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Files and file systems

Most computer applications need to:
Store large amounts of data (larger than their address space)

that must survive process termination and

can be access concurrently by multiple processes

→ Usual answer: Files – form user‟s perspective, the smallest 
allotment of logical secondary storage

File system – part of the OS dealing with files
Supports the file abstraction of storage

Naming – how do users select files?

Protection – users are not all equal

Reliability – information must be safe for long periods of time

Storage mgmt. – efficient use of storage and fast access to files
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File attributes

Names – different for each OS
– Upper and/or lower case

Type, when supported

Location (in a device) and size

A few other useful attributes
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Protection Who can access the file & in what way

Creator ID of creator

System flag 0 for normal files; 1 for system ones

Creation time Date & time of creation

Time of last access Date & time of last access

Current size In bytes
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File operations …

File is an ADT (Abstract Data Type) – what 
operations?
– Create, delete, write, read

– Reposition within file – file seek

– Truncate

– Other operations can be built on this basic set (e.g. cp)

Most operation involve searching the directory for file
– Instead, use open first

– open (Fi) - search directory for entry Fi, move content to 
memory (open-file table)

– close () – remove entry from open file table
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File operations

Open/Close in multiuser systems
– Per-process and system-wide tables

• Entry in the per-process table points to system-wide table

– System-wide table keeps process-independent information 
(e.g. file size)

– Open counts to see if entry is needed

File locks – restricting access to a file
– Shared (read) and exclusive (write) locks

– Mandatory (OS enforced) and advisory locks (cooperative 
model, UNIX)

– Like with any other lock – be careful w/ deadlocks

– Lock files
• Used to indicate that a given resource is locked (e.g. if the resource to 

lock is not a file)

• Content is normally irrelevant, commonly the PID of the lock holder
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File types

Different OSs support different file types

– Regular, binary, directories, …

– Character special (model terminals [/dev/tty], printers, etc) and 

block special files (model disks [/dev/hd1])

– Extensions as hints & the use of magic numbers

• Some typical file extensions

– Pros and cons of strongly typed files
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file.gif Graphical Interchange Format Image

file.mpg Movie encoded with MPEG standard

file.o Object file

file.txt General text file
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File structures

Several file structures, three common ways
– Byte sequence - Unix & Windows; user imposes meaning (a)

– Record sequence – think about 80-column punch cards (b)

– Tree – records have keys, tree is sorted by it (d)
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1 Byte

1 Record

Armstrong Davis Parker

Basie Blakey Coltrane

Ellington Evans Getz

Rollins Tatum Young

Hancock Hawkins Monk
(c)

(a)

(b)
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File access methods

Sequential Access – tape model
– Simplest and most common

– read next/write next 

Random/direct access – disk model
– Two approaches 

• Read n/write n, 

• Position to n and read next/write next 

– Retain sequential access – read/write + update last position

Other access methods
– On top of direct access

– Normally using indexing

– Multi-level indexing for big files
• E.g. IBM ISAM (Indexed 

Sequential Access Method)
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Directory structure

To manage volume of info.: partitions & directories

Directory: set of nodes with information about all files

– Name, type, address, current & max. length, date last 

accessed

Operations on directories

– Open/close directories, create/delete/rename files from a 

directory, readdir, link/unlink, traverse the file system

Directory organizations - goals

– Efficiency – locating a file quickly.

– Naming – convenient to users.

– Grouping – logical grouping of files by properties (e.g. all Java 

progs., all games, …)
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Single and two-level directory systems

A single level directory system

– Early PCs, early supercomputers (CDC 6600), embedded 

systems?

– Pros and cons

• Fast file searches

• Name clashing

– Contains 4 files owned by 3 != people

Two-level directory system

– Avoid name conflicts bet/ users

– You may need a system‟s directory

– Problems if you have too many files

File‟s owner
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Hierarchical & general directory systems

Hierarchical

– Avoid name clashing for users (MULTICS)

– Powerful structuring tool for organization (decentralization)

Acyclic graphs – sharing

– Two different names (aliasing)

– If dict del. list → dangling pointer

• Backpointers & counter 

– Unix links – pointers to files 

• Soft & hard links – (in)direct pointer

Path names

– Absolute & relative path names

– “.” & “..”
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File system mounting

A FS must be mounted to be available

– What do you do if you have more than one disk? Put a self 

contained FS on each (C:…) or…

Typically, a mount point is an empty dir

– Existing file system (a) & unmounted

partition (b)

– After it was mounted (c)

# mount /dev/sda1 /users

fstab file in Unix

(c)
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(10:41am) ~ % more /etc/fstab

# This file is edited by fstab-sync - see 'man fstab-sync' for details

LABEL=/                 /                       ext3    defaults        1 1

none                    /dev/pts                devpts gid=5,mode=620  0 0

/dev/sdb1               /export                 ext3    defaults        1 2

none                    /proc                   proc defaults        0 0

none                    /dev/shm tmpfs defaults        0 0

LABEL=/usr /usr ext3    defaults        1 2

…
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Protection …

File owner/creator should be able to control

– what can be done & by whom

Types of access

– Read, Write, Execute, Append, Delete, List, …

A general & common approach – access control list (ACL)

– Per resources – user names & types of access allowed

– Long!

Unix: short version access lists & groups

– Access modes:  read, write, execute

– Classes of users: owner, group, public

– 3 bits per for each access mode

– Mask provides a default (mine „022‟ - octal)

– File created with 777 and mask 022  755

Rights Code

rwx 7 (111)

rw- 6 (110)

r-x 5 (101)

r-- 4 (100)

-wx 3 (011)

-w- 2 (010)

--x 1 (001)

--- 0 (000)
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Protection

Combining both approaches - Solaris (2.6+) access 
lists - setfacl & getfacl

Problems with this?

Other schemes: passwords per file/directory, 
…(TOPS-20, IBM VM/CMS, …)

% getfacl -a exam.tex

# file: exam.tex

# owner: fabianb

# group: other

user::rw-

group::r-- #effective:r--

mask:r--

other:r--

% setfacl -r -m u:sbirrer:rw- exam.tex

% getfacl -a exam.tex

# file: exam.tex

# owner: fabianb

# group: other

user::rw-

user:sbirrer:rw- #effective:rw-

group::r-- #effective:r--

mask:rw-

other:r--

Intersection of 

specified permissions 

and mask field.
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Next Time

Details on file system implementations and 

some examples …
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