
Virtual Memory

Today
Virtual memory 

Page replacement algorithms

Modeling page replacement algorithms



Virtual memory

Handling processes >> than allocated memory

Keep in memory only what‟s needed

– Full address space does not need to be resident in memory

• Leave it on disk

– OS uses main memory as a cache

Overlay approach

– Implemented by user

– Easy on the OS, hard on the 

programmer
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20K

30K

10K

Common

routines

Symbol

tables

Overlay

driver

Overlay for a two-pass 

assembler:

Pass 1                  70KB                          

Pass 2                    80KB                            

Symbol Table         20KB           

Common Routines 30KB          

Total 200KB  

Two overlays: 120 + 130KB

Pass 170K
Pass 2

80K
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Virtual memory

Hide the complexity – let the OS do the job

Virtual address space split into pages

Physical memory split into page frames

Page & page frames = size (512B … 64KB)

Map pages into page frames 

– Doing the translation – OS + MMU
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Pages, page frames and tables

A simple example with 

64KB virtual address space

4KB pages

32KB physical address space

16 pages and 8 page frames

Try to access :

• MOV REG, 0

Virtual address 0

Page frame 2

Physical address 8192

• MOV REG, 8192

Virtual address 8192

Page frame 6

Physical address 24576

• MOV REG, 20500

Virtual address 20500 (20480 + 20)

Page frame 3

Physical address 20+12288 
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Since virtual memory >> physical memory

Use a present/absent bit

MMU checks –

– If not there, “page fault” to 

the OS (trap)

– OS picks a victim (?)

– … sends victim to disk

– … brings new one

– … updates page table

MOVE REG, 32780

Virtual address 32780

Virtual page 8, byte 12 (32768+12)

Page is unmapped – page fault!
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Details of the MMU work

MMU with 16 4KB pages

Page # (first 4 bits) index into page table

If not there

– Page fault

Else

– Output register +

– 12 bit offset →

– 15 bit physical address

Page 

number
Offset
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Page table entry

Looking at the details of a single entry

– Page frame number – the most important field

– Protection – 1 bit for R&W or R or 3 bits for RWX

– Present/absent bit

• Says whether or not the virtual address is used

– Modified (M): dirty bit

• Set when a write to the page has occurred

– Referenced (R): Has it being used?

– To ensure we are not reading from cache (D)

• Key for pages that map onto device registers rather than memory

…
Page frame numberProt.

Present/absent

RMD

Caching disable
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Page replacement algorithms

OS uses main memory as (page) cache

– If only load when reference – demand paging

Page fault – cache miss

– Need room for new page? Page replacement algorithm

– What‟s your best candidate for removal?

• The one you will never touch again – duh!

What do you do with victim page?

– A modified page must first be saved

– An unmodified one just overwritten

– Better not to choose an often used page

• It will probably need to be brought back in soon
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How can any of this work?!?!

Locality

– Temporal locality – location recently referenced tend to be 

referenced again soon

– Spatial locality – locations near recently referenced are more 

likely to be referenced soon

Locality means paging could be infrequent

– Once you brought a page in, you‟ll use it many times

– Some issues that may play against you

• Degree of locality of application

• Page replacement policy and application reference pattern

• Amount of physical memory and application footprint
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Optimal algorithm (Belady’s algorithm)

For now, assume a process pages against itself, using 

a fixed number of page frames

Best page to replace – the one you‟ll never need again

– Replace page needed at the farthest point in future

– Optimal but unrealizable

Estimate by …

– Logging page use on previous runs of  process

– Although impractical, useful for comparison
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Need room 

for this one

Your ideal 

victim!
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Not recently used (NRU) algorithm

Each page has Reference and Modified bits

– Set when page is referenced, modified

– R bit set means recently referenced, so you must clear it 

every now and then

Pages are classified

NRU removes page at random

– from lowest numbered, non-empty class

Easy to understand, relatively efficient to implement 

and sort-of OK performance

R M Class

0 0 Not referenced, not modified (0,0 → 0)

0 1 Not referenced, modified (0,1 → 1)

1 0 Referenced, but not modified (1,0 → 2)

1 1 Referenced and modified (1,1 → 3)

EECS 343 Operating Systems

Northwestern University

How can this occur?



12

FIFO algorithm

Maintain a linked list of all pages – in order of arrival

Victim is first page of list

– Maybe the oldest page will not be used again …

Disadvantage

– But maybe it will – the fact is, you have no idea!

– Increasing physical memory might increase page faults 

(Belady‟s anomaly)

A,  B,   C,   D,  A,   B,  E,   A,  B,  C,  D,  E
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Second chance algorithm

Simple modification of FIFO

– Avoid throwing out a heavily used page – look at the R bit

Operation of second chance

– Pages sorted in FIFO order

– Page list if fault occurs at time 20, A has R bit set

(time is loading time)

Page Time R

H 18 X

G 15 X

F 14 X

E 12 X

D 8 X

C 7 X

B 3 0

A 0 1

Page Time R

A 20 0

H 18 X

G 15 X

F 14 X

E 12 X

D 8 X

C 7 X

B 3 0

Most recently loaded

Oldest page
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Clock algorithm

Quit moving pages around – move a pointer?

Same as Second chance but for implementation

– When page fault

– Look at page pointed at by hand

• If R = 0, evict page

• If R = 1. clear R & move hand
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R: 0

A
R: 0

B

R: 1

C

R: 1

D

R: 0

E

R: 0

F

R: 0

G
R: 0

G
R: 1

I

R: 1

J

R: 0

K

R: 0

L

R: 0

R: 0

Evict this one!
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Least recently used (LRU) algorithm

Pages used recently will used again soon

– Throw out page unused for longest time

– Idea: past experience is a decent predictor of future behavior

• LRU looks at the past, Belady‟s wants to look at the future

• how is LRU different from FIFO?

Must keep a linked list of pages

– Most recently used at front, least at rear

– Update this list every memory reference!!

– Too expensive in memory bandwidth, algorithm execution 

time, etc

Alternatively keep counter in page table entry

– Choose page with lowest value counter

– Periodically zero the counter
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A second HW LRU implementation

Use a matrix – n page frames – n x n matrix

Page k is reference

– Set all bits of row k to 1

– Set all bits of column k to 0

Page of lowest row is LRU

0,1,2,3,2,1,0,3,2
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Simulating LRU in software

Not Frequently Used 

– Software counter associated with each page

– At clock interrupt – add R to counter for each page

– Problem - it never forgets!

Better – Aging

– Push R from the left, drop bit on the right 

– How is this not LRU? One bit per tick & a finite number of bits 

per counter
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Working set

Most programs show locality of reference

– Over a short time, just a few common pages

Working set

– Models the dynamic locality of a process‟ memory usage

– i.e. the set of pages currently needed by a process

Definition

– ws(k,t) = {pages p such that p was referenced in the k most 

recent memory references} (k is WS window size)

– What bounds ws(k, t) as you increase k?
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for i < j

ws(k,t)

k
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Working set

Demand paging 

– Simplest strategy, load page when needed

Can you do better knowing a process WS?

– How could you use this to reduce turnaround time?

Prepaging

Intuitively, working set must be in memory, otherwise 

you‟ll experience heavy faulting (thrashing)

– What does it mean „how much memory does program x 

need?” – what is program x average/worst-case working set 

size?

Working set sizes changes over time
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Load control

Despite good designs, system may still thrash

– Sum of working sets > physical memory

Page Fault Frequency (PFF) indicates that

– Some processes need more memory 

– but no process needs less

Way out: Swapping 

– So yes, even with paging you still need swapping

– Reduce number of processes competing for memory

– ~ two-level scheduling – careful with which process to swap 

out (there‟s more than just paging to worry about!)

What would you like of the remaining processes?
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Working set algorithm

Working set and page replacement

– Victim – a page not in the working set

At each clock interrupt – scan the page table

– R = 1? Write Current Virtual Time (CVT) into Time of Last Use

– R = 0? CVT – Time of Last Use > Threshold ? out! else see if 

there‟s someone and evict oldest (w/ R=0) 

– If all are in the working set (all R = 1) random
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R 

bit

2204

Current virtual time

2014 1

2020 1

2032 1

1620 0

1213 0

…
Information 

about a page

Time of last use
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WSClock algorithm

Problem with WS algorithm – Scans the whole table

Combine clock & working set
– If R = 1, same as working set

– If R = 0, if age > T and page clean, out

– If dirty, schedule write and 

check next one

– If loop around, 

There‟s 1+ write scheduled –

you‟ll have a clean page soon

There‟s none, pick any one

R = 0 & 2204 – 1213 > T
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1620 0

1213 0

2003 1 2020 1

1980 1

2084 1 2032 1

2014 1

2204

Current virtual time

2204 1

2204 1
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Cleaning policy

To avoid having to write pages out when needed –

paging daemon

– Periodically inspects state of memory

– Keep enough pages free

– If we need the page before it‟s overwritten – reclaim it!

Two hands for better performance (BSD)

– First one clears R, second checks it

– If hands are kept close, only heavily used pages have a

chance

– If back is just ahead of front hand (359 degrees), original clock

– Two key parameters, adjusted at runtime

• Scanrate – rate at which hands move through the list

• Handspread – gap between them
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Design issues – global vs. local policy

When you need a page frame, pick a victim from

– Among your own resident pages – Local

– Among all pages – Global

Local algorithms

– Basically every process gets a fixed % of memory

Global algorithms 

– Dynamically allocate frames among processes

– Better, especially if working set size changes at runtime

– How many page frames per process?

• Start with basic set & react to Page Fault Frequency (PFF)

Most replacement algorithms can work both ways 

except for those based on working set

Why not working set based algorithms?
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Next time …

You now understand how things work, i.e. the 

mechanism …

We‟ll now consider design & implementation issues for 

paging systems

– Things you want/need to pay attention for good performance
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