
Memory Management

Today

Basic memory management

Swapping

Kernel memory allocation

Next Time

Virtual memory

Midterm results

Average 68.9705882

Median 70.5

Std dev 13.9576965

2

0

2

4

6

8

10

12

[0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,85]

EECS 343 Operating Systems

Northwestern University

Schedule for the remaining weeks

11/04 Memory mgmt.
– Project 3 out

11/06 Memory mgmt
– Homework 3 out

11/11 Virtual mem

11/13 Virtual mem
– Homework 3 in

11/17 Project 3 In

11/18 Mass-storage & I/O

Systems

11/20 File systems I/F
– Homework 4 out

– Project 4 out

11/25 File systems impl.

11/27 Thanksgiving

12/02 Protection &

security
– Project 4 in

12/03 Homework 4 in

12/05 Research in OS &

Review
– Homework 5 in class

12/09 Final

3EECS 343 Operating Systems

Northwestern University

EECS 343 Operating Systems

Northwestern University

4

Memory management

Ideal memory for a programmer

– Large

– Fast

– Non volatile

– Cheap

Nothing like that → memory hierarchy

– Small amount of fast, expensive memory – cache

– Some medium-speed, medium price main memory

– Gigabytes of slow, cheap disk storage

Memory manager handles the memory hierarchy

Basic memory management

Simplest memory abstraction – no abstraction at all

– Early mainframes (before „60), minicomputers (before „70) and

PCs (before „80)

– Only one program running at a time

– Some alternatives for organizing memory

5EECS 343 Operating Systems

Northwestern University

BIOS

MSDOS
Mainframes &

minicomputers

Some palmtops &

embedded systems

Early PCs

6

Multiprogramming w/ fixed partitions

Multiprogramming – when one process is waiting for

I/O, another one can use the CPU

Two simple approaches

– Split memory in n parts (possible != sizes)

– Single or separate input queues for each partition

– ~IBM OS/360 – MFT: Multiprogramming with Fixed number of

Tasks

EECS 343 Operating Systems

Northwestern University

7

Two problems w/ multiprogramming

Relocation and protection

– Don‟t know where program will be loaded in memory

• Address locations of variables & code routines

– Keep a process out of other processes‟ partitions

IBM OS/MFT - modify instructions on the fly; split

memory into 2KB blocks & add key/code combination

Use base and limit values (CDC 6600 & Intel 8088)

– address locations + base value → physical address

EECS 343 Operating Systems

Northwestern University

8

Swapping

Not enough memory for all processes?

– Swapping

• Simplest

• Bring each process entirely

• Move another one to disk

• Compatible Time Sharing System

(CTSS) – a uniprogrammed

swapping system

– Virtual memory (your other option)

• Allow processes to be only partially in main memory

EECS 343 Operating Systems

Northwestern University

Operating

System

User

Space

Main memory Backing store

Swap out

Swap in

Process

P1

Process

P2

9

Swapping

How is different from MFT?

– Much more flexible

• Size & number of partitions changes dynamically

– Higher memory utilization, but harder memory management

Swapping in/out creates multiple holes

– Fragmentation …

Operating

System

Operating

System

A

Operating

System

A

B

Operating

System

A

B

C

Operating

System

B

C

Operating

System

B

C

D

Operating

System

C

D

Operating

System

C

D

A
Space for A is

available, but not as

a single piece.

EECS 343 Operating Systems

Northwestern University

10

Fragmentation

External Fragmentation – total memory space
exists to satisfy a request, but it is not
contiguous

Reduce external fragmentation by compaction
– Shuffle contents to group free memory as one block

– Possible only if relocation is dynamic; done at
execution time

– I/O problem
• Latch job in memory while it is involved in I/O

• Do I/O only into OS buffers

Too expensive (256MB machine, moving at 4B
per 40 nanosec. ~ 2.7sec!)

EECS 343 Operating Systems

Northwestern University

11

How much memory to allocate?

If process‟ memory doesn‟t grow – easy

In real world, memory needs change dynamically:

– Swapping to make space?

– Allocate more space to start with

• Internal Fragmentation – leftover memory is internal to a partition

– Remember what you used when swapping

More than one growing area per processes

– Stack & data segment

– If need more, same as before

EECS 343 Operating Systems

Northwestern University

12

Memory management

With dynamically allocated memory

– OS must keep track of allocated/free memory

– Two general approaches - bit maps and linked lists

Bit maps

– Divide memory into allocation units

– For each unit, a bit in the bitmap

– Design issues - Size of allocation unit

• The smaller the size, the larger the bitmap

• The larger the size, the bigger the waste

– Simple, but slow

– find a big enough

chunk?

EECS 343 Operating Systems

Northwestern University

13

Memory management with lists

Linked list of allocated/free space

List ordered by address

Double link will make your life easier

– Updating when a process is swapped out or terminates

Keeping track of processes

and holes in the same list

P X P P H P

P X H P HH

PXH PHH

X H HH HH

EECS 343 Operating Systems

Northwestern University

14

Picking a place – different algorithms

First fit – simple and fast

Next fit - ~ First fit but start where it left off
– Worst performance than First fit

Best fit – try to waste the least
– More waste in tiny holes!

Worst fit – try to “waste” the most
– Not too good either

Speeding things up
– Two lists (free and allocated) – slows down deallocation

– Order the hole list – first fit ~ best fit

– Use the same holes to keep the list

– Quick fit – list of commonly used hole sizes

N lists for N different common sizes (4KB, 8KB, …)

Allocation is quick, merging is expensive

EECS 343 Operating Systems

Northwestern University

15

Kernel memory allocation

Most OS manage memory as set of fixed-size pages

Kernel maintains a list of free pages

Page-level allocator has

– Two main routines: e.g get_page() & freepage() in SVR4

– Two main clients: Paging system & KMA

Network

Buffers

Proc

strutcures

inodes, file

descriptors

User

processes

Block buffer

cache

Page-level

allocator

Kernel

memory

allocator

Paging

system

Physical

memory

Paging

system

Provides odd-size buffers to

various kernel subsystems

EECS 343 Operating Systems

Northwestern University

16

Kernel memory allocation

KMA‟s common users
– The pathname translation routine

– Proc structures, vnodes, file descriptor blocks, …

Since requests << page → page-level allocator is
inappropriate

KMA & the page-level allocator
– Pre-allocates part of memory for the KMA

– Allow KMA to request memory

– Allow two-way exchange with the paging system

Evaluation criteria
– Utilization memory – physical memory is limited after all

– Speed – it is used by various kernel subsystems

– Simple API

– Allow a two-way exchange with page-level allocator

EECS 343 Operating Systems

Northwestern University

17

KMA – Resource map allocator

Resource map – a set of <base, size> pairs

Initially the pool is described by a single pair

… after a few exchanges … a list of entries per

contiguous free regions

Allocate requests based on

– First fit, Best fit, Worst fit

A simple interface
offset_t rmalloc(size);

void rmfree(base, size);

0, 1024 rmalloc(256)256, 768 rmalloc(320)576,448

rmfree(256,128)

256,128

EECS 343 Operating Systems

Northwestern University

18

Resource map allocator

Pros

– Easy to implement

– Not restricted to memory allocation

– It avoid waste (although normally rounds up requests sizes for

simplicity)

– Client can release any part of the region

– Allocator coalesces adjacent free regions

Cons

– After a while maps ended up fragmented – low utilization

– Higher fragmentation, longer map

– Map may need an allocator for its own entries

• How would you implement it?

– To coalesce regions, keep map sorted – expensive

– Linear search to find a free region large enough

EECS 343 Operating Systems

Northwestern University

19

KMA – Simple power-of-two free list

A set of free lists

Each list keeps free buffers of a particular size (2x)

Each buffer has one word header

– Pointer to next free buffer, if free or to

– Pointer to free list (or size), if allocated

EECS 343 Operating Systems

Northwestern University

32

64

128

256

512

20

KMA – Simple power-of-two free list

Allocating(size)

– allocating (size + header) rounded up to next power of two

– Return pointer to first byte after header

Freeing doesn‟t require size as argument

– Move pointer back header-size to access header

– Put buffer in list

Initialize allocator by preallocating buffers or get pages

on demand; if it needs a buffer from an empty list …

– Block request until a buffer is released

– Satisfy request with a bigger buffer if available

– Get a new page from page allocator

21

Power-of-two free lists

Pros

– Simple and pretty fast (avoids linear search)

– Familiar programming interface (malloc, free)

– Free does not require size; easier to program with

Cons

– Rounding means internal fragmentation

– As many requests are power of two and we loose header; a

lot of waste

– No way to coalesce free buffers to get a bigger one

– Rounding up may be a costly operation

EECS 343 Operating Systems

Northwestern University

22

Coming up …

The nitty-gritty details of virtual memory …

EECS 343 Operating Systems

Northwestern University

23

Modeling multiprogramming

CPU utilization & multiprogramming

– Utilization as a function of # of processes in memory

– If process spends p% waiting for I/O

Probability all processes waiting for I/O at once: pn

CPU Utilization 1- pn

Degree of multiprogramming

EECS 343 Operating Systems

Northwestern University

24

11 12

Degree of multiprogramming

Performance of a MP system

Computer w/ 32MB

16MB for OS & 4 processes (@ 4MB per process)

With 80% avg. waiting time

CPU Utilization – 1 – 0.84 = 1 – 0.41 = 0.6 : 60%

Add 16MB – 4 more user processes

CPU Utilization – 1 – 0.88 = 0.83 : 83% … 38% increase

Add 16MB – 4 more user processes

CPU Utilization – 1 – 0.812 = 0.93 : 93% … 12% increase

EECS 343 Operating Systems

Northwestern University

