Input/Output

Today

» Principles of I/0 hardware & software
» 1/O software layers

» Disks

Next

» Protection & Security

Operating Systems and I/0

* Two key operating system goals
— Control I/0O devices
— Provide a simple, easy-to-use, interface to devices

* Problem — large variety
— Data rates
— Applications — what the device is used for
— Complexity of control — a printer (simple) or a disk
— Units of transfer — streams of bytes or larger blocks
— Data representation — character codes, parity

— Error condition — nature of errors, how they are
reported, their consequences, ...

» Makes a uniform & consistent approach
difficult to get

EECS 343 Operating Systems
Northwestern University

Typical I/O Devices Data Rates

Data rate

Gigabit Ethernet 125MB/sec

Graphic display 0 MB/sec

Hard disk B/sec

40x CDROM 6 MB/sec

Ethernet sec

Scanner 400 KB/sec

Laser printer 100 KB/s¢

%

c
Modem 7 KB/sec
Mouse

Keyboard

1 10 100 1000 10000 100000 1000000 10000000100000000 1E+09

EECS 343 Operating Systems
Northwestern University

I/O Hardware - I/O devices

* |/O devices — roughly divided as

— Block devices — stored info in fixed-size blocks; you can
read/write each block independently (e.g. disk)

— Character devices — I/O stream of characters (e.g. printers)
— Of course, some devices don't fit in here (e.g. clocks)

* |/O devices components

— Device itself - mechanical component
— Device controller - electronic component

» Controller

— Maybe more than one device per controller
— Converts serial bit stream to block of bytes
— Performs error correction as necessary

— Makes data available in main memory

EECS 343 Operating Systems
Northwestern University

I/O Controller & CPU Communication

» Device controllers have

— A few registers for communication with CPU
« Data-in, data-out, status, control, ...

— A data buffer that OS can read/write (e.g. video RAM)
» How does the CPU use that?

— Separate I/0 and memory space, each control register assigned an
I/O port (a) — IBM 360

IN REG, PORT

— Memory-mapped I/O — first in PDP-11 (b)
— Hybrid — Pentium (c) (graphic controller is a good example)

@ B o N ©

Memory Two One Two
addresses address addresses
space
I/0 Ports

EECS 343 Operating Systems
Northwestern University

Memory-mapped I/O

* Pros:
— No special instructions needed
— No special protection mechanism needed
— Driver can be entirely written in C (how do you do IN or OUT in C?)

« Cons:
— What do you do with caching? Disable it in a per-page basis

— Only one AS, so all must check all mem. references “is it for me?”
« Easy with single bus (a) but harder with dual-bus (b) arch
» Possible solutions
— Send all references to memory first

— Snoop in the memory bus
— Filter addresses in the PCI bridge (preloaded with range registers at boot

time)
High-bandwidth
memory bus
(a) (b) /)
CPU Mem I/O CPU Mem I/O

L 1 I L 1 I

EECS 343 Operating Systems
Northwestern University

A more complex system

* Pentium system

Running @ 100MHz

Cache bus Local bus Memory bus Peripheral Component
l Interconnect
Level 2 PCI Main
CPU : Runs @ 66MHz/8 bytes at a
cache bridge > memory .
__/ AN time: 528MB/sec

Level 1 in chip, j |) PCl bus S
level 2 off chip < ol [>
Industry Standard iL JL iL lL

Architecture Graphics

Skl L=E ISA | NTDE adaptor | Available
Runs @ 8.33MHz/2 bridge] disk 7 PCl slot
bytes at a time: Q&{) *—rLr* Mond
16.7MB/sec itor

ey-

Ki
Mouse
N board ISA bus
p v [
1 oo
I N
Sound . :

Modem| Printer Available
card ISA slot

EECS 343 Operating Systems
Northwestern University

Direct Memory Access (DMA)

* With or w/o memory-mapped I/O — CPU has to
address the device controllers to exchange data
— By itself, one byte at a time
— Somebody else doing it instead — DMA

* Clearly OS can use it only if HW has DMA controller
» DMA operation

DMA

controller

|| |

Count -

Control

Dis / Main
N control

r memory

EECS 343 Operating Systems
Northwestern University

CPU

Some details on DMA

» One or more transfers at a time
— Need multiple set of registers for the multiple channels
— DMA has to schedule itself over devices served

* Buses and DMA can operate on one of two modes

— Cycle stealing — as described

— Burst mode (block) — DMA tells the device to take the bus for
a while

» Two approaches to data transfer
— Fly-by mode — just discussed, direct transfer to memory

— Two steps — transfer via DMA; it requires extra bus cycle, but
now you can do device-to-device transfers

» Physical (common) or virtual address for DMA transfer

+ Why you may not want a DMA?
If the CPU is fast and there’s not much else to do anyway

EECS 343 Operating Systems
Northwestern University

Interrupts revisited

» When /O is done — interrupt by asserting a signal on a bus line

» Interrupt controller puts a # on address lines — index into interrupt
vector (PC to interrupt service procedure)

» Interrupt service procedure ACK the controller
» Before serving interrupt, save context ...

Interrupt

4! controller .-
L_I"
—

o .

<

s e

EECS 343 Operating Systems
Northwestern University

Interrupts revisited

Not that simple ...

» Where do you save the state?

— Internal registers? Hold your ACK (to protect you from another
interrupt overwriting the internal registers)

— In stack? You can get a page fault ... pinned page?

— In kernel stack? change to kernel mode ($$% - change MMU context,
invalid cache and TLB,...)

» Besides: pipelining, superscalar architectures, ...

|deally - a precise interrupt

* PC is saved in a known place

» All previous instructions have been fully executed

» All following ones have not

» The execution state of the instruction pointed by PC is known

The tradeoff — complex OS or really complex interrupt
logic within the CPU (design complexity & chip area)

EECS 343 Operating Systems
Northwestern University

I/O software — goals & issues

» Device independence

— Programs can access any |/O device w/o specifying it in
advance

» Uniform naming, closely related
— Name independent of device

» Error handling

— As close to the hardware as possible (first the controller
should try, then the device driver, ...)

» Buffering for better performance
— Check what to do with packets, for example
— Decouple production/consumption

» Deal with dedicated (tape drives) & shared devices
(disks)

Dedicated dev. bring their own problems — deadlock?

EECS 343 Operating Systems
Northwestern University

Ways I/O can be done (OS take)

* Programmed I/O
— Simplest — CPU does all the work
— CPU basically pools the device
— ... and it is tied up until /O completes

 Interrupt-driven I/O

— Instead of waiting for I/O, context switch to another process &
use interrupts

* Direct Memory Access

— Obvious disadvantage of interrupt-driven 1/0O?
An interrupt for every character

— Solution: DMA - Basically programmed I/O done by somebody
else

EECS 343 Operating Systems
Northwestern University

Three techniques for I/0

Issue read
— | command to I/O | CPU — I/O
module
—>*
Read status of /O — CPU
I1/O module
Not v
read Error
— —_—
Ready
Read word from
I/O module /0 — CPU
v
Write word into CPU — Mem
memory
v
No

Yes l

Programmed I/O

Issue read
command to I/O
module

Read status of
I/0O module

Issue read CPU — I/0
— | command to I/O —> .
I Do something
else
Read status of Iio__) cPu
I/O module Interrupt
Error
—
Ready ¢
Read word from ——
I/0O module -
v
Write word into | cpy —, Mem
memory
v
No
Yes l Interrupt-driven 1/0O

}

CPU — DMA
- -
Do something
else
DMA — CPU
4_ —
Interrupt

Direct Memory Access

EECS 343 Operating Systems
Northwestern University

I/O software layers

» |/O normally implemented in layers

User-level I/0 software

Device-independent OS software

Device driver

Interrupt handlers

Hardware

* Interrupt handlers

I/O Subsystem

— Interrupts — an unpleasant fact of life — hide them!

— Best way

» Driver blocks (semaphores?) until I/O completes
« Upon an interrupt, interrupt procedure handles it before

unblocking driver

EECS 343 Operating Systems
Northwestern University

Layers - Device drivers

» Different device controllers — different registers,
commands, etc — each /O device needs a device
driver

» Device driver — device specific code
— Written by device manufacturer
— Better if we have specs
— Clearly, it needs to be reentrant

— Must be included in the kernel (as it needs to access the
device’s hardware) - How do you include it?
 |Is there another option?

— Problem with plug & play

EECS 343 Operating Systems
Northwestern University

Layers - Device-independent SW

Some part of the I/O SW can be device independent

» Uniform interfacing with drivers

— Fewer modifications to the OS with each new device

— Easier naming (/dev/disk0) — major & minor device #s in
UNIX (kept by the i-node of the device’s file)

— Device driver writers know what’s expected of them

» Error reporting
— Some errors are transient — keep them low
— Actual I/O errors — reporting up when in doubt

» Allocating & releasing dedicated devices
* Providing a device-independent block size
» Buffering

EECS 343 Operating Systems
Northwestern University

Buffering

A process reading data from a modem

» Unbuffered input /0 Device

Wake up the process
when the buffer is full

Il

@

Operating System User process

» Buffering in the kernel, copying to user space

When kernel-buffer is full _
. I/O Device
page with user buffer -
Is brought in & copy

done at once Operating System User process

» Double buffering in the kernel

What happen to characters 1/0 Device
arriving while the user
page is brought in?

L

n
»

i

Operating System User process

» Careful — nothing is free, think of buffering and host-to-
host communication

EECS 343 Operating Systems
Northwestern University

Disk hardware

» Disk organization
— Cylinders — made of vertical tracks
— Tracks — divided into sectors
— Sectors — minimum transfer unit

+— arm assembly

» Simplified model - careful with specs
— Sectors per track are not always the same
— Zoning — zone, a set of tracks with equal sec/track

» Hide this with a logical disk w/ constant sec/track

EECS 343 Operating Systems
Northwestern University

IBM 2314

* Announced April 1965

» Eight disk drives plus a spare one and a control unit
» Capacity: 8x29MB

» Average access time: 60msec

» Data rate: 312KB/sec

- - - - -
| ——

EECS 343 Operatin ng Systems
Northwestern Universi ity

Disk hardware nowadays

Characteristics Seagate Seagate Toshiba IBM
(All 512B/sector) Cheetah 15- | Barracuda HDD1242 Microdrive
36LP 36ES
Application High- Entry-level Portable Handheld
performance | desktop
server
Capacity 36.7GB 18.4GB 5GB 1GB
Minimum seek time 0.3ms 1.0ms - 1.0ms
Average seek time 3.6ms 9.5ms 15ms 12ms
Spindle speed 15K rpm 7.2K rpm 4.2K rpm 3.6K rpm
Average rotational delay | 2ms 4.17ms 7.14ms 8.33ms
Max. transfer rate 522-709MB/s | 25MB/s 66MB/s 13.3MB/s
Sector per track 485 600 63 -
Tracks per cylinder 8 2 2 2
Cylinders 18,479 29,851 10,350 -

EECS 343 Operating Systems

Northwestern University

RAIDs

» Processing and /O - parallelism

* Redundant Array of Inexpensive Disks & SLED Single
Large Expensive Disks

- r Y X RAID 0: Striping w/o
RAID fovel redundancy
(svwe) (Siios] (s o) (S)

RAID 1: Disk mirroring
- - @ @ i i i i
(sres) (svs] (s (st 1) (Svps) (sp1o] (s
RAID 2: Memory-style
- - @& @& @ @ @ _
o error-correcting-code
- - - - - - - “** organization:; striping bits
across disk & add ECC

EECS 343 Operating Systems
Northwestern University

RAIDs

RAID 3: Bit-interleaved parity

ﬁ ﬁ % ﬁ % organization. If one sector is

1 I]I]I mapews damage you know which one;

T used the parity to figure out
what the lost bit is.

" ' . ' - RAID 4: Block-interleaved
W W W W W RAIDlevel 4 parity organization. Like 3 but
W W w Bl at block level.

(Strip 0§ | Strip1 f [Stip2] | StiP3 | RAID 5: Block-interleaved

Strip 4 Strip 5 Strip 6 P4-7 Strip 7
~—— —" =1 =— [— distributed parity organization.
Strip 8 Strip 9 P8-11 Strip 10| | Strip 11| RAID level 5
N]

N N N A H 1 H
Strip 12| | P12-15 | | Strip 13| | Strip 14| | Strip 15 lee 4 bUt dIStrIbUted the
P16-19 | |Strip 16| |Strip 17| |Strip 18| | Strip 19 parity block.

EECS 343 Operating Systems
Northwestern University

Disk formatting

» Low-level formatting
— Sectors — [preamble, to recognize the start + data + ecc]
— Spare sectors for replacements

— ~20% capacity goes with it
« Sectors and head skews to deal with moving head
* Interleaving to deal with transfer time

» Partitioning — multiple logical disks — sector O holds
master boot record (boot code + partition table)

» High-level formatting
— Boot block, free storage admin, root dir, empty file system

EECS 343 Operating Systems
Northwestern University

Disk arm scheduling

» Time to read/write a disk block determined by
— Seek time — dominates!
— Rotational delay
— Actual transfer time

* Sequence of request for blocks — scheduling

* Some algorithms
— FCFS (FIFO) — not much you can do
— Shortest Seek Time First (SSTF)
— Elevator algorithm or SCAN
— C-SCAN - circular scan
— LOOK variation

» Reading beyond your needs

EECS 343 Operating Systems
Northwestern University

FCFS

queue =98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 336567 98 122124 183 199
I | |1l | I ||
| |

» and the obvious problem is ...

EECS 343 Operating Systems
Northwestern University

SSTF

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183 199
|
|

* As SJF, possible starvation

EECS 343 Operating Systems
Northwestern University

SCAN

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183 199
| | L1l | 1 L |
| |

* Assuming a uniform distribution of requests, where’s
the highest density when head is on the left?

EECS 343 Operating Systems
Northwestern University

C-SCAN

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183 199
(- | L1l | I I
| |

S

+ Cool, but no need to be blind

EECS 343 Operating Systems
Northwestern University

C-LOOK

queue =98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183 199
I
I

N\

» Look for a request before moving in that direction

EECS 343 Operating Systems
Northwestern University

Next time

» Protecting access to your system and paying
attention to the system’s environment

» Final review and a taste of systems research

EECS 343 Operating Systems
Northwestern University

