
Protection & Security

Today

Security environment

Basic of cryptography

User authentication

Protection mechanisms

Attacks from inside/outside the system

Next

Research in OS

EECS 343 Operating Systems

Northwestern University

2

The security environment

Security

– General problem involved in making sure files are not read/modified

by unauthorized people;

– It includes technical, administrative, legal and political issues

Protection

– Mainly OS mechanisms to safeguard information in the computer

Security goals and threats

And … privacy: protecting people for misuse of info about them

Goal Threat Description

Data confidentiality Exposure of data Secret data should remain secret

Data integrity Tampering with data Unauthorized users should not be able to modify data

without owner‟s permission

System availability Denial of service Protect it from people making it unusable

Exclusion of outsiders System takeover by virus Increasing problem – takeovery to, for example, spam

Google Refuses Demand for Search Information

Government Asked 4 Firms for Data in Effort

to Revive Anti-Porn Law - January 20, 2006

3

Intruders & accidental data loss

Know who/what you are dealing with

Some common categories of intruders

– Casual prying by nontechnical users

– Snooping by insiders

– Attempt to make $ (bank programmers‟ versions of rounding)

– Commercial or military espionage

– Virus – the writer is the intruder

Beyond malicious intruders, plain accidents

– Acts of God: fires, floods, earthquakes …

– Hardware or software errors

– Human errors

– While seemingly mundane, most damage is probably due to

accidental loss

EECS 343 Operating Systems

Northwestern University

Most can be dealt by maintaining adequate backups

4

Basics of cryptography

Goal – make plaintext into ciphertext so that only

authorized people can convert it back

Kerckhoff‟s principle

– Encryption/decryption algorithms should be public – avoid

security by obscurity

– Secrecy should depend on keys (parameters)

Relation between the different pieces

– P is plaintext file, C is ciphertext

– KE/KD is encryption/decryption key

– E/D is encryption/decryption algorithm

EECS 343 Operating Systems

Northwestern University

Encryption Decryption

5

Secret- & public-Key cryptography

Secret-key cryptography (or symmetric)

– Simple example – monoalphabetic substitution

– Given the encryption key, easy to find decryption key

• In the example – statistical properties of natural languages

– Could be ok if keys are long enough

Public-key cryptography – e.g. RSA

– All users pick a public key/private key pair

• Publish the public key, keep the private one private

– Public key is encryption key; private key is decryption key

– Main problem – tons slower than symmetric cryptography

One-way function
– Given formula for f(x), easy to evaluate y = f(x)

– But given y computationally infeasible to find x
• e.g. MD5 (16B) & SHA (20B)

EECS 343 Operating Systems

Northwestern University

6

Digital signatures

Did I really email that document? It wasn’t me!

Sign the document before sending it
– First hash the document, getting a fixed length output

– Then apply private key to the hash to get D(hash)

Receiver
– Computes hash of document (hashr)

– Applies sender‟s public key to get

E(D(hash)) → hash

– If hashr != hash, either doc, signature block
or both have been tampered with

Need sender‟s public key to check
– Certificates and Certificate Authorities

What the receiver gets

To sign a document …

EECS 343 Operating Systems

Northwestern University

7

Protection mechanisms

Computer system has objects to protect

– Hardware and software, each with

• A name/reference

• A finite set of operations (ADT)

Useful to discuss protection mechanisms: domains

– A domain – a set of (object, rights) pairs

– At every instant in time, process runs in some domain

• In Unix, this is defined by (UID, GID); exec a process with

SETUID or SETGID bit on is effectively switching domains

EECS 343 Operating Systems

Northwestern University

8

Protection domains

Keeping track of domains

Conceptually, a large protection matrix

A protection matrix with domains as objects
– Now you can control domain switching

A global table – too large & sparse …

EECS 343 Operating Systems

Northwestern University

9

Implementing access matrices

Access control list
– Associating w/ each object a

list of domain that may access
it (and how)

– Users, groups and roles

Capabilities
– Slice the matrix by rows

– Associate w/ process a list
of objects & rights

– Need to protect the C-list

• Tagged architectures
(IBM AS/400)

• Keep it in the kernel (Hydra)

• Manage them cryptographically (Amoeba)

Capabilities are faster to use but do no support
selective revocation

EECS 343 Operating Systems

Northwestern University

10

User authentication

You need to make sure who the person is

Most authentication methods are based on
– Something the user knows

– Something the user has

– Something the user is

Authentication using passwords
– The most common – easy to understand/implement

• Windows 2000 “******” idea – what’s the problem with this?

– User enters login name & password; when to reject a login?

• What is wrong, login name, password or both?

– Enforce

• Good passwords & password expirations

• One-time passwords:
– User picks password + number of logins Pi-1 = f(Pi)

– A variation – challenge-response

• Personal questions, output of a function, …

EECS 343 Operating Systems

Northwestern University

11

How crackers break in

Try many (login name, password) pairs (Morris &

Thomson, „79 → 86% of all passwords easy to guess)

Even the root password e.g. (uucp – unix-to-unix cp runs as

root) into Lawrence Berkeley Labs (Stoll 1989)

Why does it matter?

– Shipley‟s „98 war dialers – 2.6m calls, 20K comps, 200 w/o

security

– On the Internet

• Ping a range of IP addresses (43-bit, in dotted decimal notation

w.x.y.z, each in [0,255]) , try telnet‟ing to it

• If you are in, get /etc/passwd and build stats on login names

EECS 343 Operating Systems

Northwestern University

12

Unix passwords

Salt Password

Early on – password file in plain text

Improvement – encrypt the password before checking

(actually a one-way function)

– Easy attack – use Morris & Thompson technique, encrypt all

passwords first, then check

Slightly better – salts

– Encryption (password + salt)

– Salt (random number) is changed when password is change

– Stored in the password file in un-encrypted form

– Much larger space to try now

EECS 343 Operating Systems

Northwestern University

13

Something the user has/is

Using a physical object

e.g. Magnetic cards

• magnetic stripe cards

• Chip cards: stored value cards, smart cards

Using biometrics

– Finger lengths

– Retinal pattern analysis (photographs or film?)

– Dog‟s marking or blood sampling & the need for

psychologically acceptable authentication schemes

EECS 343 Operating Systems

Northwestern University

14

Other measures and countermeasures

Limiting times when someone can log in

Automatic callback at number prespecified

Limited number of login tries

A database of all logins

Simple login name/password as a trap

– security personnel notified when attacker bites

EECS 343 Operating Systems

Northwestern University

15

Design principles for security

System design should be public

Default should be no access

Check for current authority (don‟t cache)

Give each process least privilege possible

Protection mechanism should be

– Simple, uniform and in the lowest layers of system

Scheme should be psychologically acceptable

And … keep it simple

EECS 343 Operating Systems

Northwestern University

16

Insider attacks

From within the company, by those running the
computer to be protected or writing the software for it

Logic bombs
– A “hungry” piece of code waiting to go off

• Trigger – not fed w/ the right password daily, a certain employee
missing from the payrolls, etc.

• Action – delete, encrypt, …

Trap doors – code to bypass normal checks

Login spoofing & phishing

EECS 343 Operating Systems

Northwestern University

while (TRUE) {

printf(“login: “);

get_string(name);

disable_echoing();

printf(“password: “);

get_string(password);

enable_echoing();

v = check_validity(name, password);

if (v) break;

}

execute_shell(name);

while (TRUE) {

printf(“login: “);

get_string(name);

disable_echoing();

printf(“password: “);

get_string(password);

enable_echoing();

v = check_validity(name, password);

if (v || strcmp(name,”zzzz”) == 0) break;

}

execute_shell(name);

17

Exploiting code bugs

Most outsiders attacks take advantage of SW bugs

Buffer overflow attacks

– Most OSs and systems program written in C and C compilers

do not check array bounds

Format string attacks
– printf(buffer) instead of printf(“%s”, buffer)

– User can now enter a format string & overwrite any place in
memory (using %n and %x, for example)

EECS 343 Operating Systems

Northwestern University

Malware

In the early days, written by kids for fame
– Now written by well-organized criminals for $

Trojan horses
– Free program made available to unsuspecting user

– Actually contains code to do harm

– Place altered version of utility program (e.g. ls) on victim's
computer & trick user into running it

Virus
– It can reproduce itself, attach its code to another program

– How do they work

• Companion viruses – e.g. prog.com instead of prog.exe

• Parasitic executable viruses – cavity viruses

• Boot sector viruses – of course you still need the boot sector so

copy some other place

• Macro viruses – open file macro virus for MS Word

18EECS 343 Operating Systems

Northwestern University

19

The Internet worm

Worm – like viruses but self replicating

First large-scale Internet work
– Nov 2, 1988 – Robert T. Morris (graduate at Cornell)

Worm consisted of two programs
– Bootstrap to upload worm

• Compiled and executed on the system under attack

– The worm itself

• Fetched & run by bootstrap program

• Worm first hid its existence

– First check if already there; 1/7th times stay anyway – too much!

• Next replicated itself on new machines

– Using rsh

– Using finger & buffer overflow

– Using sendmail

– Friend talk to a NYT reporter and mentioned Morris‟ login
(rtm); reporter used finger to find him 

– $10k fine, 3 years probation, 400 hours community service

EECS 343 Operating Systems

Northwestern University

20

Spyware

Software that is installed that collects information and

reports it to third party

– key logger, adware, browser hijacker, …

Installed one of two ways

– piggybacked on software you choose to download

– “drive-by” download

• your web browser has vulnerabilities

• web server can exploit by sending you bad web content

Estimates

– majority (50-90%) of Internet-connected PCs have it

– 1 in 8 executables on the Web have it

– 2% of Web pages attack you with drive-by-download

EECS 343 Operating Systems

Northwestern University

21

Defenses

Firewalls
– As in medieval times, check everything in/out your domain

• Software or hardware

– Stateless, stateful (2nd gen), application-layer, deep-packet
inspection

Antivirus
– Get a database of viruses with a „goat file‟

– Scan all executable files for matches
• Exact matches are rare, fussy searches produce false positives

• Scanning is slow

– Check only what has been changed? Dangerous

– Check those which lengths have changed? …

• Polymorphic viruses

• Integrity checking – checksums of contents

• Behavioral checkers – what‟s suspicious?

EECS 343 Operating Systems

Northwestern University

22

Defenses

Signed code
– If you trust the source

– Digital signed code

Jailing
– Trusted jailer monitors the prisoner's activities

• In UNIX, one can use the debugging facility to attach

Encapsulating mobile code
– Sandboxing

• Code limited to a range of virtual address

• Two sandboxes per code – data and code

– Eliminate the danger of self-modifying code

• Check if references are to inside sandbox

– Dynamic jumps require dynamic checks (inserting code)

– Systems calls through a reference monitor (interposition)

– Interpretation

• You can check every instruction

• At a nice performance cost

EECS 343 Operating Systems

Northwestern University

23

Next is last, finally!

Research in OS

EECS 343 Operating Systems

Northwestern University

