Input/Output

Today

» Principles of I/0 hardware & software
» 1/O software layers

» Secondary storage

Next

» Distributed systems

Operating Systems and I/0

» Two key operating system goals

Control I/O devices
Provide a simple, easy-to-use, interface to devices

* Problem — large variety

Data rates — from 10B/sec (keyboard) 125MB/sec (Gigabit
Ethernet)

Applications — what the device is used for
Complexity of control — a printer (simple) or a disk
Units of transfer — streams of bytes or larger blocks
Data representation — character codes, parity

Error condition — nature of errors, how they are reported, their
consequences, ...

» Makes a uniform & consistent approach difficult to get

EECS 343 Operating Systems
Northwestern University

I/O Hardware - I/O devices

» |/O devices — roughly divided as

— Block devices — stored info in fixed-size blocks (e.g. 512 — 32KB),
read/write in blocks (e.g. disk, CD-ROMs, USB sticks, ...)

— Character devices — I/O stream of characters (e.g. printers, network
interfaces, ...)

— Of course, some devices don't fit in here (e.g. clocks)

» |/O devices components
— Device itself - mechanical component
— Device controller - electronic component

» Controller
— Maybe more than one device per controller
— Converts serial bit stream to block of bytes
— Performs error correction as necessary
— Makes data available in main memory

EECS 343 Operating Systems
Northwestern University

I/O Controller & CPU Communication

» Device controllers have

— A few registers for communication with CPU
* Data-in, data-out, status, control, ...

— A data buffer that OS can read/write (e.g. video RAM)
» How does the CPU use that?

— Separate I/0 and memory space, each control register assigned an
I/O port (a) — IBM 360

IN REG, PORT

— Memory-mapped I/O — first in PDP-11 (b)
— Hybrid — Pentium (c) (graphic controller is a good example)

@ B o N ©

Memory Two One Two
addresses address addresses
space
I/0 Ports

EECS 343 Operating Systems
Northwestern University

Memory-mapped I/O

* Pros:

— No special instructions needed

— No special protection mechanism needed

— Driver can be entirely written in C (how do you do IN or OUT in C?)
« Cons:

— What do you do with caching? Disable it on a per-page basis

— Only one AS, so all memory modules must check all references
« Easy with single bus (a) but harder with dual-bus (b) arch
» Possible solutions
— Send all references to memory first @)

— Snoop in the memory bus

— Filter addresses in the PCI bridge
(preloaded with range registers at boot time)

CPU Mem 110

High-bandwidth
memory bus
Cache bus Local bus Memory bus

(b) ¥
Level 2 CPU /—L \| PCI L N Main CPU Mem 110
cache \{_ /| bridge memory

b PCl bus | | |
< N N j||r = N |r:>

EECS 343 Operating Systems
Northwestern University

~

Direct Memory Access (DMA)

* With or w/o memory-mapped I/O — CPU has to
address the device controllers to exchange data
— By itself, one byte at a time
— Somebody else doing it instead — DMA

* Clearly OS can use it only if HW has DMA controller
*» DMA operation

DMA

controller
| | Address -
Count -

Control

Dis / Main
N control

r memory

EECS 343 Operating Systems
Northwestern University

CPU

Some details on DMA

» One or more transfers at a time
— Need multiple set of registers for the multiple channels
— DMA has to schedule itself over devices served
* Buses and DMA can operate on one of two modes

— Cycle stealing — device controller occasionally steals the bus

— Burst mode (block) — DMA tells the device to take the bus for
a while

» Two approaches to data transfer
— Fly-by mode — just discussed, direct transfer to memory

— Two steps — transfer via DMA; it requires extra bus cycle, but
now you can do device-to-device transfers

» Physical (common) or virtual address for DMA transfer

+ Why you may not want a DMA?
If the CPU is fast and there’s not much else to do anyway

EECS 343 Operating Systems
Northwestern University

Interrupts revisited

» When /O is done — interrupt by asserting a signal on a bus line

» Interrupt controller puts a # on address lines — index into interrupt
vector (PC to interrupt service procedure)

» Interrupt service procedure ACK the controller
» Before serving interrupt, save context ...

Interrupt

4! controller .-
L_I"
—

o .

<

s e

EECS 343 Operating Systems
Northwestern University

Interrupts revisited

Not that simple ...

» Where do you save the state?

— Internal registers? Hold your ACK (avoid overwriting internal regs.)
— In stack? You can get a page fault ... pinned page?
— In kernel stack? Change to kernel mode $$$

» Besides: pipelining, superscalar architectures, ...

|deally - a precise interrupt

* PC is saved in a known place

» All previous instructions have been fully executed

» All following ones have not

» The execution state of the instruction pointed by PC is known

The tradeoff — complex OS or really complex interrupt
logic within the CPU (design complexity & chip area)

EECS 343 Operating Systems
Northwestern University

I/O software — goals & issues

» Device independence

— Programs can access any |/O device w/o specifying it in
advance

» Uniform naming, closely related
— Name independent of device

» Error handling

— As close to the hardware as possible (first the controller
should try, then the device driver, ...)

» Buffering for better performance
— Check what to do with packets, for example
— Decouple production/consumption

» Deal with dedicated (tape drives) & shared devices
(disks)

Dedicated dev. bring their own problems — deadlock?

EECS 343 Operating Systems
Northwestern University

Ways I/O can be done (OS take)

* Programmed I/O
— Simplest — CPU does all the work
— CPU basically pools the device
— ... and it is tied up until /O completes

 Interrupt-driven I/O

— Instead of waiting for I/O, context switch to another process &
use interrupts

* Direct Memory Access

— Obvious disadvantage of interrupt-driven 1/0O?
An interrupt for every character

— Solution: DMA - Basically programmed I/O done by somebody
else

EECS 343 Operating Systems
Northwestern University

I/O software layers

» |/O normally implemented in layers

User-level I/0 software

Device-independent OS software

Device driver

Interrupt handlers

Hardware

* Interrupt handlers

I/O Subsystem

— Interrupts — an unpleasant fact of life — hide them!

— Best way

» Driver blocks (semaphores?) until I/O completes
« Upon an interrupt, interrupt procedure handles it before

unblocking driver

EECS 343 Operating Systems
Northwestern University

Layers - Device drivers

» Different device controllers — different registers,
commands, etc — each /O device needs a device
driver

» Device driver — device specific code
— Written by device manufacturer
— Better if we have specs
— Clearly, it needs to be reentrant

— Must be included in the kernel (as it needs to access the
device’s hardware) - How do you include it?
 Is there another option?

— Problem with plug & play

EECS 343 Operating Systems
Northwestern University

Layers - Device-independent SW

Some part of the I/O SW can be device independent

» Uniform interfacing with drivers

— Fewer modifications to the OS with each new device

— Easier naming (/dev/disk0) — major & minor device #s in
UNIX (kept by the i-node of the device’s file)

— Device driver writers know what’s expected of them

» Buffering
— Unbuffered, user space, kernel, ...

» Error reporting
— Some errors are transient — keep them low
— Actual 1/O errors — reporting up when in doubt

» Allocating & releasing dedicated devices
* Providing a device-independent block size

EECS 343 Operating Systems
Northwestern University

Disk — a concrete I/0O device

» Magnetic disk hardware - organization
— Cylinders — made of vertical tracks
— Tracks — divided into sectors
— Sectors — minimum transfer unit

Parameter IBM 360KB floopy WD 18300 HD
20 years Capacity 360KB 18.3GB

Seek time (avg) 77msec 6.9msec

Rotation time 200msec 8.33msec

Motor stop/start 250msec 20sec

Time to transfer 1 sector 22msec 17usec

» Simplified model - careful with specs
— Sectors per track are not always the same
— Zoning — zone, a set of tracks with equal sec/track

» Hide this with a logical disk w/ constant sec/track

EECS 343 Operating Systems
Northwestern University

RAIDs

» Disk transfer rates are improving, but slower than
CPU performance

» Use multiple disks to improve performance
— Strip content across multiple disks
— Use parallel 1/O to improve performance

» But striping reduces reliability (n*MTBF)

— Add redundancy for reliability

- Parity — add a bit to get 1 0 1 1 0 1 1 0
even number of 1’s n

« Any single missing bit can be reconstructed

« More complex schemes can detect multiple bit errors and correct single
bit errors

EECS 343 Operating Systems
Northwestern University

RAIDs tradeoffs

» Granularity

— Fine-grained — stripe each file over all disks
« High throughput for the file
 Limits transfer to one file at a time

— Course-grained — stripe each file over only a few disks
 Limit throughput for one file
« Allows concurrent access to multiple files

*» Redundancy

— Uniformly distribute redundancy information on disks
« Avoid load-balancing problems

— Concentrate redundancy information on a small # of disks
» Partition the disk into data disks and redundancy disks
« Simpler

EECS 343 Operating Systems
Northwestern University

RAIDs

» RAID 0 — non-redundant disk array
— Files are striped across disks, non redundant info

— High read throughput

— Best write throughput (nothing @ @ @ @
extra to write)

— Worst reliability than with a single disk

* RAID 1 — mirrored disk
— Files are striped across half the disks
— Data is written in two places data disk mirror copies

— On failure, just use the surviving one '@ @‘ '@ @‘
— Of course you need 2x space

EECS 343 Operating Systems
Northwestern University

RAIDs

*» RAID 2, 3 and 4 uses ECC or parity disks

— Each byte on the parity disk is a parity function of
the corresponding bytes in all other disks

— Differences are in t_h(_e EI_EC data disk parity
used and whether it is bit- (2 & n . disk

3) or block-level @ @ @ @ @

» RAID 5 — block interleaved distributed paritly
— Distribute parity info over all disks
— Much better performance (no hot spot)

oo
—) 2

EECS 343 Operating Systems
Northwestern University

AWAN A

Disk formatting

» Low-level formatting ~20% capacity goes with it

Set of concentric tracks of sectors with short gaps in between
Sectors — [preamble, to recognize the start + data + ecc]
Spare sectors for replacements

Sectors and head skews (between
tracks) to deal with moving head Nointerleaving Single interleaving

Interleaving to deal with transfer
time (space between consecutive \@/

sectors)

» After formatting, partitioning — multiple logical disks —
sector O holds master boot record (boot code +
partition table)

» Last step, high-level formatting

Boot block, free storage admin, root dir, empty file system

EECS 343 Operating Systems
Northwestern University

Disk arm scheduling

» Time to read/write a disk block determined by
— Seek time — dominates!
— Rotational delay
— Actual transfer time

» |If request come one at a time, little you can do - FCFS

(l) 1|4 3|7 5?|> 6I5I 67 9|8 122I I124 18|3 1?9
Starting at 53 \
Requests: 98,183,37,122, —
14,124,65,67
o=
—>»
o=

t/‘-"

EECS 343 Operating Systems
Northwestern University

SSTF

* Given a queue of request for blocks — scheduling to
reduce head movement

(l) 1|4 3|7 53I 6|5| 67 9|8 122I |124 18|3 1?9

™

&\

* As SJF, possible starvation

EECS 343 Operating Systems
Northwestern University

SCAN, C-SCAN and C-LOOK

Cl) 1|4 3|7 53| 6|5| 67 9|8 122I I124 18|3 1|99

C-SCAN

SCAN

Nice, but no need to be blind

C-LOOK

S

Assuming a uniform distribution of
requests, where’s the highest density when
head is on the left?

EECS 343 Operating Systems
Northwestern University

Next time

» A quick look at distributed systems
» Final review and a taste of systems research

EECS 343 Operating Systems
Northwestern University

