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Operating Systems and I/O

Two key operating system goals
– Control I/O devices

– Provide a simple, easy-to-use, interface to devices

Problem – large variety
– Data rates – from 10B/sec (keyboard) 125MB/sec (Gigabit 

Ethernet)

– Applications – what the device is used for

– Complexity of control – a printer (simple) or a disk

– Units of transfer – streams of bytes or larger blocks

– Data representation – character codes, parity

– Error condition – nature of errors, how they are reported, their 
consequences, …

Makes a uniform & consistent approach difficult to get
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I/O Hardware - I/O devices

I/O devices – roughly divided as
– Block devices – stored info in fixed-size blocks (e.g. 512 – 32KB), 

read/write in blocks (e.g. disk, CD-ROMs, USB sticks, …)

– Character devices – I/O stream of characters (e.g. printers, network 
interfaces, …)

– Of course, some devices don’t fit in here (e.g. clocks)

I/O devices components
– Device itself - mechanical component

– Device controller - electronic component

Controller
– Maybe more than one device per controller

– Converts serial bit stream to block of bytes

– Performs error correction as necessary

– Makes data available in main memory
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I/O Controller & CPU Communication

Device controllers have

– A few registers for communication with CPU

• Data-in, data-out, status, control, …

– A data buffer that OS can read/write (e.g. video RAM)

How does the CPU use that?

– Separate I/O and memory space, each control register assigned an 

I/O port (a) – IBM 360
IN REG,PORT

– Memory-mapped I/O – first in PDP-11 (b)

– Hybrid – Pentium (c) (graphic controller is a good example)

I/O Ports

Memory Two 

addresses
One 

address 

space

Two 

addresses

(a) (b) (c)
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Memory-mapped I/O

Pros:

– No special instructions needed

– No special protection mechanism needed

– Driver can be entirely written in C (how do you do IN or OUT in C?)

Cons:

– What do you do with caching? Disable it on a per-page basis

– Only one AS, so all memory modules must check all references

• Easy with single bus (a) but harder with dual-bus (b) arch

• Possible solutions

– Send all references to memory first

– Snoop in the memory bus

– Filter addresses in the PCI bridge 

(preloaded with range registers at boot time)

CPU Mem I/O
(a)

CPU Mem I/O

High-bandwidth 

memory bus

(b)
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Direct Memory Access (DMA)

With or w/o memory-mapped I/O – CPU has to 

address the device controllers to exchange data

– By itself, one byte at a time

– Somebody else doing it instead – DMA

Clearly OS can use it only if HW has DMA controller

DMA operation

Address

Count

Control

CPU

Main 

memory

Disk 

controller

Buffer

CPU program 

the DMA 

controller

Interrupt when 

done

ACK

DMA requests 

xfer to mem.

Data xfer

DMA 

controller



EECS 343 Operating Systems

Northwestern University

7

Some details on DMA

One or more transfers at a time

– Need multiple set of registers for the multiple channels

– DMA has to schedule itself over devices served

Buses and DMA can operate on one of two modes

– Cycle stealing – device controller occasionally steals the bus

– Burst mode (block) – DMA tells the device to take the bus for 

a while

Two approaches to data transfer

– Fly-by mode – just discussed, direct transfer to memory

– Two steps – transfer via DMA; it requires extra bus cycle, but 

now you can do device-to-device transfers

Physical (common) or virtual address for DMA transfer

Why you may not want a DMA?

If the CPU is fast and there’s not much else to do anyway
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Interrupts revisited

When I/O is done – interrupt by asserting a signal on a bus line

Interrupt controller puts a # on address lines – index into interrupt 

vector (PC to interrupt service procedure)

Interrupt service procedure ACK the controller

Before serving interrupt, save context …

CPU

Interrupt 

controller
CPU acks

Controller 

interrupts

Device 

done 

(signal)
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Interrupts revisited

Not that simple …

Where do you save the state?

– Internal registers? Hold your ACK (avoid overwriting internal regs.)

– In stack? You can get a page fault … pinned page?

– In kernel stack? Change to kernel mode $$$

Besides: pipelining, superscalar architectures, …

Ideally - a precise interrupt

PC is saved in a known place

All previous instructions have been fully executed

All following ones have not

The execution state of the instruction pointed by PC is known

The tradeoff – complex OS or really complex interrupt 

logic within the CPU (design complexity & chip area)
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I/O software – goals & issues

Device independence
– Programs can access any I/O device w/o specifying it in 

advance

Uniform naming, closely related
– Name independent of device

Error handling
– As close to the hardware as possible (first the controller 

should try, then the device driver, …)

Buffering for better performance
– Check what to do with packets, for example

– Decouple production/consumption

Deal with dedicated (tape drives) & shared devices 
(disks)
Dedicated dev. bring their own problems – deadlock?
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Ways I/O can be done (OS take) 

Programmed I/O
– Simplest – CPU does all the work

– CPU basically pools the device

– … and it is tied up until I/O completes

Interrupt-driven I/O
– Instead of waiting for I/O, context switch to another process & 

use interrupts

Direct Memory Access
– Obvious disadvantage of interrupt-driven I/O?

An interrupt for every character 

– Solution: DMA - Basically programmed I/O done by somebody 

else
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I/O software layers

I/O normally implemented in layers

Interrupt handlers

– Interrupts – an unpleasant fact of life – hide them!

– Best way 

• Driver blocks (semaphores?) until I/O completes

• Upon an interrupt, interrupt procedure handles it before 

unblocking driver

I/O Subsystem

User-level I/O software

Device-independent OS software

Device driver

Interrupt handlers

Hardware
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Layers - Device drivers

Different device controllers – different registers, 

commands, etc → each I/O device needs a device 

driver

Device driver – device specific code

– Written by device manufacturer

– Better if we have specs

– Clearly, it needs to be reentrant

– Must be included in the kernel (as it needs to access the 

device’s hardware) - How do you include it?

• Is there another option?

– Problem with plug & play



EECS 343 Operating Systems

Northwestern University

14

Layers - Device-independent SW

Some part of the I/O SW can be device independent

Uniform interfacing with drivers

– Fewer modifications to the OS with each new device

– Easier naming (/dev/disk0) – major & minor device #s in 

UNIX (kept by the i-node of the device’s file)

– Device driver writers know what’s expected of them

Buffering

– Unbuffered, user space, kernel, …

Error reporting

– Some errors are transient – keep them low

– Actual I/O errors – reporting up when in doubt

Allocating & releasing dedicated devices

Providing a device-independent block size
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Disk – a concrete I/O device

Magnetic disk hardware - organization

– Cylinders – made of vertical tracks

– Tracks – divided into sectors

– Sectors – minimum transfer unit

Simplified model - careful with specs

– Sectors per track are not always the same

– Zoning – zone, a set of tracks with equal sec/track

Hide this with a logical disk w/ constant sec/track

Parameter IBM 360KB floopy WD 18300 HD

Capacity 360KB 18.3GB

Seek time (avg) 77msec 6.9msec

Rotation time 200msec 8.33msec

Motor stop/start 250msec 20sec

Time to transfer 1 sector 22msec 17µsec

20 years
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RAIDs

Disk transfer rates are improving, but slower than 

CPU performance

Use multiple disks to improve performance

– Strip content across multiple disks

– Use parallel I/O to improve performance

But striping reduces reliability (n*MTBF)

– Add redundancy for reliability

• Parity – add a bit to get 

even number of 1’s

• Any single missing bit can be reconstructed

• More complex schemes can detect multiple bit errors and correct single 

bit errors

1 0 1 1 0 1 1 0 1

0 0 1 1 0 1 1 0 0
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RAIDs tradeoffs

Granularity

– Fine-grained – stripe each file over all disks

• High throughput for the file

• Limits transfer to one file at a time

– Course-grained – stripe each file over only a few disks

• Limit throughput for one file

• Allows concurrent access to multiple files

Redundancy

– Uniformly distribute redundancy information on disks

• Avoid load-balancing problems

– Concentrate redundancy information on a small # of disks

• Partition the disk into data disks and redundancy disks

• Simpler
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RAIDs

RAID 0 – non-redundant disk array

– Files are striped across disks, non redundant info

– High read throughput

– Best write throughput (nothing 

extra to write)

– Worst reliability than with a single disk

RAID 1 – mirrored disk

– Files are striped across half the disks

– Data is written in two places

– On failure, just use the surviving one

– Of course you need 2x space

data disk mirror copies
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RAIDs

RAID 2, 3 and 4 uses ECC or parity disks

– Each byte on the parity disk is a parity function of

the corresponding bytes in all other disks

– Differences are in the EEC 

used and whether it is bit- (2 & 

3) or block-level

RAID 5 – block interleaved distributed paritiy

– Distribute parity info over all disks

– Much better performance (no hot spot)

data disk parity 

disk
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Disk formatting

Low-level formatting ~20% capacity goes with it

– Set of concentric tracks of sectors with short gaps in between

– Sectors – [preamble, to recognize the start + data + ecc]

– Spare sectors for replacements

– Sectors and head skews (between 

tracks) to deal with moving head

– Interleaving to deal with transfer 

time (space between consecutive 

sectors)

After formatting, partitioning – multiple logical disks –

sector 0 holds master boot record (boot code + 

partition table)

Last step, high-level formatting

– Boot block, free storage admin, root dir, empty file system

Single interleavingNo interleaving
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Disk arm scheduling

Time to read/write a disk block determined by

– Seek time – dominates!

– Rotational delay

– Actual transfer time

If request come one at a time, little you can do - FCFS

Starting at 53

Requests: 98,183,37,122,

14,124,65,67

0  14       37    53 65 67      98   122 124                 183 199
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Given a queue of request for blocks → scheduling to 

reduce head movement

As SJF, possible starvation
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0  14       37    53 65 67      98   122 124                 183 199
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SCAN, C-SCAN and C-LOOK

0  14       37    53 65 67      98   122 124                 183 199

Nice, but no need to be blind

C-SCAN
SCAN

C-LOOK

Assuming a uniform distribution of 
requests, where’s the highest density when 
head is on the left?



Next time

A quick look at distributed systems

Final review and a taste of systems research
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