
Synchronization

Today
Race condition & critical regions

Mutual exclusion with busy waiting

Sleep and wakeup

Next time
Semaphores and Monitors

2

Cooperating processes

Cooperating processes need to communicate

– They can affect/be affected by others

Issues

– 1. How to pass information to another process?

– 2. How to avoid getting in each other’s ways?

• Two processes trying to get the last seat on a plane

– 3. How to ensure proper sequencing when there are

dependencies?

• Process A produces data, while B prints it – B must wait for A before

starting to print

How about threads?

– 1. Easy

– 2 & 3. Pretty much the same

EECS 343 Operating Systems

Northwestern University

A: next_slotA ← in % 7

A: spooler_dir[next_slotA] ←file_nameA

A: in ←next_slotA + 1 % 8

B: next_slotB ← in % 8

B: spooler_dir[next_slotB] ←file_nameB

B: in ←next_slotB + 1 % 9

Switch

3

Accessing shared resources

Many times cooperating process share memory

A common example – print spooler

– A process wants to print a file, enter file name in a special

spooler directory

– Printer daemon, another process, periodically checks the

directory, prints whatever file is there and removes the name

EECS 343 Operating Systems

Northwestern University

Process A

Process B

In: 7

Out: 4

Spooler

directory

abc

fileA

taxes

4

5

6

7

8

A: next_slotA ← in % 7

A: spooler_dir[next_slotA] ←file_nameA

A: in ←next_slotA + 1 % 8

B: next_slotB ← in % 8

B: spooler_dir[next_slotB] ←file_nameB

B: in ←next_slotB + 1 % 9

Switch

4

Interleaved schedules

Assumption – preemptive scheduling

Problem – the execution of the two threads/processes

can be interleaved

– Some times the result of interleaving is OK, others not!

A: next_slotA ← in % 7

B: next_slotB ← in % 7

B: spooler_dir[next_slotB] ←file_nameB

B: in ←next_slotB + 1 % 8

A: spooler_dir[next_slotA] ←file_nameA

A: in ←next_slotA + 1 % 8

Switch

Switch

EECS 343 Operating Systems

Northwestern University

Process A

Process B

In: 7

Out: 4

Spooler

directory

abc

fileA

taxes

4

5

6

7

8

In: 8

5

Race conditions and critical regions

Race condition

– Two or more threads/processes access (r/w) shared data

– Final results depends on order of execution

We need mechanisms to prevent race conditions,

synchronizing access to shared resources

Code where race condition is possible – critical region

We need a way to ensure that if a process is using a

shared item (e.g. a variable), other processes will be

excluded from doing it

– i.e. only one thread at a time in the critical region (CR)

Mutual exclusion

EECS 343 Operating Systems

Northwestern University

6

Requirements for a solution

No two processes simultaneously in CR

– Mutual exclusion, at most one thread in

No assumptions on speeds or numbers of CPUs

No process outside its CR can block another one

– Ensure progress; a thread outside the CR cannot prevent

another one from entering

No process should wait forever to enter its CR

– Bounded waiting or no starvation

– Threads waiting to enter a CR should eventually be allow to

enter

EECS 343 Operating Systems

Northwestern University

7

Mutual exclusion with busy waiting

Lock variable

– Lock initially 0

– Process checks lock when entering CR

– Problem? Same as before!

Disabling interrupts

– Simplest solution – process disables all interrupts when

entering the CR and re-enables them at exit

– No interrupts → no clock interrupts → no other process

getting in your way

– Problems?

• Users in control – grabs the CPU and never comes back

• Multiprocessors?

– Use in the kernel – still multicore means we need something

more sophisticated

EECS 343 Operating Systems

Northwestern University

8

Strict alternation

Taking turns

– turn keeps track of whose turn it is to enter the CR

Continuously testing a variable for a given value is

called busy waiting; a lock that uses this is a spin lock

Problems?

– What if process 0 sets turn to 1, but it gets around to just

before its critical region before process 1 even tries?

– Violates conditions 3

Process 0 Process 1

while(TRUE) {

while(turn != 0);

critical_region0();

turn = 1;

noncritical_region0();

}

while(TRUE) {

while(turn != 1);

critical_region1();

turn = 0;

noncritical_region1();

}

EECS 343 Operating Systems

Northwestern University

9

Peterson’s solution

#define FALSE 0

#define TRUE 1

#define N 2 /* num. of processes */

int turn;
int interested[N];

void enter_region(int process)

{

int other;

other = 1 – process;

interested[process] = TRUE;

turn = process;

while (turn == process &&

interested[other] == TRUE);

}

void leave_region(int process)

{

interested[process] = FALSE;

}

EECS 343 Operating Systems

Northwestern University

Template of a process’
access to the critical region
(process 0):

…

enter_region(0);

<CR>

leave_region(0);

…

Combining locks and turns …

10

Tracing Peterson’s

Process 0 Common variables Process 1

enter_region(0)

other = 1

interested[0] = T

turn = 0

interested[0] = F

interested[1] = F, turn = ?

interested[0] = T,

interested[1] = F, turn = 0

(Process 0 in)

void enter_region(int process)

{

int other;

other = 1 – process;

interested[process] = TRUE;

turn = process;

while (turn == process &&

interested[other] == TRUE);

}

EECS 343 Operating Systems

Northwestern University

11

Tracing Peterson’s

Process 0 Common variables Process 1

void enter_region(int process)

{

int other;

other = 1 – process;

interested[process] = TRUE;

turn = process;

while (turn == process &&

interested[other] == TRUE);

} EECS 343 Operating Systems

Northwestern University

interested[0] = T

turn = 0

interested[0] = T

interested[1] = T, turn = 0

interested[0] = T

Interested[1] = T, turn = 1

turn = 1

<Busy Wait>

interested[0] = F,

interested[1] = T, turn = 1

turn != 0

<CR>

leave_region(0)

interested[0] = F

interested[0] = F,

Interested[1] = F, turn = 1

<CR>

enter_region(0)

other = 1

interested[0] = F

interested[1] = F, turn = ?

enter_region(1)

other = 0

interested[1] = T

interested[0] = F

interested[1] = T, turn = ?

12

TSL(test&set) -based solution

With a little help from hardware – TSL instruction

Atomically test & modify the content of a word

TSL REG, LOCK

– REG ← LOCK >> Read the content of variable LOCK into register REG

– LOCK ← non-zero value >> Set lock to a non-zero value

Entering and leaving CR
enter_region:

TSL REGISTER, LOCK

CMP REGISTER, #0

JNE enter_region | non zero, lock set

RET | return to caller, you’re in

leave_region:

MOVE LOCK, #0

RET

EECS 343 Operating Systems

Northwestern University

Busy waiting

13

Busy waiting and priority inversion

Problems with TSL-based approach?

– Waste CPU by busy waiting

– Can lead to priority inversion

• Two processes, H (high-priority) & L (low-priority)

• L gets into its CR

• H is ready to run and starts busy waiting

• L is never scheduled while H is running …

• So L never leaves its critical region and H loops forever!

EECS 343 Operating Systems

Northwestern University

Welcome to Mars!

14

Problems in the Mars Pathfinder*

Mars Pathfinder

– Launched Dec. 4, 1996, landed July 4th, 1997

Periodically the system reset itself, loosing data

VxWork provides preemptive priority scheduling

Pathfinder software architecture

– An information bus with access controlled by a lock

– A bus management (B) high-priority thread

– A meteorological (M) low-priority, short-running thread

• If B thread was scheduled while the M thread was holding

the lock, the B thread busy waited on the lock

– A communication (C) thread running with medium priority

EECS 343 Operating Systems

Northwestern University

*As explained by D. Wilner, CTO of Wind

River Systems, and narrated by Mike Jones

15

Problems in the Mars Pathfinder*

Sometimes,

– B was waiting on M and

– C was scheduled

After a bit of waiting, a watchdog timer would reset the system

How would you fix it?

– Priority inheritance – the M thread inherits the priority of the B

thread blocked on it

– Actually supported by VxWork but dissabled!

EECS 343 Operating Systems

Northwestern University

Information bus

B (high) M (low)

C (medium)

16

Sleep & wakeup

Avoid busy waiting – rather than sit in a tight loop, go

to sleep

An alternative solution

– Sleep – causes the caller to block, i.e. be suspended until

another process wakes it up

– Wakeup – process passed as parameter is awakened

EECS 343 Operating Systems

Northwestern University

Also known as bounded buffer

– Two processes & one shared, fixed-size buffer

– One puts information into the buffer, the other one takes it out

Producer

while (TRUE){

item = produce_item();

while (count == N);

insert_item(item);

++count;

if (count == 1)

wakeup(consumer)

}

Consumer

while (TRUE){

while(count == 0);

item = remove_item();

--count;

if (count == (N -1))

wakeup(producer);

consume_item(item);

}

17

Producer-Consumer problem

EECS 343 Operating Systems

Northwestern University

Consumer

Producer

What if the consumer

wants to consume from

an empty buffer?

Producer

while (TRUE){

item = produce_item();

if (count == N) sleep();

insert_item(item);

++count;

if (count == 1)

wakeup(consumer)

}

Consumer

while (TRUE){

if (count == 0) sleep();

item = remove_item();

--count;

if (count == (N -1))

wakeup(producer);

consume_item(item);

}

“Simple solution”

– Producer/consumer goes to sleep if buffer is full/empty

A piggy bank of waiting bits?

18

Producer-Consumer problem

Consumer is not

yet logically sleep

- producer’s signal

is lost!

EECS 343 Operating Systems

Northwestern University

Consumer reads count = 0

scheduler blocks consumer and runs producer

Producer inserts an item, ++count and signals consumer

But consumer is not yet sleep, so signal is lost!

Consumer wakes up, sees count = 0 and goes to sleep

… for ever

19

Coming up …

Several mechanisms for synchronization

Locks are the lowest and require

– Disabling interrupts or

– Busy waiting

Some other alternatives

– Semaphores – slightly higher abstractions

– Monitors – much better but requiring language support

EECS 343 Operating Systems

Northwestern University

