Distributed Systems

Today

» Definition

» Goals and pitfalls

» Grapevine — an early example




What is a distributed system?

» Very broad definition
— A collection of independent, interconnected processors that

communicate and coordinate their action by exchanging
messages

— A collection of independent computers that appears to its

users as a single coherent system

* Why do you want one?

Resource sharing — both, physical resources and information

Computation speedup — to solve large problems, we will need
many cooperating machines

Reliability — machines fail frequently
Communication — people collaborating from remote sites

Many applications are by their nature distributed (ATMSs,
airline ticket reservation, etc)

EECS 343 Operating Systems
Northwestern University




Loosely-coupled systems

» Most distributed systems are “loosely-coupled”

» Each system is a completely autonomous system,
connected to others on the network

* Even today, most dist. systems are loosely-coupled
— Each CPU runs an independent autonomous OS
— Computers don’t really trust each other
— Some resources are shared, but most are not
— The system may look differently from different hosts
— Typically, communication times are long

EECS 343 Operating Systems
Northwestern University



Closely-coupled systems

* A DS becomes more “closely-coupled” as it
— Appears more uniform in nature
— Runs a “single” operating system
— Has a single security domain
— Shares all logical resources (e.g., files)
— Shares all physical resources (CPUs, memory, disks, printers,
etc.)
» In the limit, a distributed system looks to users as a
centralized timesharing system, but built of a
distributed set of hardwareTand software components

EECS 343 Operating Systems
Northwestern University



Tightly-coupled systems

» A “tightly-coupled” system usually refers to a
multiprocessor
— Runs a single copy of the OS with a single job queue
— Has a single address space

— Usually has a single bus or backplane to which all processors
and memories are connected

— Has very low communication latency
— Processors communicate through shared memory

EECS 343 Operating Systems
Northwestern University



Distributed systems challenges

» Making resources available
— The main goal of DS — making convenient to share resources

* Security
— Sharing, as always, introduces security issues

» Providing transparency
— Hide the fact that the system is distributed

— Types of transparency
« Access — What's data representation?
» Location — Where’s the resource located?
« Migration — Have the resource moved?
» Relocation — Is the resource being move?
* Replication — Are there multiple copies?
« Concurrency — Is there anybody else accessing the resource now?
» Failure — Has it been working all along?

— Do we really want transparency?

EECS 343 Operating Systems
Northwestern University




Distributed systems challenges

» Openness
— Services should follow agreed-upon rules on component
syntax & semantics
» Scalability

— In numbers (users and resources), geographic span and
administration complexity

— Some useful techniques
« Asynchronous communication
 Distribution
« Caching/replication

» Adding to the challenges, common false assumptions
— The network is reliable / secure / homogenous
— The topology does not change
— Latency is zero / Bandwidth is infinite /Transport cost is zero
— There is one administrator

EECS 343 Operating Systems
Northwestern University



Distributed computing economics*

* From a 2003 article by Jim Gray
— American computer scientist (1944-2007)
— First Ph.D. from Berkeley CS
— Touring award winner 1999
— Do you know what transactions are?

+ Computing is free

— SETI@Home is a 54 teraflop machine (2003), beating the top
4 of the top500 supercomputers

— Google supports trillion of searches per day
— Hotmail carries trillion of emails per year
— Amazon offers free book searches

* Well, not really free; advertising pays for most of it

* J. Gray, Distributed Computing

Economics, ACM Queue, May/June 2008 EECS 343 Operating Systems
Northwestern University




Distributed computing economics

» Computing is not free, actually it costs millions
— Hundreds of billions of dollars/year in hardware
— More than 1 trillion/year in TCO (operation >> capital)

» Megaservices have low operation staff costs

— In 2002, Google had a operational staff of 25 managing its 2
petabyte database and 10k distributed servers

— But not all can benefit from megaservices economies of scale
« Companies report needing 1 admin per TB/100 servers/gigabit bandwidth

— And outsourcing doesn’t work for most things
« Except high-tech, low-touch businesses ...
 that is ~identical across most companies (email, payroll, web hosting ...)
— SETI@Home is an exception as it sidesteps operation costs
and is not funded by advertising
« Harvests wasted cycles and pays with screen saver & feel-good

EECS 343 Operating Systems
Northwestern University



Distributed computing economics

+ Web services

— MS, IBM, Amazon and others argue much of the traffic will be
computer/computer interaction

— Web service — a software system designed to support inter-
operable machine/machine interaction over the network

* |ts interface is described in a machine-processable format in WSDL (Web
Service Description Language)

« A new computing model — Internet-scale distributed computing
« HTTP Internet is for people/computer interaction

» Web services can reduce the cost of publishing &
receiving information

— Other services interact with them through XML-encoded
SOAP messages sent over HTTP

— Cheaper programming and management with an information-
structuring model

EECS 343 Operating Systems
Northwestern University



Distributed computing economics

» Grid and computing-on demand
— Enable mobile apps that can be provisioned on demand

— Most computational tasks can be made mobile if written in a
portable language using portable interfaces — hard to achieve

* Assuming we solved this, what about economics?

— Computation task has four demands

* Networking - delivering questions/answers

« Computation — transforming information to produce new information

« Database access — access to reference information needed by the computation
« Database storage — storing information away for later use

— Ratios among these and their relative costs are pivotal

— The ideal mobile task is stateless, has tiny network i/o and
huge computational demand
« YES SETI@home
« NO Simulation of crack propagation in mechanical objects

— Put computation near the data (filter data early)

EECS 343 Operating Systems
Northwestern University



Extracting guarantees from chaos*

* The peer-to-peer vision — leverage the resources of
thousands to billions of participants to provide
— Durability
— Anonymity
— Scalability
— Security

» How realistic is this? Let's look at a typical application
— a distributed file service

— ldea — replace the local hard disk with a pool of storage
spread throughout the network

— A few examples — FreeNet, Gnutella, FreeHaven, Oceanstore,

* Based on J. Kubiatowicz, Extracting guarantees
from chaos, CACM 46(2), Feb. 2003.

EECS 343 Operating Systems
Northwestern University



Goals and challenge

» Desired properties for a distributed file service

Availability — you can get your data 24x7
Durability — And if you put it there it will stay there forever

Access control — Information is protected, from both
unauthorized reads and writes

Authenticity — adversaries cannot substitute a forge document
for a requested one

Denial of Service resilience — it’s difficult for an adversary to
compromise availability

EECS 343 Operating Systems
Northwestern University




Goals and challenge

» Other, more general goals
— Massive scalability — Thousands to millions of users

— Anonymity — Difficult for an outsider to ascertain who has
produced a document and who has examined it

— Deniablility — Users can deny knowledge of data stored on
their machines

— Resistance to censorship — No one can censor information
once it is written to the system

* The problem — an unreliable and untrusted
Infrastructure without knowledge of the underlying
platform
— Most of the systems are not professionally managed
— Participants could be adversarial
— Running over a large, shared black-box

EECS 343 Operating Systems
Northwestern University



Taming the chaos ...

» Fault tolerance through replication
— Plain replication can be expensive, erasure coding may help

» Location-independent routing

— Assign a unique identifier to objects and nodes, and route
cooperatively

» Cryptography — Protecting the authenticity (source)
and integrity (correctness) of information

— Encryption for privacy

— Authenticity and integrity through one-way hash functions and
signatures

» Byzantine agreement — How to allow a set of peers to
agree on an action even in the presence of
adversaries?

EECS 343 Operating Systems
Northwestern University




Taming the chaos

» Correlated failure analysis — Failure independence
does not hold (same network, same OS, ...)
— Clustering based on pair-wise correlations?

» Leveraging the differences — Some peers are “more
equals” than others, try to leverage that
— Superpeers for routing
— Actively manage nodes for Byzantine agreement, ...

* Learn from others

— Reduce stress on the underlying infrastructure by leveraging
other systems perspectives

» Going for probabilistic guarantees

— Stabllity through statistics — SETI@home asks multiple peers
to perform identical computation and excludes bad results
through voting

EECS 343 Operating Systems
Northwestern University




More? Take EECS 345

» Introductory course on distributed systems covering
topics such as
— Building blocks for distributed systems
— Naming
— Synchronization
— Replication and consistency
— Fault tolerance
— Security

+ Mix of lecture-/seminar- based course

— I'll introduce a topic on Tuesdays

— You'll present and we’ll all discuss a research paper on
Thursdays

— You'll work on one large-project throughout the quarter

EECS 343 Operating Systems
Northwestern University




