File Systems Interface

Today

« Files and access methods
» Directory structures

» Sharing and protection

Next
* File system implementation

Files and file systems

Most computer applications need to:

» Store large amounts of data (larger than their address space)
» that must survive process termination and

» can be access concurrently by multiple processes

— Usual answer: Files — form user’s perspective, the smallest
allotment of logical secondary storage

File system — part of the OS dealing with files

» Supports the file abstraction of storage

» Naming — how do users select files?

» Protection — users are not all equal

» Reliability — information must be safe for long periods of time

» Storage mgmt. — efficient use of storage and fast access to files

EECS 343 Operating Systems
Northwestern University

File attributes

» Names — different for each OS
— Upper and/or lower case

* Type, when supported
» Location (in a device) and size
» A few other useful attributes

Protection Who can access the file & in what way
Creator ID of creator
System flag 0 for normal files; 1 for system ones

Creation time

Date & time of creation

Time of last access

Date & time of last access

Current size

In bytes

EECS 343 Operating Systems
Northwestern University

File operations ...

* File is an ADT (Abstract Data Type) — what
operations?
— Create, delete, write, read
— Reposition within file — file seek
— Truncate
— Other operations can be built on this basic set (e.g. cp)

» Most operation involve searching the directory for file

— Instead, use open first

— open (F,) - search directory for entry F;, move content to
memory (open-file table)

— close () — remove entry from open file table

EECS 343 Operating Systems
Northwestern University

File operations

» Open/Close in multiuser systems
— Per-process and system-wide tables
* Entry in the per-process table points to system-wide table
— System-wide table keeps process-independent information
(e.q. file size)
— Open counts to see if entry is needed

» File locks — restricting access to a file
— Shared (read) and exclusive (write) locks

— Mandatory (OS enforced) and advisory locks (cooperative
model, UNIX)
— Like with any other lock — be careful w/ deadlocks

— Lock files

» Used to indicate that a given resource is locked (e.qg. if the resource to
lock is not a file)

« Content is normally irrelevant, commonly the PID of the lock holder

EECS 343 Operating Systems
Northwestern University

File types

» Different OSs support different file types
— Regular, binary, directories, ...

— Character special (model terminals [/dev/tty], printers, etc) and
block special files (model disks [/dev/hd1])

— Extensions as hints & the use of magic numbers
« Some typical file extensions

file.gif Graphical Interchange Format Image
file.mpg Movie encoded with MPEG standard
file.o Object file

file.txt General text file

— Pros and cons of strongly typed files

EECS 343 Operating Systems
Northwestern University

File structures

» Several file structures, three common ways
— Byte sequence - Unix & Windows; user imposes meaning (a)
— Record sequence — think about 80-column punch cards (b)
— Tree —records have keys, tree is sorted by it (d)

1 Byte

Armstrong | Davis | Parker

/

Rollins Tatum | Young

Basie | Blakey | Coltrane
/
Ellington Evans Getz

@
1 Record Hancock | Hawkins | Monk @
c

(b)

EECS 343 Operating Systems
Northwestern University

File access methods

» Sequential Access — tape model
— Simplest and most common beginning curent position end
— read next/write next

] . —revind _:1: read or write =
» Random/direct access — disk model
— Two approaches

* Read n/write n,
* Position to n and read next/write next

— Retain sequential access — read/write + update last position

» Other access methods ctrome ™

Adams

— On top of direct access
. . . Asher Smith, John soclal-securiry|age
— Normally using indexing

— Multi-level indexing for big files

 E.g. IBM ISAM (Indexed
Seguential Access Method)

Smith

index file relative file

EECS 343 Operating Systems
Northwestern University

Directory structure

* To manage volume of info.: partitions & directories

» Directory: set of nodes with information about all files
— Name, type, address, current & max. length, date last
accessed
» Operations on directories
— Open/close directories, create/delete/rename files from a
directory, readdir, link/unlink, traverse the file system
» Directory organizations - goals
— Efficiency — locating a file quickly.
— Naming — convenient to users.
— Grouping — logical grouping of files by properties (e.g. all Java
progs., all games, ...)

EECS 343 Operating Systems
Northwestern University

Single and two-level directory systems

* A single level directory system
— Early PCs, early supercomputers (CDC 6600), embedded

systems?
— Pros and cons File’s owner —~—Root directory
« Fast file searches T

BH®EE

« Name clashing
— Contains 4 files owned by 3 != people

» Two-level directory system
— Avoid name conflicts bet/ users
— You may need a system’s directory
— Problems if you have too many files

. Root directory

EECS 343 Operating Systems
Northwestern University

Hierarchical & general directory systems

» Hierarchical
— Avoid name clashing for users (MULTICYS)
— Powerful structuring tool for organization (decentralization)

. Root directory

» Acyclic graphs — sharing
— Two different names (aliasing)
— If dict del. list — dangling pointer
« Backpointers & counter (©) (©) (©) (€) ~ Userfile
— Unix links — pointers to files oo (o T
» Soft & hard links — (in)direct pointer \

list all w | count count |words | list

+ Path names é T4 |4

— Absolute & relative path names

rade | w7

— “T&N Lo
566

EECS 343 Operating Systems
Northwestern University

File system mounting

* A FS must be mounted to be available

— What do you do if you have more than one disk? Put a self
contained FS on each (C....) or...

» Typically, a mount point is an empty dir

— Existing file system (a) & unmounted
partition (b)
— After it was mounted (c)

sue jane
mount /dev/sdal /users N
A (a)
. . . . doc
* fstab file in Unix 5*’;
/
(10:41am) ~ % more /etc/fstab (b)
This file is edited by fstab-sync - see 'man fstab-sync' for details
LABEL=/ / ext3 defaults 11 <l
none /dev/pts devpts gid=5,mode=620 00
/dev/sdbl lexport ext3 defaults 12
none /proc proc defaults 00
none /dev/shm tmpfs defaults 00
LABEL=/usr lusr ext3 defaults 12

EECS 343 Operating Systems
Northwestern University

Protection ...

» File owner/creator should be able to control
— what can be done & by whom

» Types of access
— Read, Write, Execute, Append, Delete, List, ...

* A general & common approach — access control list (ACL)
— Per resources — user names & types of access allowed

— Long!
» Unix: short version access lists & groups Rights | Code
— Access modes: read, write, execute WX 7 (111)
— Classes of users: owner, group, public rw- 6 (110)
— 3 bits per for each access mode r-X 5(101)
— Mask provides a default (mine ‘022’ - octal) - 4 (100)
— File created with 777 and mask 022 — 755 WX 3 (011)
-W- 2 (010)
--X 1 (001)
0 (000)

EECS 343 Operating Systems
Northwestern University

Protection

» Combining both approaches - Solaris (2.6+) access
lists - setfacl & getfacl

% getfacl -a exam. tex % setfacl -r -m u:sbirrer:rw- exam.tex
file: exam.tex % getfacl -a exam.tex

owner: fabianb # file: exam.tex

group: other # owner: fabianb

user: :rw- # group: other

group: :r—-- effective:r-- user: :rw-

mask:r—-- ,//77/ user:sbirrer:rw- #effective:rw-
other:1 qmgﬁﬁiﬁﬁigmm group: :r-- #effective:r--

and mask field. mask:rw-
other:r--

* Problems with this?

» Other schemes: passwords per file/directory,
...(TOPS-20, IBM VM/CMS, ...)

EECS 343 Operating Systems
Northwestern University

Next Time

» Detalls on file system implementations and
some examples ...

EECS 343 Operating Systems
Northwestern University

