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Today
Semaphores

Monitors

… and some other primitives

Next time
Deadlocks
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Semaphores

A variable atomically manipulated by two operations –
down (P) & up (V)

Each semaphore has an associated queue of 

processes/threads

– P/wait/down(sem)

• If sem was “available” (>0), decrement sem & let thread continue

• If sem was “unavailable” (<=0), place thread on associated 

queue; run some other thread

Semaphores thus have history
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typedef struct {

int value;

struct thread *L;

} semaphore;

down(S):

--Sem.value;

if (Sem.value < 0){

add this thread to Sem.L;

block;
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Semaphores

…
– V/signal/up(sem)

• If thread(s) are waiting on the associated queue, unblock one 

(place it on the ready queue)

• If no threads are waiting, increment sem

– The signal is “remembered” for next time up(sem) is called

• Might as well let the “up-ing” thread continue execution

With multiple CPUs – lock semaphore with TSL

But then how’s this different from previous busy-
waiting?
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up(S):

Sem.value++;

if (Sem.value <= 0) {

remove a process P from Sem.L;

wakeup(P);

}

typedef struct {

int value;

struct thread *L;

} semaphore;
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Semaphores

Operation Value Sem.L CR

1 {} <>

P1 down 0 {} P1

P2 down

P3 down           

P1 up 

down(Sem):

--Sem.value;

if (Sem.value < 0){

add this thread to Sem.L;

block;

}

up(Sem):

Sem.value++;

if (S.value <= 0) {

remove a thread P from Sem.L;

wakeup(P);

}

EECS 343 Operating Systems

Northwestern University

-2        {P2,P3} P1

-1        {P3} P2

-1         {P2} P1



5

Semaphores

Semaphores and I/O devices

Producer

while (TRUE){

item = produce_item();

down(empty);

down(mutex);

insert_item(item);

up(mutex);

up(full);

}

Consumer

while (TRUE){

down(full);

down(mutex);

item = remove_item();

up(mutex);

up(empty);

consume_item(item);

}

empty = # available slots, full = 0, mutex = 1
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Mutexes

Two different uses of semaphores

– Synchronization – full & empty

– Mutex – used for mutual exclusion

Useful w/ thread packages

Other possible operation    

mutex_trylock()

mutex_lock:

TSL REGISTER, MUTEX

CMP REGISTER, #0

JXE ok

CALL thread_yield

JMP mutex_lock

ok: RET

mutex_unlock:

MOVE MUTEX, #0

RET
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Mutexes in Pthreads

pthread_mutex_t mutex;

pthread_cond_t condc, condp;

void *producer(void *ptr)

{

int i;

for (i = 1; i <= MAX; i++) {

pthread_mutex_lock(&mutex);

while (buffer !=0) pthread_cond_wait(&condp, &mutex);

buffer = i;

ptread_cond_signal(&condc);    /* wakeup consumer */

pthread_mutex_unlock(&mutex);

}

pthread_exit(0);

}

void *consumer(void *ptr)

{

int i;

for (i = 1; i <= MAX; i++) {

pthread_mutex_lock(&mutex);

while (buffer ==0) pthread_cond_wait(&condc, &mutex);

buffer = 0;

ptread_cond_signal(&condp);   /* wakeup producer */

pthread_mutex_unlock(&mutex);

}

pthread_exit(0);

}
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Clearly missing  a 

few definitions, 
including main
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Problems with semaphores & mutex

Solves most synchronization problems, but:

– Semaphores are essentially shared global variables

• Can be accessed from anywhere (bad software engineering)

– No connection bet/ the semaphore & the data controlled by it

– Used for both critical sections & for coordination (scheduling)

– No control over their use, no guarantee of proper usage

Producer

while (TRUE){

item = produce_item();

down(mutex);

down(empty);

insert_item(item);

up(mutex);

up(full);

}

Consumer

while (TRUE){

down(full);

down(mutex);

item = remove_item();

up(mutex);

up(empty);

consume_item(item);

}

What happens if 

the buffer is full?
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Monitors

Monitors - higher level synchronization primitive

– A programming language construct
• Collection of procedures, variables and data structures

– Monitor’s internal data structures are private

Monitors and mutual exclusion
– Only one process active at a time - how?

– Synchronization code is added by the compiler
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Operations (procedures)

Shared data

At most one thread in the 

monitor at any given time

Queue of threads waiting 

to get into the monitor
x

Condition 

variable



10

Monitors

Once inside a monitor, a thread may discover it can’t 

continue, and 

– wants to wait, or 

– inform another one that some condition has been satisfied

To enforce sequences of events – Condition variables

– Can only be accessed from within the monitor

– Two operations – wait & signal

– A thread that waits “steps outside” the monitor (to a wait 
queue associated with that condition variable)

– What happen after the signal?

• Hoare – process awakened run, the other one is suspended

• Brinch Hansen – process doing the signal must exit the monitor

• Third option? Process doing the signal continues to run (Mesa)

– Wait is not a counter – signal may get lost
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Monitors in Java
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Monitors in Java
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Message passing

IPC in distributed systems

Message passing
send(dest, &msg)

recv(src, &msg)

Design issues

– Lost messages: acks

– Duplicates: sequence #s

– Naming processes

– Performance

– …
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Producer-consumer with message passing
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#define N 100    /* num. of slots in 

buffer */

void producer(void)

{

int item; message m;

while(TRUE) {

item = produce_item();

receive(consumer, &m);

build_message(&m, item);

send(consumer, &m);

}

}

void consumer(void)

{  

int item, i; message m;

for(i = 0; i < N; i++) 

send(producer, &m);

while(TRUE) {

receive(producer, &m);

item = extract_item(&m);

send(producer, &m);

consume_item(item);

}

}
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Barriers

To synchronize groups of processes

Type of applications

– Execution divided in phases

– Process cannot go into new phase until all can

e.g. Temperature propagation in a material
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Coming up

Deadlocks

How deadlock arise and what you can do about them
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