Design and Implementation Issues

Today

» Design issues for paging systems
» Implementation issues

» Segmentation

Next

» File systems

Considerations with page tables

Two key issues with page tables

» Mapping must be fast
— Done on every memory reference, at least 1 per instruction

* With large address spaces, page tables are too big
w/ 32 bit & 4KB page — 12 bit offset, 20 bit page # ~ 1million
w/ 64 bit & 4KB page — 212 (offset) + 22 pages ~ 4.5x1015!!

» Simplest solutions

— Page table in registers

» Fast during execution, potentially $$$ & slow to context switch
— Page table in memory & one register pointing to start

» Fast to context switch & cheap, but slow during execution

EECS 343 Operating Systems
Northwestern University

Speeding things up a bit

» Simple page table 2x cost of memory lookups
— First into page table, a second to fetch the data
— Two-level page tables triple the cost!

» How can we make this more efficient?

— Goal — make fetching from a virtual address about as efficient
as fetching from a physical address

— Observation — large number of references to small number of
pages
— Solution — use a hardware cache inside the CPU
» Cache the virtual-to-physical translations in the hardware
» Called a translation lookaside buffer (TLB)

« Traditional TLB is managed by the memory management unit
(MMU)

EECS 343 Operating Systems
Northwestern University

TLBs

» TLB — Translates virtual page #s into page frame #s
— Can be done in single machine cycle

* TLB is implemented in hardware
— It's a fully associative cache (parallel search)
— Cache tags are virtual page numbers

— Cache values are page frame numbers
» With this + offset, MMU can calculate physical address

logical

address
CPU —>| p d |

page frame
number number

TLB hit

E physical

b address

TLB 4

p {
TLB miss

f

- physical
memory

page table

EECS 343 Operating Systems
Northwestern University

Managing TLBs

» Address translations mostly handled by TLB
— >99% of translations, but there are TLB misses
— If a miss, translation is placed into the TLB

» Hardware (memory management unit (MMU))

— Knows where page tables are in memory
« OS maintains them, HW access them directly

» Software loaded TLB (OS)
— TLB miss faults to OS, OS finds page table entry & loads TLB

— Must be fast
* CPU ISA has instructions for TLB manipulation
» OS gets to pick the page table format

EECS 343 Operating Systems
Northwestern University

Effective access time

» Associative Lookup = ¢ time units

» Hit ratio - a - percentage of times that a page number

Is found in the associative registers (ratio related to
TLB size)

Effective Memory Access Time (EAT)
TLB hit

L \733 miss
EAT = o * (¢ + memory-access) +

(1- o) (¢ + 2* memory-access)

o = 80% e = 20 nsec memory-access = 100 nsec

EAT = 0.8 * (20 + 100) + 0.2 * (20 + 2 * 100) = 140 nsec

EECS 343 Operating Systems
Northwestern University

Managing TLBs

» OS must ensure TLB and page tables are consistent
— When OS changes protection bits in an entry, it needs to
invalidate the line if it is in the TLB
» What happens on a process context switch?
— Remember, each process typically has its own page tables

— Need to invalidate all the entries in TLB! (flush TLB)
* A big part of why process context switches are costly

— Can you think of a hardware fix to this?
* When the TLB misses, and a new process table entry
IS loaded, a cached entry must be evicted

— Choosing a victim is called “TLB replacement policy”
— Implemented in hardware, usually simple (e.g., LRU)

EECS 343 Operating Systems
Northwestern University

Hierarchical page table

» Handling large address spaces - page the page table!
* Same argument — you don’t need the full page table

» Virtual address (32-bit machine, 4KB page):
Page # (20 bits) + Offset (12 bits)

» Since page table is paged, page number is divided:
Page number (10 bits) + Page offset in 2"d |evel (10 bits)

pl| p2 | offset L—T
/1 1
pl - index into the outer page table / 5°° NP
p2 - displacement within outer page \\ 1 ™
Example =
Virtual address: 0x00403004 . N o
0000 0000 0f.00 0000 0011 DOOO 0000 0100 %0 />§
P1=1 P2=3 Offset = 4 paoe e

EECS 343 Operating Systems
Northwestern University

Three-level page table in Linux

» Designed to accommodate the 64-bit Alpha
— Adjust for a 32-bit proc. — middle directory of size 1

Virtual address

Page size |

—>

cr3 register T

N
7

Global directory Middle directory Page table Offset
Page table l
Page middle .
directory
N
Page directory S
\ Page frame
in physical
memory

EECS 343 Operating Systems
Northwestern University

Inverted and hashed page tables

* Another way to save space — inverted page tables
— Page tables are index by virtual page #, thus their size
— Inverted page tables — one entry per page frame
* Problem — too slow mapping!
— Hash tables may help
— Also, Translation Lookaside Buffer (TLB) ...

Traditional page
table with an entry
for each of the 252
pages

252 '1@ 256-MB physical
£ A memory has 216 Hash table
4-KB page frames 216 1 E I S m—— S S
216 -1% & ¥
i i T —1—1
OT — I]
0 Indexed / \
by hash on Virtual Page
0 virtual page page frame
Indexed
by virtual
page

EECS 343 Operating Systems
Northwestern University

Page size

» OS can pick a page size (how?) - small or large?
Small
— Less internal fragmentation
— Better fit for various data structures, code sections
— Less unused program in memory,
but ...

— More /O time, getting page from disk ... most of the time goes
Into seek and rotational delay!

— Larger page tables

Average process size s Taking first derivative respect to p

Page size p and equating it to zero s=1MB
Page entry size e 3 e = 8 bytes
se/p*+1/2=0 Optimal p = 4KB

overhead =se/p + p/[2 D= 2se
‘ Page table \ \rEnEl
space fragmentation

EECS 343 Operating Systems
Northwestern University

Separate instruction & data spaces

* One address space — size limit

» Pioneered by PDP-11: 2 address spaces, Instruction
and Data spaces
— Double the space
— Each with its own page table & paging algorithm

Single address

- space o | space D space

} Unused page

Data <

> Data

Program < Program {
0

EECS 343 Operating Systems
Northwestern University

Shared pages

* In large multiprogramming systems — multiple users
running same program - share pages?

» Some detalls

— Not all is shareable

— With I-space and D-space, sharing would be easier

— What do you do if you swap one of the sharing process out?
« Scan all page tables may not be a good idea

» Sharing data is slightly trickier than sharing code

— Fork in Unix
— Sharing both data and program bet/ parent and child; each
with its own page table but pages marked as READ ONLY

— Copy On Write

EECS 343 Operating Systems
Northwestern University

Virtual memory interface

» So far, transparent virtual memory

* Some control for expert use
— For shared memory — fast IPC

! 1
client \ server | client [!| shared mem. || server [
| | 1 .
Tttt I T T L . S N L L T L |
"""""" l‘/“ ------ user/kemel --—------------------------~

IPC: pipe, etc

— For distributed shared memory

Going to disk may be slower than going to somebody else’s
memory!

EECS 343 Operating Systems
Northwestern University

Implementation issues

Operating System involvement w/ paging:

* Process creation

— Determine program size, allocate space for page table, for
swap, bring stuff into swap, record info into PCB

» Process execution
— Reset MMU for new process, flush TLB, make new page table
current, pre-page?
» Page fault time

— Find out which virtual address cause the fault, find page in
disk, get page frame, load page, reset PC, ...

* Process termination time

— Release page table, pages, swap space, careful with shared
pages

EECS 343 Operating Systems
Northwestern University

Page fault handling

» Hardware traps to kernel

» General registers saved by assembler routine, OS
called

» OS find which virtual page cause the fault

» OS checks address is valid, seeks page frame
» |f selected frame is dirty, write it to disk (CS)

* Get new page (CS), update page table

» Back up instruction where interrupted

» Schedule faulting process

* Routine load registers & other state and return to user
space

EECS 343 Operating Systems
Northwestern University

Instruction backup

* As we've seen, when a program causes a page fault,
the current instruction is stopped part way through ...

» Harder than you think!
— Consider instruction: MOV.L #6(Al), 2(A0)

1000 MOVE
1002 6
1004 2

— Which one caused the page fault? What's the PC then?
— It can even get worse — auto-decrement and auto-increment?

» Some CPU designers have included hidden registers
to store
— Beginning of instruction
— Indicate autodecr./autoincr. and amount

EECS 343 Operating Systems
Northwestern University

Locking pages in memory

» Virtual memory and I/O occasionally interact

» Process issues call for read from device into a buffer
within its address space
— While waiting for 1/O, another processes starts up
— Second process has a page fault
— Buffer for the first process may be chosen to be paged out!

» Solutions:
— Pinning down pages in memory
— Do all I/O to kernel buffers and copy later

EECS 343 Operating Systems
Northwestern University

Backing store

* How do we manage swap area?
— Allocate space to process when started
— Keep offset to process swap area in PCB
— Process can be brought entirely when started or as needed

* Some problems

— Size — process can grow ... split text/data/stack segments in
swap area

— Do not allocate anything ... you may need extra memory to
keep track of pages in swap!

EECS 343 Operating Systems
Northwestern University

Separation of policy & mechanism

« How to structure the memory management system for

easy separation? Mach:
1. Low-level MMU handler — machine depen

dent

2. Page-fault handler in kernel — machine independent, most of paging

mechanism
3. External pager in user space — user-level

process

* Where do you put the page replacement algorithm?

* Pros and cons

User space

User
process

2.Need
page

5.Here!

Kernel spade

v

1.Page fault

3-4.Page
, in/out of
disk

6.Map page In

EECS 343 Operating Systems
Northwestern University

Segmentation

* So far - one-dimensional address spaces

» For many problems, having multiple AS is better
e.g. compiler with various tables that grow dynamically

» Multiple AS — segments
— A logical entity — programmer knows
— Different segments of different sizes v
— Each one growing independently
— Address now includes segment # + offset free
— Protection per segment can be different

free

free

Segments

EECS 343 Operating Systems
Northwestern University

Segmentation w/ paging - MULTICS

» Large segment? Page them e.g MULTICS & Pentium

e Process: 218 segments of ~64K words (36-bit)

*» Most segments are paged

* Process has a segment table (itself a paged segment)

* Segment descriptor indicates if in memory

* Segment descriptor points to page table

» Address of segment in secondary memory in another table

Virtual Address Page table

Descriptor

Segment # (18b) Page # (6b) Offset (10b) segment

Page entry

Page entry

Segment desc. Page entry

Segment desc.

Segment desc.
Page entry

Page entry

0\

Page entry

EECS 343 Operating Systems
Northwestern University

Segmentation w/ paging - MULTICS

With memory references

Segment # to get segment descriptor

If segment in memory, segment’s page table is in memory
Protection violation?

Look at the page table’s entry - is page in memory?

Add offset to page origin to get word location

... to speed things up - TLB

18 9 111 3 3
Main memory address Segment length
of the page table (in pages) /)
Page size:
0 = 1024 words
1 = 64 words
Segment 0 = segment is paged
Descriptor 1 = segment is not paged
Miscellaneous bits
Protection bits

EECS 343 Operating Systems
Northwestern University

Paging vs. segmentation

Consideration Paging Segmentation
Need the programmer be | No Yes
aware?
Linear address spaces | 1 Many
Can procedure & data be | No Yes
distinguished &

separately protected?

Is sharing procedures bet/ | No Yes
processes facilitated?

Why was the technique Get a large virtual space | Allow programs & data to
invented? w/o more physical be broken into logically
memory? independent address
spaces

Aid sharing & protection

EECS 343 Operating Systems
Northwestern University

Next time

» File and file systems
» Principles of 1/0O, disks and disk arrays

EECS 343 Operating Systems
Northwestern University

