 0 -

C 0 -

Free: 7

Has Needs

A 4 9

B 2 4

C 2 7

Free: 2

Has Needs

A 4 9

B 4 4

C 2 7

Free: 0

Has Needs

A 4 9

B 0 -

C 2 7

Free: 4

Has Needs

17

Banker's algorithm

Considers

– Each request as it occurs

– Sees if granting it leads to a safe state i.e. there are enough

resources to satisfy one customer

With multiple resources
1.Look for a row Ri. ≤ A, if none the system will

eventually deadlock

2.If found, mark Pi and add Ci. to A

3.Repeat until processes are terminated or a deadlock

occurs

Very cute, but mostly useless

– Most processes don’t know in advance what they need

– The lists of processes and resources are not static

– Processes may depend on each other

EECS 343 Operating Systems

Northwestern University

18

Deadlock prevention

Avoidance is pretty hard or impossible

Can we break one of the condition?

– Mutual exclusion

– Hold & wait

– No preemption

• Not a viable option

• How can you preempt a printer?

– Circular wait

EECS 343 Operating Systems

Northwestern University

19

Attacking mutual exclusion

Some devices can be spooled (printer)
– Only the printer daemon uses printer resource

– Thus deadlock for printer eliminated

But not all devices can be spooled – process
table?

Principle:
– Assigning resource only when absolutely necessary

– Reduce number of processes that may claim the
resource

EECS 343 Operating Systems

Northwestern University

20

Attacking hold & wait

Processes request all resources at start (wait)

– Process never has to wait for what it needs

But

– May not know required resources at start

– It ties up resources others could be using

Variation (hold)

– Process must release all resources to request a

new one

EECS 343 Operating Systems

Northwestern University

21

Impose total order on resources

Processes request resources in order

If all processes follow order, no circular wait
occurs

Deadlock if i → A → j & j → B → i

If i < j then A → j …

Process cannot request resource lower than
what it’s holding

Advantage - Simple

Disadvantage - Arbitrary ordering

Attacking circular wait

A

i j

B

EECS 343 Operating Systems

Northwestern University

22

Related issues

Two-phase locking – gather all locks, work & free all

– If you cannot get all, drop all you have and start again

Non-resource deadlocks

– Each is waiting for the other to do some task

– E.g. communication deadlocks:

• A sends a request and blocks until B replies, message gets lost!

• Timeout!

Starvation

– Algorithm to allocate a resource

– SJF – consider allocation of a printer

• Great for multiple short jobs in a system

• May cause long job to be postponed indefinitely

– even though not blocked

– Solution: FIFO

EECS 343 Operating Systems

Northwestern University

23

Next time …

We have discussed sharing CPU to improve

utilization and turnaround time

For that to happen we also need to share

memory

We’ll start with memory organization and basic

management techniques (e.g. paging)

Before moving to memory virtualization …

… of course, all this after the midterm!

EECS 343 Operating Systems

Northwestern University

