
File Systems Implementation

Today

File & directory implementation

Efficiency, performance, recovery

Examples

Next

Mass storage and I/O



2

File system layout

Disk divided into 1+ partitions – one FS per partition

Sector 0 of disk – MBR (Master Boot Record)

– Used to boot the machine

Followed by Partition Table (one marked as active)

– (start, end) per partition; one of them active

Booting: BIOS → MBR → Active partition’s boot block 

→ OS

What else in a partition?

MBR

Boot block Super block Free space mgnt I-nodes Root dir Files and directories

Entire disk

Partition table

Disk partitionDisk partition ...

Magic number, 

number of 

blocks, …

EECS 343 Operating Systems

Northwestern University



3

Implementing files

Keeping track of what blocks go with which file

Contiguous allocation

– Each file is a contiguous run of disk blocks

– e.g. IBM VM/CMS

– Pros:

• Simple to implement

• Excellent read performance

– Cons:

• Fragmentation

Where would it make sense?

File A File B File FFile EFile DFile C FreeFree Free 

File X? 

EECS 343 Operating Systems

Northwestern University



4

Implementing files

Linked list

– Files as a linked list of blocks

– Pros:

• Every block gets used

• Simple directory entry per file

– Cons:

• Random access is a pain

• List info in block → block data size not a power of 2

• Reliability (file kept together by pointers scattered throughout the 

disk)

Physical 

block

File 

block 

0

File 

block 

1

File 

block 

2

File 

block 

3

File 

block 

4

74 2 10 12

File A

File 

block 

0

File 

block 

1

File 

block 

2

File 

block 

3

6 3 11 14

File B

EECS 343 Operating Systems

Northwestern University



5

Linked list with a table in memory

– Files as a linked list of blocks

– Pointers kept in FAT (File Allocation Table)

– Pros:

• Whole block free for data

• Random access is easy

– Cons:

• Overhead on seeks or

• Keep the entire table in memory

20GB disk & 1KB block size →

20 million entries in table →

4 bytes per entry ~ 80MB of memory

Implementing files

File 

block 

0

File 

block 

1

File 

block 

2

File 

block 

3

6 3 11 14

File B

FAT

EECS 343 Operating Systems

Northwestern University



6

Implementing files

I-nodes - index-nodes

– Files as linked lists of blocks, all 

pointers in one location: i-node

– Each file has its own i-node 

– Pros:

• Support direct access

• No external fragmentation

• Only a file i-node needed in memory 

(proportional to # of open files instead 

of to disk size)

– Cons:

• Wasted space (how many entries?)

– More entries – what if you need more 

than 7 blocks?

Save entry to point to address of block of 

addresses

i-node 

example

File Attributes

To block 1

To block 2

To block 3

To block 4

To block 5

To block 6

To block 7

To block 8To indirect block .

.

.

.

.

EECS 343 Operating Systems

Northwestern University



7

Implementing directories

Directory system function: map ASCII name onto 

what’s needed to locate the data

Related: where do we store files’ attributes?

– A simple directory: fixed size entries, attributes in entry (a)

– With i-nodes, use the i-node for attributes as well (b)

As a side note, you find a file based on the path name; 

this mixes what your data is with where it is – what’s 

wrong with this picture?

MS-DOS UNIX

EECS 343 Operating Systems

Northwestern University



8

Implementing directories

So far we’ve assumed short file names (8 or 14 char)

Handling long file names in directory

– In-line (a)

• Fragmentation

• Entry can span multiple 

pages (page fault 

reading a file name)

– In a heap (b)

• Easy to +/- files

Searching large 

directories

– Hash

– Cash

EECS 343 Operating Systems

Northwestern University



9

Shared files

Links and directories implementation

– Leave file’s list of disk blocks out of directory entry (i-node)

• Each entry in the directory points to the i-node

– Use symbolic links

• Link is a file w/ the path to shared file

• Good for linking files from another machine

Problem with first solution

– Accounting

• C creates file, B links to file, C removes it

• B is the only user of a file owned by C!

Problem with symbolic links

– Performance (extra disk accesses)

EECS 343 Operating Systems

Northwestern University



10

Disk space management

Once decided to store a file as sequence of blocks

– What’s the size of the block?

• Good candidates: Sector, track, cylinder, page

• Pros and cons of large/small blocks

• Decide base on median file size (instead of mean)

Keeping track of free blocks

– Storing the free list on a linked list

• Use a free block for the linked list

– A bit map

And if you tend to run out of free space, control usage

– Quotas for user’s disk use

– Open file entry includes pointer to owner’s quota rec.

– Soft limit may be exceeded (warning)

– Hard limit may not (log in blocked)

EECS 343 Operating Systems

Northwestern University



11

Disk space management

Once decided to store a file as sequence of blocks

– What’s the size of the block?

• Good candidates: Sector, track, cylinder, page

• Pros and cons of large/small blocks

• Decide base on median file size (instead of mean)

Block size

Dark line (left) gives 

data rate of a disk

Dotted line (right) 

gives disk space 

efficiency

Assume all files 2KB

A good choice

Dominated by seek 

& rotational delay

EECS 343 Operating Systems

Northwestern University



12

File system reliability

Need for backups
– Bad things happen & while HW is cheap, data is not

Backup - needs to be done efficiently & conveniently
– Not all needs to be included – /bin?

– Not need to backup what has not changed – incremental

• Shorter backup time, longer recovery time

– Still, large amounts of data – compress?

– Backing up active file systems

– Security

Strategies for backup
– Physical dump – from block 0, one at a time

• Simple and fast

• You cannot skip directories, make incremental backups, restore 
individual files

EECS 343 Operating Systems

Northwestern University



13

File system reliability

Logical dumps

– Keep a bitmap indexed by i-node number

– Bits are set for

• Modified files

• Directories

– Unmarked directories w/o modified files in or under them

– Dump directories and files marked

Some more details

– Free list is not dump, reconstructed

– Unix files may have holes (core files are a good example)

– Special files, named pipes, etc. are not dumped

EECS 343 Operating Systems

Northwestern University



14

File system reliability

File system consistency

fsck/scandisk ideas

– Two kind of consistency checks: blocks & files

– Blocks:

• Build two tables – a counter per block and one pass

– Similar check for directories – link counters kept in i-nodes

Missing 

block
Consistent 

state

Twice in 

free list

Part of 

more 

than one 

file

Solution – add it to the free list

Solution – rebuild the free list Solution – duplicate data block

EECS 343 Operating Systems

Northwestern University



15

File system performance

Caching – to reduce disk access

– Hash (device & disk address) to find block in cache

– Cache management ~ page replacement

– Plain LRU is undesirable

• Essential blocks should be written out right away

• If blocks would not be needed again, no point on caching

– Unix sync and MS-DOS write-through cache

Block read ahead

– Clearly useless for non-sequentially read files

Reducing disk arm motion

– Put blocks likely to be accessed in seq. close to each other

– I-nodes placed at the start of the disk

– Disk divided into cylinder groups - each with its own blocks & 

i-nodes

EECS 343 Operating Systems

Northwestern University



16

Log-structured file systems

CPUs getting faster, memories larger, disks bigger
– But disk seek time lags behind

– Since disk caches can also be larger → increasing number of 
read requests can come from cache

– Thus, most disk accesses will be writes

LFS strategy - structure entire disk as a log
– All writes initially buffered in memory

– Periodically write buffer to end of disk log

• Each new segment has a summary at the start

– When file opened, locate i-node, then find blocks

• Keep an i-node map in disk, index by i-node, and cache it

– To deal with finite disks: cleaner thread

• Compact segments starting at the front, first reading the 
summary, creating a new segment, marking the old one free

EECS 343 Operating Systems

Northwestern University



17

The CP/M file system

Control Program for Microcomputers

Run on Intel 8080 and Zilog Z80

– 64KB main memory

– 720KB floppy as secondary storage

Separation bet/ BIOS and CP/M

for portability

Multiple users (but one at a time)

The CP/M (one) directory entry format

– Each block – 1KB (but sectors are 128B)

– Beyond 16KB – Extent

– (soft-state) Bitmap for free space

BIOS

CP/M

Zero page

User program

Shell

0

0xFFFF

0x100

Memory layout 

of CP/M

3584 

bytes!

Library of 17 

I/O calls.

Multiple users, 

one at a time

EECS 343 Operating Systems

Northwestern University



18

The MS-DOS file system

Based on CP/M

Biggest improvement: hierarchical file systems (v2.0)

– Directories stored as files – no bound on hierarchy

– No links – so basic tree

Attributes include: read-only, hidden, archived, system

Time – 5b for seconds, 6b for minutes, 5b for hours

– Accurate only to +/-2 sec (2B – 65,536 sec of 86,400 sec/day)

Date – 7b for year (128 years) starting at 1980 (5b for 

day, 4b for month)

MS-DOS 

directory entry

EECS 343 Operating Systems

Northwestern University



19

The MS-DOS file system

Another difference with CP/M – FAT

– First version FAT-12 with 512-byte blocks:

– Max. partition 212x 512 ~ 2MB 

– FAT with 4096 entries of 2 bytes each – 8KB

Later versions’ FATs: FAT-16 and FAT-32 (actually a 

misnomer – only the low-order 28-bits are used)

Disk block sizes can be set to multiple of 512B

FAT-16: 

– 128KB of memory

– Largest partition – 2GB ~ with block size 32KB

– Largest disk - 8GB

EECS 343 Operating Systems

Northwestern University



20

The UNIX V7 file system

Unix V7 on a PDP-11

Tree structured as a DAG

File names up to 14 chars (anything but “/” and NUL)

Disk layout in classical UNIX systems

Each i-node – 64 bytes long

I-node’s attributes
– file size, three times (creation, last access, last modif.), owner, 

group, protection info, # of dir entries pointing to it

Following the i-nodes – data blocks in no particular 
order

Boot 

block
Super 

block
I nodes Data blocks

EECS 343 Operating Systems

Northwestern University



21

The UNIX V7 file system

A directory – an unsorted collection of 16-bytes entries

File descriptor table, open file descriptor table and i-

node table – starting from file descriptor, get the i-node

– Pointer to i-node in the file descriptor table? No, where do you 

put the current pointer? Multiple processes each w/ their own

– New table – the open file description

Directory entry

i-nodes with up to 3 

levels of indirection

Open file description

File position 

R/W Pointer 

to i-node

File position 

R/W Pointer 

to i-node

Parent’s file 

descriptor 

table

Child’s file 

descriptor 

table

EECS 343 Operating Systems

Northwestern University



22

The UNIX V7 file system

Steps in looking up /usr/ast/mbox

– Locate root directory – i-node in a well-known place

– Read root directory 

– Look for i-node for /usr

– Read /usr and look for ast

– …

EECS 343 Operating Systems

Northwestern University



23

Next Time

Mass storage and I/O

EECS 343 Operating Systems

Northwestern University


