
Virtual Memory

Today
Virtual memory

Page replacement algorithms

Modeling page replacement algorithms

Virtual memory

Handling processes >> than allocated memory

Keep in memory only what‟s needed

– Full address space does not need to be resident in memory

• Leave it on disk

– OS uses main memory as a cache

Overlay approach

– Implemented by user

– Easy on the OS, hard on the

programmer

EECS 343 Operating Systems

Northwestern University

2

20K

30K

10K

Common

routines

Symbol

tables

Overlay

driver

Overlay for a two-pass

assembler:

Pass 1 70KB

Pass 2 80KB

Symbol Table 20KB

Common Routines 30KB

Total 200KB

Two overlays: 120 + 130KB

Pass 170K
Pass 2

80K

3

Virtual memory

Hide the complexity – let the OS do the job

Virtual address space split into pages

Physical memory split into page frames

Page & page frames = size (512B … 64KB)

Map pages into page frames

– Doing the translation – OS + MMU

EECS 343 Operating Systems

Northwestern University

4

Pages, page frames and tables

A simple example with

64KB virtual address space

4KB pages

32KB physical address space

16 pages and 8 page frames

Try to access :

• MOV REG, 0

Virtual address 0

Page frame 2

Physical address 8192

• MOV REG, 8192

Virtual address 8192

Page frame 6

Physical address 24576

• MOV REG, 20500

Virtual address 20500 (20480 + 20)

Page frame 3

Physical address 20+12288

EECS 343 Operating Systems

Northwestern University

5

Since virtual memory >> physical memory

Use a present/absent bit

MMU checks –

– If not there, “page fault” to

the OS (trap)

– OS picks a victim (?)

– … sends victim to disk

– … brings new one

– … updates page table

MOVE REG, 32780

Virtual address 32780

Virtual page 8, byte 12 (32768+12)

Page is unmapped – page fault!

EECS 343 Operating Systems

Northwestern University

6

Details of the MMU work

MMU with 16 4KB pages

Page # (first 4 bits) index into page table

If not there

– Page fault

Else

– Output register +

– 12 bit offset →

– 15 bit physical address

Page

number
Offset

EECS 343 Operating Systems

Northwestern University

7

Page table entry

Looking at the details of a single entry

– Page frame number – the most important field

– Protection – 1 bit for R&W or R or 3 bits for RWX

– Present/absent bit

• Says whether or not the virtual address is used

– Modified (M): dirty bit

• Set when a write to the page has occurred

– Referenced (R): Has it being used?

– To ensure we are not reading from cache (D)

• Key for pages that map onto device registers rather than memory

…
Page frame numberProt.

Present/absent

RMD

Caching disable

EECS 343 Operating Systems

Northwestern University

8

Page replacement algorithms

OS uses main memory as (page) cache

– If only load when reference – demand paging

Page fault – cache miss

– Need room for new page? Page replacement algorithm

– What‟s your best candidate for removal?

• The one you will never touch again – duh!

What do you do with victim page?

– A modified page must first be saved

– An unmodified one just overwritten

– Better not to choose an often used page

• It will probably need to be brought back in soon

EECS 343 Operating Systems

Northwestern University

9

How can any of this work?!?!

Locality

– Temporal locality – location recently referenced tend to be

referenced again soon

– Spatial locality – locations near recently referenced are more

likely to be referenced soon

Locality means paging could be infrequent

– Once you brought a page in, you‟ll use it many times

– Some issues that may play against you

• Degree of locality of application

• Page replacement policy and application reference pattern

• Amount of physical memory and application footprint

EECS 343 Operating Systems

Northwestern University

10

Optimal algorithm (Belady’s algorithm)

For now, assume a process pages against itself, using

a fixed number of page frames

Best page to replace – the one you‟ll never need again

– Replace page needed at the farthest point in future

– Optimal but unrealizable

Estimate by …

– Logging page use on previous runs of process

– Although impractical, useful for comparison

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 1

2

1

2

3

1

2

3

4

1

2

3

5

1

2

3

5

1

2

3

4

1

2

3

4

Need room

for this one

Your ideal

victim!

EECS 343 Operating Systems

Northwestern University

11

Not recently used (NRU) algorithm

Each page has Reference and Modified bits

– Set when page is referenced, modified

– R bit set means recently referenced, so you must clear it

every now and then

Pages are classified

NRU removes page at random

– from lowest numbered, non-empty class

Easy to understand, relatively efficient to implement

and sort-of OK performance

R M Class

0 0 Not referenced, not modified (0,0 → 0)

0 1 Not referenced, modified (0,1 → 1)

1 0 Referenced, but not modified (1,0 → 2)

1 1 Referenced and modified (1,1 → 3)

EECS 343 Operating Systems

Northwestern University

How can this occur?

12

FIFO algorithm

Maintain a linked list of all pages – in order of arrival

Victim is first page of list

– Maybe the oldest page will not be used again …

Disadvantage

– But maybe it will – the fact is, you have no idea!

– Increasing physical memory might increase page faults

(Belady‟s anomaly)

A, B, C, D, A, B, E, A, B, C, D, E

E
B

A

A B
A

C
B

A B

D
C D

A

C

B
A

D

E
B

A

E
B

A

C
E

B

D
C

E

D
C

E

EECS 343 Operating Systems

Northwestern University

13

Second chance algorithm

Simple modification of FIFO

– Avoid throwing out a heavily used page – look at the R bit

Operation of second chance

– Pages sorted in FIFO order

– Page list if fault occurs at time 20, A has R bit set

(time is loading time)

Page Time R

H 18 X

G 15 X

F 14 X

E 12 X

D 8 X

C 7 X

B 3 0

A 0 1

Page Time R

A 20 0

H 18 X

G 15 X

F 14 X

E 12 X

D 8 X

C 7 X

B 3 0

Most recently loaded

Oldest page

EECS 343 Operating Systems

Northwestern University

14

Clock algorithm

Quit moving pages around – move a pointer?

Same as Second chance but for implementation

– When page fault

– Look at page pointed at by hand

• If R = 0, evict page

• If R = 1. clear R & move hand

EECS 343 Operating Systems

Northwestern University

R: 0

A
R: 0

B

R: 1

C

R: 1

D

R: 0

E

R: 0

F

R: 0

G
R: 0

G
R: 1

I

R: 1

J

R: 0

K

R: 0

L

R: 0

R: 0

Evict this one!

15

Least recently used (LRU) algorithm

Pages used recently will used again soon

– Throw out page unused for longest time

– Idea: past experience is a decent predictor of future behavior

• LRU looks at the past, Belady‟s wants to look at the future

• how is LRU different from FIFO?

Must keep a linked list of pages

– Most recently used at front, least at rear

– Update this list every memory reference!!

– Too expensive in memory bandwidth, algorithm execution

time, etc

Alternatively keep counter in page table entry

– Choose page with lowest value counter

– Periodically zero the counter

EECS 343 Operating Systems

Northwestern University

16

A second HW LRU implementation

Use a matrix – n page frames – n x n matrix

Page k is reference

– Set all bits of row k to 1

– Set all bits of column k to 0

Page of lowest row is LRU

0,1,2,3,2,1,0,3,2

EECS 343 Operating Systems

Northwestern University

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 2 3

0

1

2

3

0 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 1 2 3

0

1

2

3

0 0 1 1

1 0 1 1

0 0 0 0

0 0 0 0

0 1 2 3

0

1

2

3

0 0 0 1

1 0 0 1

1 1 0 1

0 0 0 0

0 1 2 3

0

1

2

3

0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

0 1 2 3

0

1

2

3

0 0 0 0

1 0 0 0

1 1 0 1

1 1 0 0

0 1 2 3

0

1

2

3

0 0 0 0

1 0 1 1

1 0 0 1

1 0 0 0

0 1 2 3

0

1

2

3

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

0 1 2 3

0

1

2

3

0 1 1 0

0 0 1 0

0 0 0 0

1 1 1 0

0 1 2 3

0

1

2

3

0 0 1 0

0 0 1 0

1 0 1 1

1 0 1 0

0 1 2 3

0

1

2

3

… 1,0,3,2

17

Simulating LRU in software

Not Frequently Used

– Software counter associated with each page

– At clock interrupt – add R to counter for each page

– Problem - it never forgets!

Better – Aging

– Push R from the left, drop bit on the right

– How is this not LRU? One bit per tick & a finite number of bits

per counter

EECS 343 Operating Systems

Northwestern University

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1

0

1

0

1

1

0

1

2

3

4

5

0 0 0 0 0 0 0 0
0

1

2

3

4

5

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1

1

0

0

1

0

0

1

2

3

4

5

R R

18

Working set

Most programs show locality of reference

– Over a short time, just a few common pages

Working set

– Models the dynamic locality of a process‟ memory usage

– i.e. the set of pages currently needed by a process

Definition

– ws(k,t) = {pages p such that p was referenced in the k most

recent memory references} (k is WS window size)

– What bounds ws(k, t) as you increase k?

EECS 343 Operating Systems

Northwestern University

Clearly ws(ki,t) ≤ ws(kj,t)

for i < j

ws(k,t)

k

19

Working set

Demand paging

– Simplest strategy, load page when needed

Can you do better knowing a process WS?

– How could you use this to reduce turnaround time?

Prepaging

Intuitively, working set must be in memory, otherwise

you‟ll experience heavy faulting (thrashing)

– What does it mean „how much memory does program x

need?” – what is program x average/worst-case working set

size?

Working set sizes changes over time

EECS 343 Operating Systems

Northwestern University

20

Load control

Despite good designs, system may still thrash

– Sum of working sets > physical memory

Page Fault Frequency (PFF) indicates that

– Some processes need more memory

– but no process needs less

Way out: Swapping

– So yes, even with paging you still need swapping

– Reduce number of processes competing for memory

– ~ two-level scheduling – careful with which process to swap

out (there‟s more than just paging to worry about!)

What would you like of the remaining processes?

EECS 343 Operating Systems

Northwestern University

21

Working set algorithm

Working set and page replacement

– Victim – a page not in the working set

At each clock interrupt – scan the page table

– R = 1? Write Current Virtual Time (CVT) into Time of Last Use

– R = 0? CVT – Time of Last Use > Threshold ? out! else see if

there‟s someone and evict oldest (w/ R=0)

– If all are in the working set (all R = 1) random

EECS 343 Operating Systems

Northwestern University

R

bit

2204

Current virtual time

2014 1

2020 1

2032 1

1620 0

1213 0

…
Information

about a page

Time of last use

22

WSClock algorithm

Problem with WS algorithm – Scans the whole table

Combine clock & working set
– If R = 1, same as working set

– If R = 0, if age > T and page clean, out

– If dirty, schedule write and

check next one

– If loop around,

There‟s 1+ write scheduled –

you‟ll have a clean page soon

There‟s none, pick any one

R = 0 & 2204 – 1213 > T

EECS 343 Operating Systems

Northwestern University

1620 0

1213 0

2003 1 2020 1

1980 1

2084 1 2032 1

2014 1

2204

Current virtual time

2204 1

2204 1

23

Cleaning policy

To avoid having to write pages out when needed –

paging daemon

– Periodically inspects state of memory

– Keep enough pages free

– If we need the page before it‟s overwritten – reclaim it!

Two hands for better performance (BSD)

– First one clears R, second checks it

– If hands are kept close, only heavily used pages have a

chance

– If back is just ahead of front hand (359 degrees), original clock

– Two key parameters, adjusted at runtime

• Scanrate – rate at which hands move through the list

• Handspread – gap between them

EECS 343 Operating Systems

Northwestern University

24

Design issues – global vs. local policy

When you need a page frame, pick a victim from

– Among your own resident pages – Local

– Among all pages – Global

Local algorithms

– Basically every process gets a fixed % of memory

Global algorithms

– Dynamically allocate frames among processes

– Better, especially if working set size changes at runtime

– How many page frames per process?

• Start with basic set & react to Page Fault Frequency (PFF)

Most replacement algorithms can work both ways

except for those based on working set

Why not working set based algorithms?

EECS 343 Operating Systems

Northwestern University

25

Next time …

You now understand how things work, i.e. the

mechanism …

We‟ll now consider design & implementation issues for

paging systems

– Things you want/need to pay attention for good performance

EECS 343 Operating Systems

Northwestern University

