
File Systems Interface

Today

Files and access methods

Directory structures

Sharing and protection

Next

File system implementation

EECS 343 Operating Systems

Northwestern University

2

Files and file systems

Most computer applications need to:
Store large amounts of data (larger than their address space)

that must survive process termination and

can be access concurrently by multiple processes

→ Usual answer: Files – form user‟s perspective, the smallest
allotment of logical secondary storage

File system – part of the OS dealing with files
Supports the file abstraction of storage

Naming – how do users select files?

Protection – users are not all equal

Reliability – information must be safe for long periods of time

Storage mgmt. – efficient use of storage and fast access to files

3

File attributes

Names – different for each OS
– Upper and/or lower case

Type, when supported

Location (in a device) and size

A few other useful attributes

EECS 343 Operating Systems

Northwestern University

Protection Who can access the file & in what way

Creator ID of creator

System flag 0 for normal files; 1 for system ones

Creation time Date & time of creation

Time of last access Date & time of last access

Current size In bytes

4

File operations …

File is an ADT (Abstract Data Type) – what
operations?
– Create, delete, write, read

– Reposition within file – file seek

– Truncate

– Other operations can be built on this basic set (e.g. cp)

Most operation involve searching the directory for file
– Instead, use open first

– open (Fi) - search directory for entry Fi, move content to
memory (open-file table)

– close () – remove entry from open file table

EECS 343 Operating Systems

Northwestern University

5

File operations

Open/Close in multiuser systems
– Per-process and system-wide tables

• Entry in the per-process table points to system-wide table

– System-wide table keeps process-independent information
(e.g. file size)

– Open counts to see if entry is needed

File locks – restricting access to a file
– Shared (read) and exclusive (write) locks

– Mandatory (OS enforced) and advisory locks (cooperative
model, UNIX)

– Like with any other lock – be careful w/ deadlocks

– Lock files
• Used to indicate that a given resource is locked (e.g. if the resource to

lock is not a file)

• Content is normally irrelevant, commonly the PID of the lock holder

EECS 343 Operating Systems

Northwestern University

6

File types

Different OSs support different file types

– Regular, binary, directories, …

– Character special (model terminals [/dev/tty], printers, etc) and

block special files (model disks [/dev/hd1])

– Extensions as hints & the use of magic numbers

• Some typical file extensions

– Pros and cons of strongly typed files

EECS 343 Operating Systems

Northwestern University

file.gif Graphical Interchange Format Image

file.mpg Movie encoded with MPEG standard

file.o Object file

file.txt General text file

7

File structures

Several file structures, three common ways
– Byte sequence - Unix & Windows; user imposes meaning (a)

– Record sequence – think about 80-column punch cards (b)

– Tree – records have keys, tree is sorted by it (d)

EECS 343 Operating Systems

Northwestern University

1 Byte

1 Record

Armstrong Davis Parker

Basie Blakey Coltrane

Ellington Evans Getz

Rollins Tatum Young

Hancock Hawkins Monk
(c)

(a)

(b)

8

File access methods

Sequential Access – tape model
– Simplest and most common

– read next/write next

Random/direct access – disk model
– Two approaches

• Read n/write n,

• Position to n and read next/write next

– Retain sequential access – read/write + update last position

Other access methods
– On top of direct access

– Normally using indexing

– Multi-level indexing for big files
• E.g. IBM ISAM (Indexed

Sequential Access Method)

EECS 343 Operating Systems

Northwestern University

10

Directory structure

To manage volume of info.: partitions & directories

Directory: set of nodes with information about all files

– Name, type, address, current & max. length, date last

accessed

Operations on directories

– Open/close directories, create/delete/rename files from a

directory, readdir, link/unlink, traverse the file system

Directory organizations - goals

– Efficiency – locating a file quickly.

– Naming – convenient to users.

– Grouping – logical grouping of files by properties (e.g. all Java

progs., all games, …)

EECS 343 Operating Systems

Northwestern University

11

Single and two-level directory systems

A single level directory system

– Early PCs, early supercomputers (CDC 6600), embedded

systems?

– Pros and cons

• Fast file searches

• Name clashing

– Contains 4 files owned by 3 != people

Two-level directory system

– Avoid name conflicts bet/ users

– You may need a system‟s directory

– Problems if you have too many files

File‟s owner

EECS 343 Operating Systems

Northwestern University

12

Hierarchical & general directory systems

Hierarchical

– Avoid name clashing for users (MULTICS)

– Powerful structuring tool for organization (decentralization)

Acyclic graphs – sharing

– Two different names (aliasing)

– If dict del. list → dangling pointer

• Backpointers & counter

– Unix links – pointers to files

• Soft & hard links – (in)direct pointer

Path names

– Absolute & relative path names

– “.” & “..”

EECS 343 Operating Systems

Northwestern University

13

File system mounting

A FS must be mounted to be available

– What do you do if you have more than one disk? Put a self

contained FS on each (C:…) or…

Typically, a mount point is an empty dir

– Existing file system (a) & unmounted

partition (b)

– After it was mounted (c)

mount /dev/sda1 /users

fstab file in Unix

(c)
EECS 343 Operating Systems

Northwestern University

(10:41am) ~ % more /etc/fstab

This file is edited by fstab-sync - see 'man fstab-sync' for details

LABEL=/ / ext3 defaults 1 1

none /dev/pts devpts gid=5,mode=620 0 0

/dev/sdb1 /export ext3 defaults 1 2

none /proc proc defaults 0 0

none /dev/shm tmpfs defaults 0 0

LABEL=/usr /usr ext3 defaults 1 2

…

14

Protection …

File owner/creator should be able to control

– what can be done & by whom

Types of access

– Read, Write, Execute, Append, Delete, List, …

A general & common approach – access control list (ACL)

– Per resources – user names & types of access allowed

– Long!

Unix: short version access lists & groups

– Access modes: read, write, execute

– Classes of users: owner, group, public

– 3 bits per for each access mode

– Mask provides a default (mine „022‟ - octal)

– File created with 777 and mask 022  755

Rights Code

rwx 7 (111)

rw- 6 (110)

r-x 5 (101)

r-- 4 (100)

-wx 3 (011)

-w- 2 (010)

--x 1 (001)

--- 0 (000)

EECS 343 Operating Systems

Northwestern University

15

Protection

Combining both approaches - Solaris (2.6+) access
lists - setfacl & getfacl

Problems with this?

Other schemes: passwords per file/directory,
…(TOPS-20, IBM VM/CMS, …)

% getfacl -a exam.tex

file: exam.tex

owner: fabianb

group: other

user::rw-

group::r-- #effective:r--

mask:r--

other:r--

% setfacl -r -m u:sbirrer:rw- exam.tex

% getfacl -a exam.tex

file: exam.tex

owner: fabianb

group: other

user::rw-

user:sbirrer:rw- #effective:rw-

group::r-- #effective:r--

mask:rw-

other:r--

Intersection of

specified permissions

and mask field.

EECS 343 Operating Systems

Northwestern University

16

Next Time

Details on file system implementations and

some examples …

EECS 343 Operating Systems

Northwestern University

