
t-kernel – Reliable OS support for WSN

L. Gu and J. Stankovic, appearing in

Proc. of the ACM Conference on

Embedded Networked Sensor Systems,

Oct. 2006.

Best paper award.

Wireless Sensor Networks

A wireless network

– Spatially distributed autonomous devices

– With attached sensors

– to cooperatively monitor physical or environmental conditions

(e.g. temperature)

Initially motivated by military applications, but many

civilian apps today

– Environmental and species monitoring, agriculture, production

and delivery, healthcare, etc.

2EECS 343 Operating Systems

Northwestern University

EECS 343 Operating Systems

Northwestern University

3

Motivation

Wireless sensor networks (WSNs)
– Although using resource constrained nodes

• Low-power microcontrollers

• Small memory

• Power constraints

– Complex application requirements

OS support is very limited; applications (developers)
could benefits from
– OS protection

– Virtual memory

– Preemptive scheduling

But microcontrollers don’t have HW support for this
– E.g. privileged execution, virtual address translation, memory

protection

How can we efficiently provide such support w/o
hardware help?

4

Context – Complex apps requirements

VM - VigilNet – large-scale surveillance

– 30 middleware services & 40K SLC

– In only 4KB RAM – note remotely enough!

– Using overlay in absence of VM is not really an answer

• Application specific, inefficient, labor intensive, error-prone

OS Control - Extreme scaling

– To ensure the OS gets the CPU back, grenade timer or

periodic reboot

• Coarse control granularity

• Applications must adapt to this rebooting

• To reduce too frequent restarts – long time w/o OS control

EECS 343 Operating Systems

Northwestern University

Wide variety of microcontrolers, minimum assumptions
– It’s reprogrammable, it allows writing something into memory &

executing it

– It has some external nonvolatile storage

– It has some RAM available (4KB)

Application

– Binary program in sensor node’s

instruction set

– Resident in flash memory

When control reaches a new code page
– Load-time code modification – naturalization

– Done on demand, one page at a time

– Output – a cooperative program supporting OS protection, VM &
preemptive scheduling

5

Overview

EECS 343 Operating Systems

Northwestern University

Host node

Physical

RAM

Application

Kernel space

natin page

Processor

External flash

natin page

Program memory

Code

modification

6

Naturalization and control

CPU control – the OS can get the CPU to execute
– Traditionally guaranteed by privilege support & clock

interrupts

– But in many microcontrollers the app can disable interrupts

t-kernel
– Modify program to ensure the naturalized version yields CPU

to the kernel frequently

– Which instructions? All branching instructions

How to jump
– Save registers, save destination & go to homeGate

(welcomeHome)

– welcomeHome (routine in the dispatcher) retrieves destination,
seeks for a natin page (or create one) & transfer control to it

– Transferring control flow to entry point – go to natin page & go
through cascading branch chain to entry point

EECS 343 Operating Systems

Northwestern University

7

Naturalization and control

Just like that – too slow!

A few fixes
– Bridge transition directly link branch source & destination

– Town transitions – first time make it into a bridge transition

– Backward branching, less frequent than forward branching (6-
8 instructions before any branching, 26-36 instructions before
a backward one)

• Count them – one of every 256 backward branches calls the
kernel’s sanity check routine

– The rest goes almost unmodified

EECS 343 Operating Systems

Northwestern University

8

Three-level look up for a VPC

Topology of naturalized program != application program

– Code modification is done page-by-page

– Code density changes after code modification

No linear relationship between VPCs and HPCs

– Need to check all entry points to decide

Three level lookup

– (1) VPC look-aside buffer (fast)

– (2) Two-associative VPC table

– (3) Brute-force search on the natin

pages (slow but reliable)

• Each VPC is hashed to a

number of natin pages; each

natin page cascading branch

tests all entry points

Hit --

execute

VPC

VPC Look-aside

buffer

2-associative VPC table

Kernel space

Natin space

Interrupt handlers

128K physical program

memory

Miss --

search the

hashed

area

Hit --

execute

Miss -- look at 2-

associative VPC

table

Miss -- translate

Hashed area

EECS 343 Operating Systems

Northwestern University

Differentiated Virtual Memory

t-kernel provides virtual memory > physical memory

Virtual/physical memory address translation, boundary

check and memory swapping handle by natins

To efficiently support large virtual address space

without virtual memory hardware

– Three types of memory with different attributes

• Physical address sensitive memory (PASM)

• Stack memory

• Heap memory

9EECS 343 Operating Systems

Northwestern University

Heap memoryStack memory

Physical

address

sensitive

memory

0xFFFF0x10000x1000x0
Example of a virtual

data memory

configuration

Differentiated Virtual Memory

Physical address sensitive memory
– Not swappable and not relocatable

– Virtual/physical addresses are the same

– The fastest access

Stack memory
– Virtual/physical addresses directly mapped

– Not swapping and optimized

– Fast access with boundary checks (new stack for kernel)

Heap memory
– May involve a transition to kernel

– The slowest, sometimes involves swapping

– For kernel data integrity – the kernel has its own heap

Swapping – a challenge with flash
– After 10k writes, a flash page cannot longer be used

– If swap-outs evenly distributed to all pages, maximum lifetime

10EECS 343 Operating Systems

Northwestern University

Kernel/Application Interface

Interface: system calls, event triggering and interrupt

handling

System calls

– A set of special VPC as system call entry points

Notification of service completed – event trigger

– Kernel generates a software interrupts that is handle by the

application

Same mechanism to handle hardware interrupts

11EECS 343 Operating Systems

Northwestern University

12

Implementation

Hardware

paramenters

Data RAM

External flash

Program mem

4KB

512KB

128KB

OS Parameters Virtual mem.

Data frame

Look-aside buffer

2-associative VPC

System stack

I/O Buffer

64KB

64 frames

64 entries

256 entries

1KB

516 bytes

Implementation

details

Code size (source)

Code (binary)

10 KLSC

29KB

MICA2

Kernel space

0x16200-0x1FFFF

Natin space

0x200-0x161FF

Interrupt handlers

0x0-0x1FF

128K Physical

program memory

(28KB for kernel)

EECS 343 Operating Systems

Northwestern University

Implemented and tested in several platforms

One example

13

Overhead of naturalization

Kernel transition time

– ~20 cycles for backward branches taken, rare

• Avg. number (over?) with amortized cost of sanity check routine

– 5 cycles for the most common forward branch taken

Kernel transition

– Saves/restore registers / checks the stack pointers /

Increments system counters

– May need to

• Look for destination address / Trigger naturalization of a new

page / Re-link naturalized page

Overhead of VM

– Slowest stack access: 16 cycles

– Heap access w/o swapping: 15 cycles

– Heap access w/ swapping: 25.8ms (180,857 cycles)

• .. but erase/write to flash – 25.73ms (i.o. I/O latency dominated)

EECS 343 Operating Systems

Northwestern University

m
ic

ro
b
e
n
c
h
m

a
rk

s

14

Overhead from the app’s perspective

Naturalization expands the code size because of

branch regulating, DVM and cascading branch chain

Large variance in kernel overhead from naturalization

– 22 to 51 natin page writes or 590 to 1380ms of naturalization

time per 1KB of application code

EECS 343 Operating Systems

Northwestern University

15

Overhead from the app’s perspective’

Performance differs noticeably among applications

– Different branch density

– Different frequency of heap access

For CPU-bound tasks – relative execution time 1.5-3

But most WSN apps have low CPU utilization

– >92% CPU time in iddle mode for the survey apps

EECS 343 Operating Systems

Northwestern University

16

Overhead from the app’s perspective

PeriodicTask

– Wake-up/poll-sensors/communicate

• Common WSN model

– Varying the amount of computation in each task

– Keep in mind the CPU idle ratio of TinyOS apps

• μ - CPU utilization (0.34 ~ 3x higher than usual)

μ = 0.02 μ = 0.34
EECS 343 Operating Systems

Northwestern University

The power issue

Power consumption on sensor nodes depends on

– Percentage and average sleep mode current

• Low-power modes where nodes wait to be woken up

– Percentages and average of idle & active modes (duty cycle)

– With t-kernel – energy consumed by flash I/O & avg #swaps

t-kernel trades energy for higher abstraction, but

upgrading hardware could do the same

– If app has mem. access with low-locality, DVM thrashes,

energy consumptions goes up

Still,

– Most apps seem to have good locality

– Flash I/O should get cheaper, in terms of power consumption

– Bigger RAM leaks more power

EECS 443 Advanced Operating Systems

Northwestern University

17

18

Comparison to VM approach

Comparing with Maté, a Virtual Mach for TinyOS

– A stack based virtual architecture

– Comparison with an insertion-sorting program

– Initial cost of t-kernel comes from naturalization

• After 100 grows slowly; naturalization has a one-time overhead

– In contrast, bytecode translation has to be done every time

• And sophisticated optimizations for VMs cannot save you here

Of course, you could build Maté/TinyOS on top of t-

kernel

EECS 343 Operating Systems

Northwestern University

19

Conclusions & Future Work

Supporting useful OS abstractions without hw support

– Ontogeny recapitulates phylogeny*

– Higher abstraction maybe well worth the price

– Target – low energy budget, low CPU utilization, but high

application requirements

Make the common case fast

– Use uncommon branches for control

Overhead of naturalization killed

some apps with timing assumptions

– Working on RT support

(e.g. pre-naturalization)

Thrashing can kill you

And if the power issue were to go away …

EECS 343 Operating Systems

Northwestern University

The development of an embryo repeats the
evolution of the species (* Ernst Haeckel)

Computer-chip fabrication

techniques to make tiny gas-turbine

engine (Epstein, MIT).

Did you think this was interesting?

Let’s keep the conversation in Advanced

Operating Systems

What others have to say (Rating: 5.8/6)
“Discussions by the instructor, always probed areas that weren't

originally explored and proved to be extremely useful in stimulating my

mind./ This class is engaging, fun, and a great learning experience./ This

is a great class for gaining exposure to various types of computer

systems. Fabian is a great, fun professor./ A great introductions to

current Systems research. Reviewing a conference paper for each class

really does improve your technical reading and critiquing skills.”

20EECS 343 Operating Systems

Northwestern University

