
Virtual Memory

Today
Virtual memory

Page replacement algorithms

Modeling page replacement algorithms

Virtual memory

Handling processes >> than allocated memory

Keep in memory only what’s needed

– Full address space does not need to be resident in memory

• Leave it on disk

– OS uses main memory as a cache

Overlay approach

– Implemented by user

– Easy on the OS, hard on the

programmer

EECS 343 Operating Systems

Northwestern University

2

20K

30K

10K

Common

routines

Symbol

tables

Overlay

driver

Overlay for a two-pass

assembler:

Pass 1 70KB

Pass 2 80KB

Symbol Table 20KB

Common Routines 30KB

Total 200KB

Two overlays: 120 + 130KB

Pass 170K
Pass 2

80K

3

Virtual memory

Hide the complexity – let the OS do the job

Virtual address space split into pages

Physical memory split into page frames

Page & page frames = size (512B … 64KB)

Map pages into page frames

– Doing the translation – OS + MMU

EECS 343 Operating Systems

Northwestern University

4

Pages, page frames and tables

A simple example with

64KB virtual address space

4KB pages

32KB physical address space

16 pages and 8 page frames

Try to access :

• MOV REG, 0

Virtual address 0

Page frame 2

Physical address 8192

• MOV REG, 8192

Virtual address 8192

Page frame 6

Physical address 24576

• MOV REG, 20500

Virtual address 20500 (20480 + 20)

Page frame 3

Physical address 20+12288

EECS 343 Operating Systems

Northwestern University

5

Since virtual memory >> physical memory

Use a present/absent bit

MMU checks –

– If not there, “page fault” to

the OS (trap)

– OS picks a victim (?)

– … sends victim to disk

– … brings new one

– … updates page table

MOVE REG, 32780

Virtual address 32780

Virtual page 8, byte 12 (32768+12)

Page is unmapped – page fault!

EECS 343 Operating Systems

Northwestern University

6

Details of the MMU work

MMU with 16 4KB pages

Page # (first 4 bits) index into page table

If not there

– Page fault

Else

– Output register +

– 12 bit offset →

– 15 bit physical address

Page

number
Offset

EECS 343 Operating Systems

Northwestern University

7

Page table entry

Looking at the details

– Page frame number – the most important field

– Protection – 1 bit for R&W or R or 3 bits for RWX

– Present/absent bit

• Says whether or not the virtual address is used

– Modified (M): dirty bit

• Set when a write to the page has occurred

– Referenced (R): Has it being used?

– To ensure we are not reading from cache (D)

• Key for pages that map onto device registers rather than memory

…
Page frame numberProt.

Present/absent

RMD

Caching disable

EECS 343 Operating Systems

Northwestern University

8

Page replacement algorithms

OS uses main memory as (page) cache

– If only load when reference – demand paging

Page fault – cache miss

– Need room for new page? Page replacement algorithm

– What’s your best candidate for removal?

• The one you will never touch again – duh!

What do you do with victim page?

– Modified page must first be saved

– Unmodified one just overwritten

– Better not to choose an often used page

• It will probably need to be brought back in soon

Try to avoid thrashing

– OS wastes most of the time moving pages around

– Fix the algorithm, swap out somebody, get more memory

EECS 343 Operating Systems

Northwestern University

9

How can any of this work?!?!

Locality

– Temporal locality – location recently referenced tend to be

referenced again soon

– Spatial locality – locations near recently referenced are more

likely to be referenced soon

Locality means paging could be infrequent

– Once you brought a page in, you’ll use it many times

– Some issues that may play against you

• Degree of locality of application

• Page replacement policy and application reference pattern

• Amount of physical memory and application footprint

EECS 343 Operating Systems

Northwestern University

10

Optimal algorithm (Belady’s algorithm)

For now, assume a process pages against itself, using

a fixed number of page frames

Best page to replace – the one you’ll never need again

– Replace page needed at the farthest point in future

– Optimal but unrealizable

Estimate by …

– Logging page use on previous runs of process

– Although impractical, useful for comparison

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 1

2

1

2

3

1

2

3

4

1

2

3

5

1

2

3

5

1

2

3

4

1

2

3

4

Need room

for this one

Your ideal

victim!

EECS 343 Operating Systems

Northwestern University

11

FIFO algorithm

Maintain a linked list of all pages – in order of arrival

Victim is first page of list

– Maybe the oldest page will not be used again …

Disadvantage

– But maybe it will – the fact is, you have no idea!

– Increasing physical memory might increase page faults

(Belady’s anomaly, we’ll come back to this)

A, B, C, D, A, B, E, A, B, C, D, E

E
B

A

A B
A

C
B

A B

D
C D

A

C

B
A

D

E
B

A

E
B

A

C
E

B

D
C

E

D
C

E

EECS 343 Operating Systems

Northwestern University

12

Least recently used (LRU) algorithm

Pages used recently will used again soon

– Throw out page unused for longest time

– Idea: past experience is a decent predictor of future behavior

• LRU looks at the past, Belady’s wants to look at the future

• how is LRU different from FIFO?

Must keep a linked list of pages

– Most recently used at front, least at rear

– Update this list every memory reference!!

– Too expensive in memory bandwidth, algorithm execution

time, etc

Alternatively keep counter in page table entry

– Choose page with lowest value counter

– Periodically zero the counter

EECS 343 Operating Systems

Northwestern University

13

A second HW LRU implementation

Use a matrix – n page frames – n x n matrix

Page k is reference

– Set all bits of row k to 1

– Set all bits of column k to 0

Page of lowest row is LRU

0,1,2,3,2,1,0,3,2

EECS 343 Operating Systems

Northwestern University

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 2 3

0

1

2

3

0 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 1 2 3

0

1

2

3

0 0 1 1

1 0 1 1

0 0 0 0

0 0 0 0

0 1 2 3

0

1

2

3

0 0 0 1

1 0 0 1

1 1 0 1

0 0 0 0

0 1 2 3

0

1

2

3

0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

0 1 2 3

0

1

2

3

0 0 0 0

1 0 0 0

1 1 0 1

1 1 0 0

0 1 2 3

0

1

2

3

0 0 0 0

1 0 1 1

1 0 0 1

1 0 0 0

0 1 2 3

0

1

2

3

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

0 1 2 3

0

1

2

3

0 1 1 0

0 0 1 0

0 0 0 0

1 1 1 0

0 1 2 3

0

1

2

3

0 0 1 0

0 0 1 0

1 0 1 1

1 0 1 0

0 1 2 3

0

1

2

3

… 1,0,3,2

14

Simulating LRU in software

Not Frequently Used

– Software counter per page

– At clock interrupt – add R to counter for each page

– Problem - it never forgets!

Better – Aging

– Push R from the left, drop bit on the right

– How is this not LRU? One bit per tick & a finite number of bits

per counter

EECS 343 Operating Systems

Northwestern University

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1

0

1

0

1

1

0

1

2

3

4

5

0 0 0 0 0 0 0 0
0

1

2

3

4

5

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1

1

0

0

1

0

0

1

2

3

4

5

15

Not recently used (NRU) algorithm

Each page has Reference and Modified bits

– Set when page is referenced, modified

– R bit set means recently referenced, so you must clear it

every now and then

Pages are classified

NRU removes page at random

– from lowest numbered, non-empty class

Easy to understand, relatively efficient to implement

and sort-of OK performance

R M Class

0 0 Not referenced, not modified (0,0 → 0)

0 1 Not referenced, modified (0,1 → 1)

1 0 Referenced, but not modified (1,0 → 2)

1 1 Referenced and modified (1,1 → 3)

EECS 343 Operating Systems

Northwestern University

How can this occur?

16

Second chance algorithm

Simple modification of FIFO

– Avoid throwing out a heavily used page – look at the R bit

Operation of second chance

– Pages sorted in FIFO order

– Page list if fault occurs at time 20, A has R bit set

(time is loading time)

Page Time R

H 18 X

G 15 X

F 14 X

E 12 X

D 8 X

C 7 X

B 3 0

A 0 1

Page Time R

A 20 0

H 18 X

G 15 X

F 14 X

E 12 X

D 8 X

C 7 X

B 3 0

Most recently loaded

Oldest page

EECS 343 Operating Systems

Northwestern University

17

Clock algorithm

Quit moving pages around – move a pointer?

Same as Second chance but for implementation

– When page fault

– Look at page pointed at by hand

• If R = 0, evict page

• If R = 1. clear R & move hand

EECS 343 Operating Systems

Northwestern University

R: 0

A
R: 0

B

R: 1

C

R: 1

D

R: 0

E

R: 0

F

R: 0

G
R: 0

G
R: 1

I

R: 1

J

R: 0

K

R: 0

L

R: 0

R: 0

18

Working set

Demand paging

– Simplest strategy, load page when needed

Most programs show locality of reference

– Over a short time, just a few common pages

Working set

– Set of pages used by k most recent memory references

– ws(k, t) – size of working set at time t (k is WS window size)

– What bounds ws(k, t) as you increase k?

– How could you use this to reduce turnaround time?

Clearly ws(ki,t) ≤ ws(kj,t)

for i < j

ws(k,t)

k

EECS 343 Operating Systems

Northwestern University

19

Working set algorithm

Working set and page replacement

– Victim – a page not in the working set

At each clock interrupt – scan the page table

– R = 1? Write Current Virtual Time (CVT) into Time of Last Use

– R = 0? CVT – Time of Last Use > Threshold ? out! else see if

there’s someone and evict oldest (w/ R=0)

– If all are in the working set (all R = 1) random

EECS 343 Operating Systems

Northwestern University

R

bit

2204

Current virtual time

2014 1

2020 1

2032 1

1620 0

1213 0

…
Information

about a page

Time of last use

20

WSClock algorithm

Problem with WS algorithm – Scans the whole table

Combine clock & working set
– If R = 1, same as working set

– If R = 0, if age > T and page clean, out

– If dirty, schedule write and

check next one

– If loop around,

There’s 1+ write scheduled –

you’ll have a clean page soon

There’s none, pick any one

R = 0 & 2204 – 1213 > T

EECS 343 Operating Systems

Northwestern University

1620 0

1213 0

2003 1 2020 1

1980 1

2084 1 2032 1

2014 1

2204

Current virtual time

2204 1

2204 1

21

Belady's anomaly

The more page frames the fewer page faults, right?

– FIFO with 3 page frames

– FIFO with 4 page frames

0 1 2 3 0 1 4

0 1 2 3 0 1

0 1 2 3 0

0 1 2 3 0 1 4 0 1 2 3 4

0 1 2 3 3 3 4

0 1 2 2 2 3

0 1 1 1 2

0 0 0 1

P P P P P P P

P P P P

All page frames

initially empty

EECS 343 Operating Systems

Northwestern University

22

Belady's anomaly

The more page frames the fewer page faults, right?

– FIFO with 3 page frames

– FIFO with 4 page frames

0 1 2 3 0 1 4 4 4 2 3 3

0 1 2 3 0 1 1 1 4 2 2

0 1 2 3 0 0 0 1 4 4

0 1 2 3 3 3 4 0 1 2 3 4

0 1 2 2 2 3 4 0 1 2 3

0 1 1 1 2 3 4 0 1 2

0 0 0 1 2 3 4 0 1

P P P P P P P P P

P P P P PPPPPP

9 page faults

10 page faults

0 1 2 3 0 1 4 0 1 2 3 4

EECS 343 Operating Systems

Northwestern University

23

Modeling page replacement algorithms

Paging system can be characterized by

– Page replacement algorithm

– a reference string

– # page frames

Abstract interpreter with

– Internal array, M, to keep track of memory state

• Size of (M) = # virtual pages, n

– Split in two parts

• Top m entries, for m pages frame

• The bottom part (n – m) for pages that have been referenced but

eventually paged out

– Initially M is empty

EECS 343 Operating Systems

Northwestern University

24

An example using LRU

Pages in page

frames

Pages paged

out to disk

Reference to a page (5) out of

the blue box → page fault

EECS 343 Operating Systems

Northwestern University

25

Distance string – each page reference

denoted by the distance from top of the

stack where the page was located (if not

yet referenced: ∞)

Stack algorithms

Probability density function

of two distance strings

Model works well with other algorithms. Particularly interesting …

Stack algorithm: M(m,r) ⊆ M(m+1,r)

EECS 343 Operating Systems

Northwestern University

Pages in memory with m

pages frames and after r

memory references

26

Distance string & page faults

Computation of page fault rate from distance string

Ci – number of occurrences of i in distance string

Fm – number of page faults with m frames

4

3

Ci

1

2

3

4

5

6

7

∞

Fi

1

2

3

4

5

6

7

∞

Number of

times 1 occur in

distance string

C7 + C∞

Number of page faults

with 6 frames

EECS 343 Operating Systems

Northwestern University

 CCF
n

mk

km

1

27

Distance string & page faults

Computation of page fault rate from distance string

Ci – number of occurrences of i in distance string

Fm – number of page faults with m frames

4

3

3

3

2

1

0

8

Ci

1

2

3

4

5

6

7

∞

20

17

14

11

9

8

8

8

Fi

1

2

3

4

5

6

7

∞

 CCF
n

mk

km

1

EECS 343 Operating Systems

Northwestern University

28

Next time …

You now understand how things work, i.e. the

mechanism …

We’ll now consider design & implementation

issues for paging systems

– Things you want/need to pay attention for good

performance

EECS 343 Operating Systems

Northwestern University

