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Midterm results

Average 68.9705882 

Median 70.5 

Std dev 13.9576965 
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Schedule for the remaining weeks

11/04 Memory mgmt.
– Project 3 out

11/06 Memory mgmt
– Homework 3 out

11/11 Virtual mem

11/13 Virtual mem
– Homework 3 in

11/17 Project 3 In

11/18 Mass-storage & I/O 

Systems

11/20 File systems I/F
– Homework 4 out

– Project 4 out

11/25 File systems impl.

11/27 Thanksgiving

12/02 Protection & 

security
– Project 4 in

12/03 Homework 4 in

12/05 Research in OS & 

Review
– Homework 5 in class

12/09 Final
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Memory management

Ideal memory for a programmer

– Large

– Fast

– Non volatile

– Cheap

Nothing like that → memory hierarchy 

– Small amount of fast, expensive memory – cache 

– Some medium-speed, medium price main memory

– Gigabytes of slow, cheap disk storage

Memory manager handles the memory hierarchy



Basic memory management

Simplest memory abstraction – no abstraction at all

– Early mainframes (before „60), minicomputers (before „70) and 

PCs (before „80)

– Only one program running at a time

– Some alternatives for organizing memory
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Multiprogramming w/ fixed partitions

Multiprogramming – when one process is waiting for 

I/O, another one can use the CPU

Two simple approaches

– Split memory in n parts (possible != sizes)

– Single or separate input queues for each partition

– ~IBM OS/360 – MFT: Multiprogramming with Fixed number of 

Tasks
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Two problems w/ multiprogramming

Relocation and protection

– Don‟t know where program will be loaded in memory

• Address locations of variables & code routines

– Keep a process out of other processes‟ partitions

IBM OS/MFT - modify instructions on the fly; split 

memory into 2KB blocks & add key/code combination

Use base and limit values (CDC 6600 & Intel 8088)

– address locations + base value → physical address
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Swapping

Not enough memory for all processes?

– Swapping

• Simplest

• Bring each process entirely

• Move another one to disk

• Compatible Time Sharing System 

(CTSS) – a uniprogrammed

swapping system

– Virtual memory (your other option)

• Allow processes to be only partially in main memory
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Swapping

How is different from MFT?

– Much more flexible

• Size & number of partitions changes dynamically

– Higher memory utilization, but harder memory management

Swapping in/out creates multiple holes

– Fragmentation …
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Fragmentation

External Fragmentation – total memory space 
exists to satisfy a request, but it is not 
contiguous

Reduce external fragmentation by compaction
– Shuffle contents to group free memory as one block

– Possible only if relocation is dynamic; done at 
execution time

– I/O problem
• Latch job in memory while it is involved in I/O

• Do I/O only into OS buffers

Too expensive (256MB machine, moving at 4B 
per 40 nanosec. ~ 2.7sec!)
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How much memory to allocate?

If process‟ memory doesn‟t grow – easy

In real world, memory needs change dynamically:

– Swapping to make space?

– Allocate more space to start with

• Internal Fragmentation – leftover memory is internal to a partition

– Remember what you used when swapping

More than one growing area per processes

– Stack & data segment

– If need more, same as before
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Memory management

With dynamically allocated memory

– OS must keep track of allocated/free memory

– Two general approaches - bit maps and linked lists

Bit maps

– Divide memory into allocation units

– For each unit, a bit in the bitmap

– Design issues - Size of allocation unit

• The smaller the size, the larger the bitmap

• The larger the size, the bigger the waste

– Simple, but slow 

– find a big enough 

chunk?
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Memory management with lists

Linked list of allocated/free space

List ordered by address

Double link will make your life easier

– Updating when a process is swapped out or terminates

Keeping track of processes 

and holes in the same list

P X P P H P

P X H P HH

PXH PHH

X H HH HH
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Picking a place – different algorithms

First fit – simple and fast

Next fit - ~ First fit but start where it left off
– Worst performance than First fit

Best fit – try to waste the least
– More waste in tiny holes!

Worst fit – try to “waste” the most
– Not too good either

Speeding things up
– Two lists (free and allocated) – slows down deallocation

– Order the hole list – first fit ~ best fit

– Use the same holes to keep the list

– Quick fit – list of commonly used hole sizes 

N lists for N different common sizes  (4KB, 8KB, …)

Allocation is quick, merging is expensive
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Kernel memory allocation

Most OS manage memory as set of fixed-size pages

Kernel maintains a list of free pages

Page-level allocator has

– Two main routines: e.g get_page() & freepage() in SVR4

– Two main clients: Paging system & KMA

Network

Buffers

Proc 

strutcures

inodes, file 

descriptors

User 

processes

Block buffer 

cache

Page-level

allocator

Kernel

memory

allocator

Paging

system

Physical 

memory

Paging

system

Provides odd-size buffers to 

various kernel subsystems
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Kernel memory allocation

KMA‟s common users
– The pathname translation routine

– Proc structures, vnodes, file descriptor blocks, …

Since requests << page → page-level allocator is 
inappropriate

KMA & the page-level allocator 
– Pre-allocates part of memory for the KMA

– Allow KMA to request memory

– Allow two-way exchange with the paging system

Evaluation criteria
– Utilization memory – physical memory is limited after all

– Speed – it is used by various kernel subsystems

– Simple API

– Allow a two-way exchange with page-level allocator
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KMA – Resource map allocator

Resource map – a set of <base, size> pairs

Initially the pool is described by a single pair

… after a few exchanges … a list of entries per 

contiguous free regions

Allocate requests based on

– First fit, Best fit, Worst fit

A simple interface
offset_t rmalloc(size);

void rmfree(base, size);

0, 1024 rmalloc(256)256, 768 rmalloc(320)576,448

rmfree(256,128)

256,128
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Resource map allocator

Pros

– Easy to implement

– Not restricted to memory allocation

– It avoid waste (although normally rounds up requests sizes for 

simplicity)

– Client can release any part of the region

– Allocator coalesces adjacent free regions

Cons

– After a while maps ended up fragmented – low utilization

– Higher fragmentation, longer map

– Map may need an allocator for its own entries

• How would you implement it?

– To coalesce regions, keep map sorted – expensive

– Linear search to find a free region large enough
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KMA – Simple power-of-two free list

A set of free lists

Each list keeps free buffers of a particular size (2x)

Each buffer has one word header

– Pointer to next free buffer, if free or to 

– Pointer to free list (or size), if allocated
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KMA – Simple power-of-two free list

Allocating(size)

– allocating (size + header) rounded up to next power of two

– Return pointer to first byte after header

Freeing doesn‟t require size as argument

– Move pointer back header-size to access header

– Put buffer in list

Initialize allocator by preallocating buffers or get pages 

on demand; if it needs a buffer from an empty list …

– Block request until a buffer is released

– Satisfy request with a bigger buffer if available

– Get a new page from page allocator
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Power-of-two free lists

Pros

– Simple and pretty fast (avoids linear search)

– Familiar programming interface (malloc, free)

– Free does not require size; easier to program with

Cons

– Rounding means internal fragmentation

– As many requests are power of two and we loose header; a 

lot of waste

– No way to coalesce free buffers to get a bigger one

– Rounding up may be a costly operation
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Coming up …

The nitty-gritty details of virtual memory …
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Modeling multiprogramming

CPU utilization & multiprogramming 

– Utilization as a function of # of processes in memory

– If process spends p% waiting for I/O

Probability all processes waiting for I/O at once:  pn

CPU Utilization 1- pn

Degree of multiprogramming
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11 12

Degree of multiprogramming

Performance of a MP system

Computer w/ 32MB

16MB for OS & 4 processes (@ 4MB per process)

With 80% avg. waiting time

CPU Utilization – 1 – 0.84 = 1 – 0.41 = 0.6  : 60%

Add 16MB – 4 more user processes

CPU Utilization – 1 – 0.88 = 0.83  : 83% … 38% increase

Add 16MB – 4 more user processes

CPU Utilization – 1 – 0.812 = 0.93  : 93% … 12% increase
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