Semaphores & Monitors

Today

» Semaphores

* Monitors

* ... and some other primitives

Next time
» Deadlocks

Semaphores

» A variable atomically manipulated by two operations —
down (P) & up (V)

» Each semaphore has an associated queue of
processes/threads

— P/wait/down(sem)

 If sem was “available” (>0), decrement sem & let thread continue

 If sem was “unavailable” (<=0), place thread on associated
gueue; run some other thread

down (S) :
-—-Sem.value; typedef struct {
if (Sem.value < 0) {

. int value;
add this thread to Sem.L; struct thread *L;
block;

} semaphore;

» Semaphores thus have history

EECS 343 Operating Systems
Northwestern University

Semaphores

— VI/signal/up(sem)

« If thread(s) are waiting on the associated queue, unblock one
(place it on the ready queue)

 |If no threads are waiting, increment sem
— The signal is “remembered” for next time up(sem) is called

« Might as well let the “up-ing” thread continue execution

up (S) : typedef struct {
Sem.value++; int value;

if (Sem.value <= 0) { struct thread *L;
remove a process P from Sem.L;

wakeup (P) ;

} semaphore;

}

» With multiple CPUs — lock semaphore with TSL

» But then how’s this different from previous busy-
waiting?

EECS 343 Operating Systems
Northwestern University

Semaphores

Operation Value Sem.L CR
1 {} <>
P1 down o) {} Pl

P2 down -1 {P2} P1
P3 down -2 {P2,P3} P1
P1 up -1 {P3} P2

down (Sem) :

--Sem.value;

if (Sem.value < 0){
add this thread to Sem.L;
block;

}

up (Sem) :

Sem.valuet+;

if (S.value <= 0) {
remove a thread P from Sem.L;
wakeup (P) ;

EECS 343 Operating Systems
Northwestern University

Semaphores

empty = # available slots, full = 0, mutex =1

Producer Consumer
while (TRUE) { while (TRUE) {
item = produce item(); down (full);
down (empty) ; down (mutex) ;
» down (mutex) ; item = remove item();
insert item(item); up (mutex) ;
» up (mutex) ; up (empty) ;
up (full) ; consume item(item) ;

» Semaphores and I/O devices

EECS 343 Operating Systems
Northwestern University

Mutexes

» Two different uses of semaphores
— Synchronization — full & empty
— Mutex — used for mutual exclusion

» Useful w/ thread packages mutex_tock:
TSL REGISTER, MUTEX
» Other possible operation CMP REGISTER, #0
JXE ok

mutex trylock()

CALL thread yield
JMP mutex lock
ok: RET

mutex_unlock:
MOVE MUTEX, #0
RET

EECS 343 Operating Systems
Northwestern University

Mutexes in Pthreads

pthread mutex t mutex;

pthread cond t condc, condp; Clearly m|SS|ng a
void *producer (void *pts) few definitions,
int i; Including main

for (1 = 1; i <= MAX; i++) {
pthread mutex lock (&mutex) ;
while (buffer !=0) pthread cond wait(&condp, &mutex);
buffer = i;
ptread cond signal (&condc) ; /* wakeup consumer */
pthread mutex unlock (&mutex) ;

}

pthread exit(0);

}

void *consumer (void *ptr)

{

int i;

for (i = 1; i <= MAX; i++) {
pthread mutex lock (&mutex) ;
while (buffer ==0) pthread cond wait(&condc, &mutex);
buffer = 0;
ptread cond signal (&condp) ; /* wakeup producer */
pthread mutex unlock (&mutex) ;

}
pthread exit(0);

EECS 343 Operating Systems
Northwestern University

Problems with semaphores & mutex

» Solves most synchronization problems, but:
— Semaphores are essentially shared global variables
« Can be accessed from anywhere (bad software engineering)
— No connection bet/ the semaphore & the data controlled by it
— Used for both critical sections & for coordination (scheduling)
— No control over their use, no guarantee of proper usage

Producer Consumer
while (TRUE) { while (TRUE) {

item = produc| What happens if down (full) ;
the buffer is full?

down (mutex) ; down (mutex) ;

e . .
down (empty); 7 item = remove item();
insert item(item); up (mutex) ;
up (mutex) ; up (empty) ;

up (full) ; consume item(item) ;

EECS 343 Operating Systems
Northwestern University

Monitors

» Monitors - higher level synchronization primitive

— A programming language construct
» Collection of procedures, variables and data structures

— Monitor’s internal data structures are private
» Monitors and mutual exclusion
— Only one process active at a time - how?
— Synchronization code is added by the compiler

Operations (procedures)

At most one thread in the
monitor at any given time

00O

_—— L

Condition
variable

Shared data

Queue of threads waiting
to get into the monitor

OO

EECS 343 Operating Systems
Northwestern University

Monitors

» Once inside a monitor, a thread may discover it can’t
continue, and
— wants to wait, or
— Inform another one that some condition has been satisfied

» To enforce sequences of events — Condition variables

— Can only be accessed from within the monitor
— Two operations — wait & signal
— A thread that waits “steps outside” the monitor (to a wait
gueue associated with that condition variable)
— What happen after the signal?
» Hoare — process awakened run, the other one is suspended
» Brinch Hansen — process doing the signal must exit the monitor
» Third option? Process doing the signal continues to run (Mesa)
— Wait is not a counter — signal may get lost

EECS 343 Operating Systems
Northwestern University

Monitors In Java

public class ProducerConsumer {

static final int N = 100; // constant giving the buffer size
static producer p = new producer(); // instantiate a new producer thread
static consumer ¢ = new consumer();// instantiate a new consumer thread
static our__monitor mon = new our_monitor(); // instantiate a new monitor
public static void main(String args[]) {

p.start(); // start the producer thread

c.start(); /I start the consumer thread

}

static class producer extends Thread {

public void run() { /I run method contains the thread code
int item;
while (true) { /I producer loop

item = produce_item();
mon.insert(item);
}
}

private int produce_item() {...} // actually produce

}

static class consumer extends Thread {

public void run() { run method contains the thread code
int item;
while (true) { /I consumer loop

item = mon.remove();
consume_item (item);
}
}

private void consume_item(int item) { ... } // actually consume

}

EECS 343 Operating Systems
Northwestern University

Monitors In Java

static class our_monitor { // this is a monitor
private int buffer[] = new int[N];
private_int count = 0. lo = 0, hi = 0; // counters and indices
public|synchronized void insert(int val) {

if (count == N) go_to_sleep(); // if the buffer is full, go to sleep

buffer [hi] = val, //insert an item into the buffer

hi= (hi+ 1) % N; // slot to place next item in

count = count + 1; // one more item in the buffer now

if (count == 1) notify(); /I if consumer was sleeping, wake it up

}

public|synchronized |int remove() {

int val;
if (count == 0) go_to_sleep(); // if the buffer is empty, go to sleep
val = buffer [lo]; // fetch an item from the buffer
lo=(lo+1)%N; // slot to fetch next item from
count = count — 1; /I one few items in the buffer
if (count == N — 1) notify(); // if producer was sleeping, wake it up
return val,
}
private void go_to_sleep() { try{wait();} catch(InterruptedException exc) {}:}

}

EECS 343 Operating Systems
Northwestern University

Message passing

» |PC in distributed systems
» Message passing

send (dest, &msq)
recv(src, &msqg)

* Design issues
— Lost messages: acks
— Duplicates: sequence #s
— Naming processes
— Performance

EECS 343 Operating Systems
Northwestern University

Producer-consumer with message passing

##define N 100 /* num. of slots in
buffer */

void producer (void)

{

int item; message m;

while (TRUE) ({
item = produce item() ;
receive (consumer, &m) ;
build message(&m, item); void consumer (void)
send (consumer, &m); {
} int item, i; message m;

for(i = 0; i < N; i++)
send (producer, &m) ;

while (TRUE) {
receive (producer, &m) ;
item = extract_item(&m);
send (producer, &m);
consume item(item) ;

}

EECS 343 Operating Systems
Northwestern University

Barriers

* To synchronize groups of processes

» Type of applications
— Execution divided in phases
— Process cannot go into new phase until all can

* e.g. Temperature propagation in a material

® @
Process E 5 5
o |& © |8 3@
@ ® ®
Time — Time —— Time —
(a) (b) (c)

EECS 343 Operating Systems
Northwestern University

Coming up

o

» Deadlocks
How deadlock arise and what you can do about them

EECS 343 Operating Systems
Northwestern University

