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Wireless Sensor Networks

A wireless network

– Spatially distributed autonomous devices

– With attached sensors 

– to cooperatively monitor physical or environmental conditions 

(e.g. temperature)

Initially motivated by military applications, but many 

civilian apps today

– Environmental and species monitoring, agriculture, production 

and delivery, healthcare, etc.
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Motivation

Wireless sensor networks (WSNs)
– Although using resource constrained nodes

• Low-power microcontrollers

• Small memory

• Power constraints

– Complex application requirements

OS support is very limited; applications (developers) 
could benefits from
– OS protection

– Virtual memory

– Preemptive scheduling

But microcontrollers don’t have HW support for this
– E.g. privileged execution, virtual address translation, memory 

protection

How can we efficiently provide such support w/o 
hardware help?
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Context – Complex apps requirements

VM - VigilNet – large-scale surveillance

– 30 middleware services & 40K SLC

– In only 4KB RAM – note remotely enough!

– Using overlay in absence of VM is not really an answer

• Application specific, inefficient, labor intensive, error-prone

OS Control - Extreme scaling

– To ensure the OS gets the CPU back, grenade timer or 

periodic reboot 

• Coarse control granularity

• Applications must adapt to this rebooting

• To reduce too frequent restarts – long time w/o OS control
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Wide variety of microcontrolers, minimum assumptions
– It’s reprogrammable, it allows writing something into memory & 

executing it 

– It has some external nonvolatile storage

– It has some RAM available (4KB)

Application

– Binary program in sensor node’s 

instruction set

– Resident in flash memory

When control reaches a new code page
– Load-time code modification – naturalization

– Done on demand, one page at a time

– Output – a cooperative program supporting OS protection, VM & 
preemptive scheduling
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Overview
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Naturalization and control

CPU control – the OS can get the CPU to execute
– Traditionally guaranteed by privilege support & clock 

interrupts

– But in many microcontrollers the app can disable interrupts

t-kernel
– Modify program to ensure the naturalized version yields CPU 

to the kernel frequently

– Which instructions? All branching instructions

How to jump
– Save registers, save destination & go to homeGate

(welcomeHome)

– welcomeHome (routine in the dispatcher) retrieves destination, 
seeks for a natin page (or create one) & transfer control to it

– Transferring control flow to entry point – go to natin page & go 
through cascading branch chain to entry point
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Naturalization and control

Just like that – too slow!

A few fixes
– Bridge transition directly link branch source & destination

– Town transitions – first time make it into a bridge transition

– Backward branching, less frequent than forward branching (6-
8 instructions before any branching, 26-36 instructions before 
a backward one)

• Count them – one of every 256 backward branches calls the 
kernel’s sanity check routine

– The rest goes almost unmodified
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Three-level look up for a VPC

Topology of naturalized program != application program

– Code modification is done page-by-page

– Code density changes after code modification

No linear relationship between VPCs and HPCs

– Need to check all entry points to decide

Three level lookup

– (1) VPC look-aside buffer (fast)

– (2) Two-associative VPC table

– (3) Brute-force search on the natin

pages (slow but reliable)

• Each VPC is hashed to a

number of natin pages; each

natin page cascading branch

tests all entry points

Hit --

execute

VPC

VPC Look-aside

buffer

2-associative VPC table

Kernel space

Natin space

Interrupt handlers

128K physical program

memory

Miss --

search the

hashed

area

Hit --

execute

Miss -- look at 2-

associative VPC

table

Miss -- translate

Hashed area
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Differentiated Virtual Memory

t-kernel provides virtual memory > physical memory

Virtual/physical memory address translation, boundary 

check and memory swapping handle by natins

To efficiently support large virtual address space 

without virtual memory hardware

– Three types of memory with different attributes

• Physical address sensitive memory (PASM)

• Stack memory

• Heap memory
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Differentiated Virtual Memory

Physical address sensitive memory
– Not swappable and not relocatable

– Virtual/physical addresses are the same

– The fastest access

Stack memory
– Virtual/physical addresses directly mapped

– Not swapping and optimized

– Fast access with boundary checks (new stack for kernel)

Heap memory
– May involve a transition to kernel

– The slowest, sometimes involves swapping

– For kernel data integrity – the kernel has its own heap

Swapping – a challenge with flash
– After 10k writes, a flash page cannot longer be used

– If swap-outs evenly distributed to all pages, maximum lifetime
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Kernel/Application Interface

Interface: system calls, event triggering and interrupt 

handling

System calls

– A set of special VPC as system call entry points

Notification of service completed – event trigger 

– Kernel generates a software interrupts that is handle by the 

application

Same mechanism to handle hardware interrupts
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Implementation

Hardware 

paramenters

Data RAM

External flash

Program mem

4KB

512KB

128KB

OS Parameters Virtual mem.

Data frame

Look-aside buffer

2-associative VPC

System stack

I/O Buffer

64KB

64 frames

64 entries

256 entries

1KB

516 bytes

Implementation 

details

Code size (source)

Code (binary)

10 KLSC

29KB

MICA2 

Kernel space

0x16200-0x1FFFF

Natin space

0x200-0x161FF

Interrupt handlers

0x0-0x1FF

128K Physical  

program memory

(28KB for kernel)
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Overhead of naturalization

Kernel transition time

– ~20 cycles for backward branches taken, rare

• Avg. number (over?) with amortized cost of sanity check routine

– 5 cycles for the most common forward branch taken

Kernel transition

– Saves/restore registers / checks the stack pointers / 

Increments system counters

– May need to 

• Look for destination address / Trigger naturalization of a new 

page / Re-link naturalized page

Overhead of VM

– Slowest stack access: 16 cycles

– Heap access w/o swapping: 15 cycles

– Heap access w/ swapping: 25.8ms (180,857 cycles)

• .. but erase/write to flash – 25.73ms (i.o. I/O latency dominated)
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Overhead from the app’s perspective

Naturalization expands the code size because of 

branch regulating, DVM and cascading branch chain

Large variance in kernel overhead from naturalization

– 22 to 51 natin page writes or 590 to 1380ms of naturalization 

time per 1KB of application code
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Overhead from the app’s perspective’

Performance differs noticeably among applications

– Different branch density

– Different frequency of heap access

For CPU-bound tasks – relative execution time 1.5-3

But most WSN apps have low CPU utilization

– >92% CPU time in iddle mode for the survey apps
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Overhead from the app’s perspective

PeriodicTask

– Wake-up/poll-sensors/communicate 

• Common WSN model

– Varying the amount of computation in each task

– Keep in mind the CPU idle ratio of TinyOS apps

• μ - CPU utilization (0.34 ~ 3x higher than usual)

μ = 0.02 μ = 0.34
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The power issue

Power consumption on sensor nodes depends on

– Percentage and average sleep mode current

• Low-power modes where nodes wait to be woken up

– Percentages and average of idle & active modes (duty cycle)

– With t-kernel – energy consumed by flash I/O & avg #swaps

t-kernel trades energy for higher abstraction, but

upgrading hardware could do the same

– If app has mem. access with  low-locality, DVM thrashes, 

energy consumptions goes up

Still, 

– Most apps seem to have good locality

– Flash I/O should get cheaper, in terms of power consumption

– Bigger RAM leaks more power
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Comparison to VM approach

Comparing with Maté, a Virtual Mach for TinyOS

– A stack based virtual architecture 

– Comparison with an insertion-sorting program

– Initial cost of t-kernel comes from naturalization

• After 100 grows slowly; naturalization has a one-time overhead

– In contrast, bytecode translation has to be done every time

• And sophisticated optimizations for VMs cannot save you here

Of course, you could build Maté/TinyOS on top of t-

kernel
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Conclusions & Future Work

Supporting useful OS abstractions without hw support 

– Ontogeny recapitulates phylogeny*

– Higher abstraction maybe well worth the price

– Target – low energy budget, low CPU utilization, but high 

application requirements

Make the common case fast

– Use uncommon branches for control

Overhead of naturalization killed 

some apps with timing assumptions

– Working on RT support 

(e.g. pre-naturalization)

Thrashing can kill you

And if the power issue were to go away …
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The development of an embryo repeats the 
evolution of the species (* Ernst Haeckel) 

Computer-chip fabrication 

techniques to make tiny gas-turbine 

engine (Epstein, MIT).



Did you think this was interesting?

Let’s keep the conversation in Advanced 

Operating Systems

What others have to say (Rating: 5.8/6)
“Discussions by the instructor, always probed areas that weren't 

originally explored and proved to be extremely useful in stimulating my 

mind./ This class is engaging, fun, and a great learning experience./ This 

is a great class for gaining exposure to various types of computer 

systems. Fabian is a great, fun professor./ A great introductions to 

current Systems research. Reviewing a conference paper for each class 

really does improve your technical reading and critiquing skills.”
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