
Semaphores & Monitors

Today
Semaphores

Monitors

… and some other primitives

Next time
Deadlocks

2

Semaphores

A variable atomically manipulated by two operations –
down (P) & up (V)

Each semaphore has an associated queue of

processes/threads

– P/wait/down(sem)

• If sem was “available” (>0), decrement sem & let thread continue

• If sem was “unavailable” (<=0), place thread on associated

queue; run some other thread

Semaphores thus have history

EECS 343 Operating Systems

Northwestern University

typedef struct {

int value;

struct thread *L;

} semaphore;

down(S):

--Sem.value;

if (Sem.value < 0){

add this thread to Sem.L;

block;

3

Semaphores

…
– V/signal/up(sem)

• If thread(s) are waiting on the associated queue, unblock one

(place it on the ready queue)

• If no threads are waiting, increment sem

– The signal is “remembered” for next time up(sem) is called

• Might as well let the “up-ing” thread continue execution

With multiple CPUs – lock semaphore with TSL

But then how’s this different from previous busy-
waiting?

EECS 343 Operating Systems

Northwestern University

up(S):

Sem.value++;

if (Sem.value <= 0) {

remove a process P from Sem.L;

wakeup(P);

}

typedef struct {

int value;

struct thread *L;

} semaphore;

4

Semaphores

Operation Value Sem.L CR

1 {} <>

P1 down 0 {} P1

P2 down

P3 down

P1 up

down(Sem):

--Sem.value;

if (Sem.value < 0){

add this thread to Sem.L;

block;

}

up(Sem):

Sem.value++;

if (S.value <= 0) {

remove a thread P from Sem.L;

wakeup(P);

}

EECS 343 Operating Systems

Northwestern University

-2 {P2,P3} P1

-1 {P3} P2

-1 {P2} P1

5

Semaphores

Semaphores and I/O devices

Producer

while (TRUE){

item = produce_item();

down(empty);

down(mutex);

insert_item(item);

up(mutex);

up(full);

}

Consumer

while (TRUE){

down(full);

down(mutex);

item = remove_item();

up(mutex);

up(empty);

consume_item(item);

}

empty = # available slots, full = 0, mutex = 1

EECS 343 Operating Systems

Northwestern University

6

Mutexes

Two different uses of semaphores

– Synchronization – full & empty

– Mutex – used for mutual exclusion

Useful w/ thread packages

Other possible operation

mutex_trylock()

mutex_lock:

TSL REGISTER, MUTEX

CMP REGISTER, #0

JXE ok

CALL thread_yield

JMP mutex_lock

ok: RET

mutex_unlock:

MOVE MUTEX, #0

RET

EECS 343 Operating Systems

Northwestern University

7

Mutexes in Pthreads

pthread_mutex_t mutex;

pthread_cond_t condc, condp;

void *producer(void *ptr)

{

int i;

for (i = 1; i <= MAX; i++) {

pthread_mutex_lock(&mutex);

while (buffer !=0) pthread_cond_wait(&condp, &mutex);

buffer = i;

ptread_cond_signal(&condc); /* wakeup consumer */

pthread_mutex_unlock(&mutex);

}

pthread_exit(0);

}

void *consumer(void *ptr)

{

int i;

for (i = 1; i <= MAX; i++) {

pthread_mutex_lock(&mutex);

while (buffer ==0) pthread_cond_wait(&condc, &mutex);

buffer = 0;

ptread_cond_signal(&condp); /* wakeup producer */

pthread_mutex_unlock(&mutex);

}

pthread_exit(0);

}

EECS 343 Operating Systems

Northwestern University

Clearly missing a

few definitions,
including main

8

Problems with semaphores & mutex

Solves most synchronization problems, but:

– Semaphores are essentially shared global variables

• Can be accessed from anywhere (bad software engineering)

– No connection bet/ the semaphore & the data controlled by it

– Used for both critical sections & for coordination (scheduling)

– No control over their use, no guarantee of proper usage

Producer

while (TRUE){

item = produce_item();

down(mutex);

down(empty);

insert_item(item);

up(mutex);

up(full);

}

Consumer

while (TRUE){

down(full);

down(mutex);

item = remove_item();

up(mutex);

up(empty);

consume_item(item);

}

What happens if

the buffer is full?

EECS 343 Operating Systems

Northwestern University

9

Monitors

Monitors - higher level synchronization primitive

– A programming language construct
• Collection of procedures, variables and data structures

– Monitor’s internal data structures are private

Monitors and mutual exclusion
– Only one process active at a time - how?

– Synchronization code is added by the compiler

EECS 343 Operating Systems

Northwestern University

Operations (procedures)

Shared data

At most one thread in the

monitor at any given time

Queue of threads waiting

to get into the monitor
x

Condition

variable

10

Monitors

Once inside a monitor, a thread may discover it can’t

continue, and

– wants to wait, or

– inform another one that some condition has been satisfied

To enforce sequences of events – Condition variables

– Can only be accessed from within the monitor

– Two operations – wait & signal

– A thread that waits “steps outside” the monitor (to a wait
queue associated with that condition variable)

– What happen after the signal?

• Hoare – process awakened run, the other one is suspended

• Brinch Hansen – process doing the signal must exit the monitor

• Third option? Process doing the signal continues to run (Mesa)

– Wait is not a counter – signal may get lost

EECS 343 Operating Systems

Northwestern University

11

Monitors in Java

EECS 343 Operating Systems

Northwestern University

12

Monitors in Java

EECS 343 Operating Systems

Northwestern University

Message passing

IPC in distributed systems

Message passing
send(dest, &msg)

recv(src, &msg)

Design issues

– Lost messages: acks

– Duplicates: sequence #s

– Naming processes

– Performance

– …

EECS 343 Operating Systems

Northwestern University 13

14

Producer-consumer with message passing

EECS 343 Operating Systems

Northwestern University

#define N 100 /* num. of slots in

buffer */

void producer(void)

{

int item; message m;

while(TRUE) {

item = produce_item();

receive(consumer, &m);

build_message(&m, item);

send(consumer, &m);

}

}

void consumer(void)

{

int item, i; message m;

for(i = 0; i < N; i++)

send(producer, &m);

while(TRUE) {

receive(producer, &m);

item = extract_item(&m);

send(producer, &m);

consume_item(item);

}

}

15

Barriers

To synchronize groups of processes

Type of applications

– Execution divided in phases

– Process cannot go into new phase until all can

e.g. Temperature propagation in a material

EECS 343 Operating Systems

Northwestern University

16

Coming up

Deadlocks

How deadlock arise and what you can do about them

EECS 343 Operating Systems

Northwestern University

