
Design and Implementation Issues

Today

Design issues for paging systems

Implementation issues

Segmentation

Next

I/O

2

Considerations with page tables

Two key issues with page tables

Mapping must be fast

– Done on every memory reference, at least 1 per instruction

With large address spaces, page tables are too big
w/ 32 bit & 4KB page → 12 bit offset, 20 bit page # ~ 1million

w/ 64 bit & 4KB page → 212 (offset) + 252 pages ~ 4.5x1015!!!

Simplest solutions

– Page table in registers

• Fast during execution, potentially $$$ & slow to context switch

– Page table in memory & one register pointing to start

• Fast to context switch & cheap, but slow during execution

EECS 343 Operating Systems

Northwestern University

Speeding things up a bit

Simple page table 2x cost of memory lookups

– First into page table, a second to fetch the data

– Two-level page tables triple the cost!

How can we make this more efficient?

– Goal – make fetching from a virtual address about

as efficient as fetching from a physical address

– Observation – large number of references to small

number of pages

– Solution – use a hardware cache inside the CPU

• Cache the virtual-to-physical translations in the hardware

• Called a translation lookaside buffer (TLB)

• TLB is managed by the memory management unit (MMU)

EECS 343 Operating Systems

Northwestern University

3

TLBs

TLB – Translates virtual page #s into page frame #s
– Can be done in single machine cycle

TLB is implemented in hardware
– It’s a fully associative cache (parallel search)

– Cache tags are virtual page numbers

– Cache values are page frame numbers

• With this + offset, MMU can calculate physical address

4EECS 343 Operating Systems

Northwestern University

Managing TLBs

Address translations mostly handled by TLB

– >99% of translations, but there are TLB misses

– If a miss, translation is placed into the TLB

Hardware (memory management unit (MMU))

– Knows where page tables are in memory

• OS maintains them, HW access them directly

Software loaded TLB (OS)

– TLB miss faults to OS, OS finds page table entry & loads TLB

– Must be fast

• CPU ISA has instructions for TLB manipulation

• OS gets to pick the page table format

5EECS 343 Operating Systems

Northwestern University

Managing TLBs

OS must ensure TLB and page tables are consistent

– When OS changes protection bits in an entry, it needs to

invalidate the line if it is in the TLB

What happens on a process context switch?

– Remember, each process typically has its own page tables

– Need to invalidate all the entries in TLB! (flush TLB)

• A big part of why process context switches are costly

– Can you think of a hardware fix to this?

When the TLB misses, and a new process table entry

is loaded, a cached entry must be evicted

– Choosing a victim is called “TLB replacement policy”

– Implemented in hardware, usually simple (e.g., LRU)

6EECS 343 Operating Systems

Northwestern University

7

Effective access time

Associative Lookup = time units

Hit ratio - - percentage of times that a page number

is found in the associative registers (ratio related to

TLB size)

Effective Memory Access Time (EAT)

EAT = * (+ memory-access) +

(1 -) (+ 2* memory-access)

 = 80% = 20 nsec memory-access = 100 nsec

EAT = 0.8 * (20 + 100) + 0.2 * (20 + 2 * 100) = 140 nsec

TLB hit

TLB miss

EECS 343 Operating Systems

Northwestern University

0000 0000 0100 0000 0011 0000 0000 0100

8

Hierarchical page table

Handling large address spaces - page the page table!

Same argument – you don’t need the full page table

Virtual address (32-bit machine, 4KB page):
Page # (20 bits) + Offset (12 bits)

Since page table is paged, page number is divided:

Page number (10 bits) + Page offset in 2nd level (10 bits)

p1| p2 | offset

p1 - index into the outer page table

p2 - displacement within outer page

Example

Virtual address: 0x00403004

EECS 343 Operating Systems

Northwestern University

P1 = 1 P2 = 3 Offset = 4

Three-level page table in Linux

Designed to accommodate the 64-bit Alpha

– Adjust for a 32-bit proc. – middle directory of size 1

EECS 343 Operating Systems

Northwestern University

9

Global directory Middle directory Page table Offset

+

Page directory

Page middle

directory

Page

table

Page frame

in physical

memory

cr3 register

+

+

Page table

+

Virtual address

Page size

10

Inverted and hashed page tables

Another way to save space – inverted page tables

– Page tables are index by virtual page #, thus their size

– Inverted page tables – one entry per page frame

• Problem – too slow mapping!

– Hash tables may help

– Also, Translation Lookaside Buffer (TLB) …

EECS 343 Operating Systems

Northwestern University

11

Page size

OS can pick a page size (how?) - small or large?

Small

– Less internal fragmentation

– Better fit for various data structures, code sections

– Less unused program in memory,

but …

– More I/O time, getting page from disk … most of the time goes

into seek and rotational delay!

– Larger page tables

Average process size s

Page size p

Page entry size e

overhead = se / p + p/2

Taking first derivative respect to p

and equating it to zero

-se / p2 + 1/2 = 0

p = √2se

s = 1MB

e = 8 bytes

Optimal p = 4KB

Page table

space
Internal

fragmentation

EECS 343 Operating Systems

Northwestern University

12

Design issues – global vs. local policy

When you need a page frame, pick a victim from
– Among your own resident pages – Local

– Among all pages – Global

Local algorithms
– Basically every process gets a fixed % of memory

Global algorithms
– Dynamically allocate frames among processes

– Better, especially if working set size changes at runtime

– How many page frames per process?

• Start with basic set & react to Page Fault Frequency (PFF)

Most replacement algorithms can work both ways
except for those based on working set
Why not working set based algorithms?

EECS 343 Operating Systems

Northwestern University

13

Load control

Despite good designs, system may still thrash

– Sum of working sets > physical memory

Page Fault Frequency (PFF) indicates that

– Some processes need more memory

– but no process needs less

Way out: Swapping

– So yes, even with paging you still need swapping

– Reduce number of processes competing for memory

– ~ two-level scheduling – careful with which process to swap

out (there’s more than just paging to worry about!)

What would you like of the remaining processes?

EECS 343 Operating Systems

Northwestern University

14

Separate instruction & data spaces

One address space – size limit

Pioneered by PDP-11: 2 address spaces, Instruction

and Data spaces

– Double the space

– Each with its own page table & paging algorithm

EECS 343 Operating Systems

Northwestern University

15

Shared pages

In large multiprogramming systems – multiple users

running same program - share pages?

Some details

– Not all is shareable

– With I-space and D-space, sharing would be easier

– What do you do if you swap one of the sharing process out?

• Scan all page tables may not be a good idea

Sharing data is slightly trickier than sharing code

– Fork in Unix

– Sharing both data and program bet/ parent and child; each

with its own page table but pages marked as READ ONLY

– Copy On Write

EECS 343 Operating Systems

Northwestern University

16

Cleaning policy

To avoid having to write pages out when needed –

paging daemon

– Periodically inspects state of memory

– Keep enough pages free

– If we need the page before it’s overwritten – reclaim it!

Two hands for better performance (BSD)

– First one clears R, second checks it

– If hands are kept close, only heavily used pages have a

chance

– If back is just ahead of front hand (359 degrees), original clock

– Two key parameters, adjusted at runtime

• Scanrate – rate at which hands move through the list

• Handspread – gap between them

EECS 343 Operating Systems

Northwestern University

17

Virtual memory interface

So far, transparent virtual memory

Some control for expert use

– For shared memory – fast IPC

– For distributed shared memory

Going to disk may be slower than going to somebody else’s

memory!

client server

IPC: pipe, etc

client servershared mem.

user/kernel

EECS 343 Operating Systems

Northwestern University

18

Implementation issues

Operating System involvement w/ paging:

Process creation
– Determine program size, allocate space for page table, for

swap, bring stuff into swap, record info into PCB

Process execution
– Reset MMU for new process, flush TLB, make new page table

current, pre-page?

Page fault time
– Find out which virtual address cause the fault, find page in

disk, get page frame, load page, reset PC, …

Process termination time
– Release page table, pages, swap space, careful with shared

pages

EECS 343 Operating Systems

Northwestern University

19

Page fault handling

Hardware traps to kernel

General registers saved by assembler routine, OS
called

OS find which virtual page cause the fault

OS checks address is valid, seeks page frame

If selected frame is dirty, write it to disk (CS)

Get new page (CS), update page table

Back up instruction where interrupted

Schedule faulting process

Routine load registers & other state and return to user
space

EECS 343 Operating Systems

Northwestern University

20

Instruction backup

As we’ve seen, when a program causes a page fault,

the current instruction is stopped part way through …

Harder than you think!

– Consider instruction: MOV.L #6(A1), 2(A0)

– Which one caused the page fault? What’s the PC then?

– It can even get worse – auto-decrement and auto-increment?

Some CPU designers have included hidden registers

to store

– Beginning of instruction

– Indicate autodecr./autoincr. and amount

EECS 343 Operating Systems

Northwestern University

1000 MOVE

1002 6

1004 2

21

Locking pages in memory

Virtual memory and I/O occasionally interact

Process issues call for read from device into a

buffer within its address space

– While waiting for I/O, another processes starts up

– Second process has a page fault

– Buffer for the first process may be chosen to be

paged out!

Solutions:

– Pinning down pages in memory

– Do all I/O to kernel buffers and copy later

EECS 343 Operating Systems

Northwestern University

22

Backing store

How do we manage swap area?

– Allocate space to process when started

– Keep offset to process swap area in PCB

– Process can be brought entirely when started or as

needed

Some problems

– Size – process can grow … split text/data/stack

segments in swap area

– Do not allocate anything … you may need extra

memory to keep track of pages in swap!

EECS 343 Operating Systems

Northwestern University

23

Separation of policy & mechanism

How to structure the memory management system for

easy separation? Mach:
1. Low-level MMU handler – machine dependent

2. Page-fault handler in kernel – machine independent, most of paging

mechanism

3. External pager in user space – user-level process

Where do you put the page replacement algorithm?

Pros and cons
User space

Kernel space

Fault

handler
MMU

handler

External

pager

1.Page fault

User

process

2.Need

page

5.Here!

6.Map page in

3-4.Page

in/out of

disk

EECS 343 Operating Systems

Northwestern University

24

Segmentation

So far - one-dimensional address spaces

For many problems, having multiple AS is better

e.g. compiler with various tables that grow dynamically

Multiple AS → segments

– A logical entity – programmer knows

– Different segments of different sizes

– Each one growing independently

– Address now includes segment # + offset

– Protection per segment can be different

Symbol

table

Source text

free

free

Symbol

table

free

Source text

Segments

EECS 343 Operating Systems

Northwestern University

25

Paging vs. segmentation

Consideration Paging Segmentation

Need the programmer be

aware?

No Yes

Linear address spaces 1 Many

Can procedure & data be

distinguished &

separately protected?

No Yes

Is sharing procedures bet/

processes facilitated?

No Yes

Why was the technique

invented?

Get a large virtual space

w/o more physical

memory?

Allow programs & data to

be broken into logically

independent address

spaces

Aid sharing & protection

EECS 343 Operating Systems

Northwestern University

26

Segmentation w/ paging - MULTICS

Large segment? Page them e.g MULTICS & Pentium

Process: 218 segments of ~64K words (36-bit)

Most segments are paged

Process has a segment table (itself a paged segment)

Segment descriptor indicates if in memory

Segment descriptor points to page table

Address of segment in secondary memory in another table

Segment # (18b) Page # (6b) Offset (10b)

Virtual Address

Page entry

Page entry

Page entry

….

Page entry

Page entry

Page entry

….

Segment desc.

Segment desc.

Segment desc.

….

Descriptor

segment

Page table

EECS 343 Operating Systems

Northwestern University

27

Segmentation w/ paging - MULTICS

With memory references

Segment # to get segment descriptor

If segment in memory, segment’s page table is in memory

Protection violation?

Look at the page table’s entry - is page in memory?

Add offset to page origin to get word location

… to speed things up - TLB

Segment

Descriptor

EECS 343 Operating Systems

Northwestern University

28

Next time

Principles of I/O hardware and software

Disks and disk arrays

… file systems

EECS 343 Operating Systems

Northwestern University

