Threads

Today
* Why threads?

® Thread model & implementation
. .

Next time
® CPU Scheduling

The problem with processes

» A process consists of (at least):
— An address space
— The code for the running program
— The data for the running program

— An execution stack and stack pointer (SP)
» Traces state of procedure calls made

— The program counter (PC), indicating the next instruction
— A set of general-purpose processor registers and their values

— A set of OS resources
» open files, network connections, sound channels, ...

» A lot of concepts bundled together!

EECS 343 Operating Systems
Northwestern University

Concurrency examples

» Concurrency — what’s possible with infinite processors
— Parallelism — your actual degree of parallel exec.

» Many programs need to perform mostly independent
tasks that do not need to be serialized, e.g.
— Web server — multiple requests from clients, updating carts,
checking credit card, put a web page reply together, ...

— Text editor — update screen, save file just in case, do spell
checking, ...

Web server
process \

Dispatcher
thread

Worker

User space

Network Kernel space
connection

EECS 343 Operating Systems
Northwestern University

The problem with processes

* |n each examples
— Everybody wants to run the same code
— ... wants to access the same data
— ... has the same privileges
— ... uses the same resources (open files, net connections, etc.)

» But you'd like to have multiple HW execution states:
— An execution stack & SP
— PC indicating the next instruction
— A set of general-purpose processor registers & their values

EECS 343 Operating Systems
Northwestern University

How can we get this?

» Given the process abstraction as we know it
— fork several processes
— cause each to map to the same address space to share data
» see the shmget () system call for one way to do this (kind of)
» Not very efficient
— Space: PCB, page tables, etc.
— Time: creating OS structures, fork and copy addr space, etc.

» Some equally bad alternatives for some of the cases:

— Entirely separate web servers

— Finite-state machine or event-driven — a single process and
asynchronous programming (non-blocking 1/0O)

EECS 343 Operating Systems
Northwestern University

The thread model

» Traditionally
— Process = 1 address space + 1 thread of execution

— Process = resource grouping + execution stream

* Resources: program text, data, open files, child processes,
pending alarms, accounting info, ...

» Key idea with threads
— Separate the concept of a process (address space, etc.)
— From that of a minimal “thread of control” (execution state)

OO0 <

User space User space

Kernel space Kernel space

EECS 343 Operating Systems
Northwestern University

The thread model

» Share and private items

Per process Per thread
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms
Signals and signal handlers
Accounting information

» Threads states ~ processes states
« Common calls

— thread create(),

— thread exit (),

— thread wait(),

— thread yield() (why would you need this?)

* No protection bet/ threads (Should they be?)

EECS 343 Operating Systems
Northwestern University

A simple example

int r1 =0, r2 = 0;

void do_one_ thing(int *ptimes)
{
int i, j, k;

for (i = 0; i < 4; i++) {
printf (“doing one\n”) ;
for (j = 0; j < 1000; j++)
X =x + i;
(*ptimes) ++;
} /* do_one thing! */

void do_another thing(int *ptimes)

{
int i, j, k;

for (i = 0; i < 4; i++) {
printf (“doing another\n”);
for (j = 0; j < 1000; j++)
X =x + i;
(*ptimes) ++;
} /* do_another thing! */

void do wrap up(int one, int
another)

{
int total;
total = one + another;

printf (“wrap up: one %d, another
%$d and total %d\n”, one,
another, total);

}

int main (int argc, char *argv([])
{

do_one thing(é&rl) ;

do_another thing(&r2);

do _wrap up(rl,r2);

return O;
} /* main! */

EECS 343 Operating Systems
Northwestern University

Layout in memory & threading

thualAddressSpace ..
. SP@ Lowest afldress
Registers : :
PC @ °® Stack
GPO
: GP1 Hd do_another thing()
E i, 3, k
: Thread 2
| il i
Registers SP@ do_one_thing () Stack
PC @ i, 3, k
GPO
H GP1
: main ()
iThread 1
main () Text
) PID -
Identity UID -
GID do_one_ thing()
—:U do another thing()

Resources Open Files rl Data
Locks r2
Sockets
Heap
o
® .
(] Highest address

EECS 343 Operating Systems
Northwestern University

Benefits of threads

Web server
process \

+ A web server Dispatcher

— Single-threaded: no parallelism, blocking thread
system calls -

— Event-driven: parallelism, non-blocking ”
system calls, interrupts

— Multithreaded: parallelism, blocking
Network Kernel space
SyStem calls connection

» Reasons for threads

— Simpler programming model when application has multiple,
concurrent activities

— Easy/cheaper to create/destroy than processes since they have no
resources attached to them

— With good mix of CPU and I/O bound activities, better performance
— Even better if you have multiple CPUs

Worker
threads

User space

EECS 343 Operating Systems
Northwestern University

Implementing threads in user space

» Kernel unaware of threads — no modification required
(many-to-one model)

* Run-time system: a collection of procedures
» Each process needs its own thread table

* Pros
— Thread switch is very fast
Process Thread
— No need for kernel support N /
— Customized scheduler
— Each process ~ virtual processor

+ Cons - ‘real world’ factors

— Multiprogramming, I/O, Page faults Thread table

— Blocking system calls? =

Can you check? Kerrnel /

/
Process table

EECS 343 Operating Systems
Northwestern University

Implementing threads in the kernel

* One-to-one model

* No need for runtime system

» No wrapper for system calls

» But ... creating threads is more expensive — recycle
* And system calls are expensive

Process Thread

\ /

I

< —
errnel —
/S EN
N\

/
Process table Thread table

EECS 343 Operating Systems
Northwestern University

Hybrid thread implementations

» Trying to get the best of both worlds

» Multiplexing user-level threads onto kernel- level
threads (many-to-many model)

» One popular variation — two-level model (you can
bound a user-level thread to a kernel one)

User-level
Process thread

\ /
\

8 (

Kerrnel /

|
Kernel thread

EECS 343 Operating Systems
Northwestern University

Costs of threads (creation)

Creation time User-level LWP/Kernel- Processes
threads level threads
SPARCSstation 2, Solaris 52usec 350usec 1700usec
700MHz Pentium, Linux 2.2.* 4.5usec 94usec 251usec
create/join create/join fork/exit

EECS 343 Operating Systems
Northwestern University

Scheduler activations*™

» Goal
— Functionality of kernel threads &
— Performance of user-level threads
— Without special non-blocking system calls

* Problem : needed control & scheduling information
distributed bet/ kernel & each app’s address space

*» Basic idea

— When kernel finds out a thread is about to block, upcalls the
runtime system (activates it at a known starting address)

— When kernel finds out a thread can run again, upcalls again
— Run-time system can now decide what to do

* Pros — fast & smart
» Cons — upcalls violate layering approach

*Anderson et al., “Scheduler Activations: effective
Kernel Support for the User-level Management of
Parallelism,” SOSP, Oct. 1991.

EECS 343 Operating Systems
Northwestern University

Thread libraries

* Pthreads — POSIX standard (IEEE 1003.1c) API for
thread creation & synchronization

— API specifies behavior of the thread library, implementation is
up to the developers of the library

— Common in UNIX OSs (Solaris, Linux, Mac OS X)
* Win32 threads — slightly different (more complex API)

» Java threads
— Managed by the JVM

— May be created by
» Extending Thread class
* Implementing the Runnable interface

— Implementation model depends on OS (1-to-1 in Windows but
many-to-many in early Solaris)

EECS 343 Operating Systems
Northwestern University

Multithreaded C/POSIX

/* shared by thread(s) */ int main (int argc, char *argv[])
int sum; {
pthread t tid; /* thread id */
/* runner: the thread */
void *runner (void *param) /* set of thread attrs */
{ pthread attr t attr;
int i, upper = atoi(param);

if (argc '= 2 || atoi(argv[l]) < 0) {
sum = 0; fprintf (stderr, "usage: %s
for (i = 1; i < upper; i++) <int>\n", argv[0]);
sum += 1; exit(1l);
pthread exit (0) ; }

} /* runner! */

/* get default attrs */
pthread attr init(&attr);
pthread create(&tid, &attr, runner,

N . argv([1]);
Sum — E IZOI /* wait to exit */

pthread join(tid, NULL);
printf ("sum = %d\n", sum);
lexit (0) ;

} /* main! */

EECS 343 Operating Systems
Northwestern University

Complications with threads

» Semantics of fork() & exec() system calls
— Duplicate all threads or single-threaded child?
— Are you planning to invoke exec()?

» Other system calls (closing a file, Iseek, ...?)

» Signal handling, handlers and masking
1. Send signal to each thread — too expensive
2. A master thread per process — asymmetric threads
3. Send signal to an arbitrary thread (control C?)

4. Use heuristics to pick thread (SIGSEGV & SIGILL — caused
by thread, SIGTSTP & SIGINT — caused by external events)

5. Create a thread to handle each signal — situation specific

» Visibility of threads
» Stack growth

EECS 343 Operating Systems
Northwestern University

Single-threaded to multithreaded

» Threads and global variables

— An example problem Thréam Thread 2
E Access (ermo set)
=
1 : 1

Open {errmo overwritten)

3

;

Errmo inspected

— Prohibit global variables? Legacy code?

— Assign each thread its own global variables
» Allocate a chunk of memory and pass it around
» Create new library calls to create/set/destroy global variables

EECS 343 Operating Systems
Northwestern University

Single-threaded to multithreaded

» Many library procedures are not reentrant

+ Re-entrant: able to handle a second call while not
done with previous one
e.g. assemble msg in a buffer before sending it

» Solutions
— Rewrite library?
— Wrappers for each call?

» Signal handling

EECS 343 Operating Systems
Northwestern University

Summary

* You really want multiple threads per address space

» Kernel-level threads are more efficient than processes,
but not cheap
— All operations require a kernel call and parameter verification
» User-level threads are:
— Really fast
— Great for common-case operations, but
— Can suffer in uncommon cases due to kernel obliviousness

» Scheduler activations are a good answer

» Next time

— Multiple processes in the ready queue, but only one processor
... which you should you pick next?

EECS 343 Operating Systems
Northwestern University

