
Input/Output

Today

Principles of I/O hardware & software

I/O software layers

Disks

Next

Protection & Security

EECS 343 Operating Systems

Northwestern University

2

Operating Systems and I/O

Two key operating system goals
– Control I/O devices

– Provide a simple, easy-to-use, interface to devices

Problem – large variety
– Data rates

– Applications – what the device is used for

– Complexity of control – a printer (simple) or a disk

– Units of transfer – streams of bytes or larger blocks

– Data representation – character codes, parity

– Error condition – nature of errors, how they are
reported, their consequences, …

Makes a uniform & consistent approach
difficult to get

3

Typical I/O Devices Data Rates

10 B/sec

100 B/sec

7 KB/sec

100 KB/sec

400 KB/sec

1.25 MB/sec

6 MB/sec

16.7 MB/sec

60 MB/sec

125MB/sec

1 10 100 1000 10000 100000 1000000 10000000100000000 1E+09

Keyboard

Mouse

Modem

Laser printer

Scanner

Ethernet

40x CDROM

Hard disk

Graphic display

Gigabit Ethernet

Data rate

EECS 343 Operating Systems

Northwestern University

4

I/O Hardware - I/O devices

I/O devices – roughly divided as
– Block devices – stored info in fixed-size blocks; you can

read/write each block independently (e.g. disk)

– Character devices – I/O stream of characters (e.g. printers)

– Of course, some devices don’t fit in here (e.g. clocks)

I/O devices components
– Device itself - mechanical component

– Device controller - electronic component

Controller
– Maybe more than one device per controller

– Converts serial bit stream to block of bytes

– Performs error correction as necessary

– Makes data available in main memory

EECS 343 Operating Systems

Northwestern University

EECS 343 Operating Systems

Northwestern University

5

I/O Controller & CPU Communication

Device controllers have

– A few registers for communication with CPU

• Data-in, data-out, status, control, …

– A data buffer that OS can read/write (e.g. video RAM)

How does the CPU use that?

– Separate I/O and memory space, each control register assigned an

I/O port (a) – IBM 360
IN REG,PORT

– Memory-mapped I/O – first in PDP-11 (b)

– Hybrid – Pentium (c) (graphic controller is a good example)

I/O Ports

Memory Two

addresses
One

address

space

Two

addresses

(a) (b) (c)

EECS 343 Operating Systems

Northwestern University

6

Memory-mapped I/O

Pros:

– No special instructions needed

– No special protection mechanism needed

– Driver can be entirely written in C (how do you do IN or OUT in C?)

Cons:

– What do you do with caching? Disable it in a per-page basis

– Only one AS, so all must check all mem. references “is it for me?”

• Easy with single bus (a) but harder with dual-bus (b) arch

• Possible solutions

– Send all references to memory first

– Snoop in the memory bus

– Filter addresses in the PCI bridge (preloaded with range registers at boot

time)

CPU Mem I/O
(a)

CPU Mem I/O

High-bandwidth

memory bus

(b)

EECS 343 Operating Systems

Northwestern University

7

A more complex system

Pentium system

Level 1 in chip,

level 2 off chip

Running @ 100MHz

Industry Standard

Architecture

Runs @ 8.33MHz/2

bytes at a time:

16.7MB/sec

Peripheral Component

Interconnect

Runs @ 66MHz/8 bytes at a

time: 528MB/sec

EECS 343 Operating Systems

Northwestern University

8

Direct Memory Access (DMA)

With or w/o memory-mapped I/O – CPU has to

address the device controllers to exchange data

– By itself, one byte at a time

– Somebody else doing it instead – DMA

Clearly OS can use it only if HW has DMA controller

DMA operation

Address

Count

Control

CPU

Main

memory

Disk

controller

Buffer

CPU program

the DMA

controller

Interrupt when

done

ACK

DMA requests

xfer to mem.

Data xfer

DMA

controller

EECS 343 Operating Systems

Northwestern University

9

Some details on DMA

One or more transfers at a time

– Need multiple set of registers for the multiple channels

– DMA has to schedule itself over devices served

Buses and DMA can operate on one of two modes

– Cycle stealing – as described

– Burst mode (block) – DMA tells the device to take the bus for

a while

Two approaches to data transfer

– Fly-by mode – just discussed, direct transfer to memory

– Two steps – transfer via DMA; it requires extra bus cycle, but

now you can do device-to-device transfers

Physical (common) or virtual address for DMA transfer

Why you may not want a DMA?

If the CPU is fast and there’s not much else to do anyway

EECS 343 Operating Systems

Northwestern University

10

Interrupts revisited

When I/O is done – interrupt by asserting a signal on a bus line

Interrupt controller puts a # on address lines – index into interrupt

vector (PC to interrupt service procedure)

Interrupt service procedure ACK the controller

Before serving interrupt, save context …

CPU

Interrupt

controller
CPU acks

Controller

interrupts

Device

done

(signal)

EECS 343 Operating Systems

Northwestern University

11

Interrupts revisited

Not that simple …
Where do you save the state?

– Internal registers? Hold your ACK (to protect you from another
interrupt overwriting the internal registers)

– In stack? You can get a page fault … pinned page?

– In kernel stack? change to kernel mode ($$$ - change MMU context,
invalid cache and TLB,…)

Besides: pipelining, superscalar architectures, …

Ideally - a precise interrupt
PC is saved in a known place

All previous instructions have been fully executed

All following ones have not

The execution state of the instruction pointed by PC is known

The tradeoff – complex OS or really complex interrupt
logic within the CPU (design complexity & chip area)

12

I/O software – goals & issues

Device independence
– Programs can access any I/O device w/o specifying it in

advance

Uniform naming, closely related
– Name independent of device

Error handling
– As close to the hardware as possible (first the controller

should try, then the device driver, …)

Buffering for better performance
– Check what to do with packets, for example

– Decouple production/consumption

Deal with dedicated (tape drives) & shared devices
(disks)
Dedicated dev. bring their own problems – deadlock?

EECS 343 Operating Systems

Northwestern University

13

Ways I/O can be done (OS take)

Programmed I/O
– Simplest – CPU does all the work

– CPU basically pools the device

– … and it is tied up until I/O completes

Interrupt-driven I/O
– Instead of waiting for I/O, context switch to another process &

use interrupts

Direct Memory Access
– Obvious disadvantage of interrupt-driven I/O?

An interrupt for every character

– Solution: DMA - Basically programmed I/O done by somebody

else

EECS 343 Operating Systems

Northwestern University

14

Three techniques for I/O

CPU → Mem

Issue read

command to I/O

module

Read status of

I/O module

Read word from

I/O module

Write word into

memory

Check status

Done?

CPU → I/O

I/O → CPU

Error

I/O → CPU

Yes

No

Not

ready

Ready

Programmed I/O

Issue read

command to I/O

module

Read status of

I/O module

Read word from

I/O module

Write word into

memory

Check status

Done?

Yes

No

CPU → Mem

I/O → CPU

Error

I/O → CPU

CPU → I/O

Ready

Interrupt

Do something

else

Interrupt-driven I/O

Issue read

command to I/O

module

Read status of

I/O module

CPU → DMA

DMA → CPU

Do something

else

Interrupt

Direct Memory Access

EECS 343 Operating Systems

Northwestern University

15

I/O software layers

I/O normally implemented in layers

Interrupt handlers

– Interrupts – an unpleasant fact of life – hide them!

– Best way

• Driver blocks (semaphores?) until I/O completes

• Upon an interrupt, interrupt procedure handles it before

unblocking driver

I/O Subsystem

User-level I/O software

Device-independent OS software

Device driver

Interrupt handlers

Hardware

EECS 343 Operating Systems

Northwestern University

EECS 343 Operating Systems

Northwestern University

16

Layers - Device drivers

Different device controllers – different registers,

commands, etc → each I/O device needs a device

driver

Device driver – device specific code

– Written by device manufacturer

– Better if we have specs

– Clearly, it needs to be reentrant

– Must be included in the kernel (as it needs to access the

device’s hardware) - How do you include it?

• Is there another option?

– Problem with plug & play

EECS 343 Operating Systems

Northwestern University

17

Layers - Device-independent SW

Some part of the I/O SW can be device independent

Uniform interfacing with drivers

– Fewer modifications to the OS with each new device

– Easier naming (/dev/disk0) – major & minor device #s in

UNIX (kept by the i-node of the device’s file)

– Device driver writers know what’s expected of them

Error reporting

– Some errors are transient – keep them low

– Actual I/O errors – reporting up when in doubt

Allocating & releasing dedicated devices

Providing a device-independent block size

Buffering

EECS 343 Operating Systems

Northwestern University

18

Buffering

A process reading data from a modem

Unbuffered input
Wake up the process

when the buffer is full

Buffering in the kernel, copying to user space
When kernel-buffer is full

page with user buffer

is brought in & copy

done at once

Double buffering in the kernel
What happen to characters

arriving while the user

page is brought in?

Careful – nothing is free, think of buffering and host-to-

host communication

User processOperating System

I/O Device

I/O Device

User processOperating System

I/O Device

User processOperating System

EECS 343 Operating Systems

Northwestern University

19

Disk hardware

Disk organization

– Cylinders – made of vertical tracks

– Tracks – divided into sectors

– Sectors – minimum transfer unit

Simplified model - careful with specs

– Sectors per track are not always the same

– Zoning – zone, a set of tracks with equal sec/track

Hide this with a logical disk w/ constant sec/track

EECS 343 Operating Systems

Northwestern University

20

IBM 2314

Announced April 1965

Eight disk drives plus a spare one and a control unit

Capacity: 8x29MB

Average access time: 60msec

Data rate: 312KB/sec

EECS 343 Operating Systems

Northwestern University

21

Disk hardware nowadays

Characteristics

(All 512B/sector)

Seagate

Cheetah 15-

36LP

Seagate

Barracuda

36ES

Toshiba

HDD1242

IBM

Microdrive

Application High-

performance

server

Entry-level

desktop

Portable Handheld

Capacity 36.7GB 18.4GB 5GB 1GB

Minimum seek time 0.3ms 1.0ms - 1.0ms

Average seek time 3.6ms 9.5ms 15ms 12ms

Spindle speed 15K rpm 7.2K rpm 4.2K rpm 3.6K rpm

Average rotational delay 2ms 4.17ms 7.14ms 8.33ms

Max. transfer rate 522-709MB/s 25MB/s 66MB/s 13.3MB/s

Sector per track 485 600 63 -

Tracks per cylinder 8 2 2 2

Cylinders 18,479 29,851 10,350 -

EECS 343 Operating Systems

Northwestern University

22

RAIDs

Processing and I/O - parallelism

Redundant Array of Inexpensive Disks & SLED Single

Large Expensive Disks

RAID 0: Striping w/o

redundancy

RAID 1: Disk mirroring

RAID 2: Memory-style

error-correcting-code

organization; striping bits

across disk & add ECC

EECS 343 Operating Systems

Northwestern University

23

RAIDs

RAID 3: Bit-interleaved parity

organization. If one sector is

damage you know which one;

used the parity to figure out

what the lost bit is.

RAID 4: Block-interleaved

parity organization. Like 3 but

at block level.

RAID 5: Block-interleaved

distributed parity organization.

Like 4 but distributed the

parity block.

EECS 343 Operating Systems

Northwestern University

24

Disk formatting

Low-level formatting

– Sectors – [preamble, to recognize the start + data + ecc]

– Spare sectors for replacements

– ~20% capacity goes with it

• Sectors and head skews to deal with moving head

• Interleaving to deal with transfer time

Partitioning – multiple logical disks – sector 0 holds

master boot record (boot code + partition table)

High-level formatting

– Boot block, free storage admin, root dir, empty file system

EECS 343 Operating Systems

Northwestern University

25

Disk arm scheduling

Time to read/write a disk block determined by

– Seek time – dominates!

– Rotational delay

– Actual transfer time

Sequence of request for blocks → scheduling

Some algorithms

– FCFS (FIFO) – not much you can do

– Shortest Seek Time First (SSTF)

– Elevator algorithm or SCAN

– C-SCAN - circular scan

– LOOK variation

Reading beyond your needs

EECS 343 Operating Systems

Northwestern University

26

FCFS

and the obvious problem is …

EECS 343 Operating Systems

Northwestern University

27

SSTF

As SJF, possible starvation

EECS 343 Operating Systems

Northwestern University

28

SCAN

Assuming a uniform distribution of requests, where’s
the highest density when head is on the left?

EECS 343 Operating Systems

Northwestern University

29

C-SCAN

Cool, but no need to be blind

30

C-LOOK

Look for a request before moving in that direction

EECS 343 Operating Systems

Northwestern University

Next time

Protecting access to your system and paying

attention to the system’s environment

Final review and a taste of systems research

31EECS 343 Operating Systems

Northwestern University

