
E. Nightingale, K. Veeraraghavan, P.

Chen and J. Flinn, U. Michigan.

Appeared in Proc. of OSDI 2006.

Best paper award.

Rethink the Sync

*Slides reuses some of the authors

Durability and performance in file systems

File systems’ conflicting goals
– Durability & performance → synchronous & asynchronous

Synchronous FS
– Durability by blocking callers until modifications are committed to disk

– Clean abstraction
• What you see completing is durable and

• Ordering is correct

– Very slow …. 2x for disk-intensive benchmarks

Asynchronous FS

– Fast but not safe

• Cost in durability and order

• Harder programming – complicates applications that need durability or

ordering guarantees

2
EECS 343 Operating Systems

Northwestern University

When a sync() is really async

On sync() data written only to volatile cache

– 10x performance penalty and data NOT safe

100x slower than asynchronous I/O if disable cache

EECS 343 Operating Systems

Northwestern University

3

Platter

DiskVolatile

cache

Solution

Resolving the tension with a new model for

synchronous I/O

– External synchrony

– Same guarantees as synchronous I/O

– Only 8% slower than asynchronous I/O

EECS 343 Operating Systems

Northwestern University

4

To whom are guarantees provided?

Synchronous I/O

– Defined by implementation: caller blocked until op. completes

– An application-centric view

Guarantee really provided to the user – users, not

applications, are the true observers of the system

EECS 343 Operating Systems

Northwestern University

5

compiler assembler text editor … game bittorrent

application programs

operating system

Computer

Hardware

Providing the user a guarantee

User observes operation has completed

– User may examine screen, network, disk…

Guarantee provided by synchronous I/O

– Data durable when operation observed to complete

To observe output it must be externally visible

– Visible on external device

– Application state is not directly observable by external entities

EECS 343 Operating Systems

Northwestern University

6

Why do applications block?

Since application are external, we block on syscall

Internal

External

External

Application is internal therefore no need to block

EECS 343 Operating Systems

Northwestern University

7

compiler assembler text editor … game bittorrent

application programs

operating system

Computer

Hardware

A new model of synchronous I/O

Provide guarantee directly to user

– Rather than via application

Called externally synchronous I/O

– Indistinguishable from traditional sync I/O

– Defined by its observable behavior – if the external output

looks the same as if produced by synchronous I/O

– Approaches speed of asynchronous I/O

Viable because the OS control access to external

devices

– Applications can only generate external events with the OS

help

EECS 343 Operating Systems

Northwestern University

8

Example: Synchronous I/O

OS Kernel DiskProcess

101 write(buf_1);
102 write(buf_2);
103 print(“work done”);
104 foo();

Application blocks

Application blocks

%work done

%

TEXT

%

EECS 343 Operating Systems

Northwestern University

9

Observing synchronous I/O

Sync I/O externalizes output based on causal ordering

– Enforces causal ordering by blocking an application

Ext sync

– The values of external outputs are the same

– Outputs occur in the same causal ordering (Lamport’s

happens before) without blocking applications

101 write(buf_1);
102 write(buf_2);
103 print(“work done”);
104 foo();

Depends on 1st write

Depends on 1st &

2nd write

EECS 343 Operating Systems

Northwestern University

10

Example: External synchrony

OS Kernel DiskProcess

101 write(buf_1);
102 write(buf_2);
103 print(“work done”);
104 foo();

TEXT

%work done

%

%

EECS 343 Operating Systems

Northwestern University

11

Tracking causal dependencies

Applications may communicate via IPC

– Socket, pipe, fifo etc.

Need to propagate dependencies through IPC

Built upon Speculator [SOSP ’05]

– Track and propagate causal dependencies

– Buffer output to screen and network

EECS 343 Operating Systems

Northwestern University

12

Tracking causal dependencies

DiskProcess 1

101 write(file1);
102 do_something();

%hello

%

%

101 print (“hello”);
102 read(file1);
103 print(“world”);

Process 1 Process 2

Process 2

Commit

Dep 1

Process 1

OS Kernel

Process 2TEXTTEXT world

EECS 343 Operating Systems

Northwestern University

13

Output triggered commits

A well-known tradeoff between throughput & latency

for group commit strategies

– Delaying commit will improve throughput, but increase latency

Maximize throughput until output buffered

When output buffered, trigger commit

– Minimize latency only when important

OS Kernel
Disk

Process

%work done

%

TEXT

%

EECS 343 Operating Systems

Northwestern University

14

Limitations

Complicates application-specific recovery from media

failures – errors are not immediately obvious

Users may have temporal expectations as to when

data is committed to disk – xsyncfs avoids long waits

committing every 5sec at most

Modifications to data in two different file systems

cannot be easily committed with a single disk

transaction

EECS 343 Operating Systems

Northwestern University

15

Evaluation

Implemented ext sync file system Xsyncfs

– Based on the ext3 file system

– Use journaling to preserve order of writes

– Use write barriers to flush volatile cache

Compare Xsyncfs to 3 other file systems

– Default asynchronous ext3

– Default synchronous ext3

– Synchronous ext3 with write barriers

EECS 343 Operating Systems

Northwestern University

16

When is data safe?

Local machine continuously

– Writes to its local FS

– Sends a UDP msg that is logged by a remote machine

During execution, cut power

Compare log and FS state

Failed durability

– Remote logs a msg for a write, but data is missing in test

computer

Failed ordering

– State of the file afer reboot violates temporal ordering of writes

(i.e. FS misses some of the previously written blocks)

EECS 343 Operating Systems

Northwestern University

17

When is data safe?

EECS 343 Operating Systems

Northwestern University

18

Without write barriers, ext3 does not guarantee

durability

Even with journaling, loss of power can corrupt data &

metadata

File System

Configuration

Data durable

on write()

Data durable

on fsync()

Asynchronous No
Not on

power failure

Synchronous
Not on

power failure

Not on

power failure

Synchronous

w/ write barriers
Yes Yes

External synchrony Yes Yes

PostMark benchmark

Replicate small file workloads seen in email, netnews,

web-based commerce

A good test of file system throughput – no output

EECS 343 Operating Systems

Northwestern University

19

1

10

100

1000

10000

T
im

e
 (

S
e
c
o

n
d

s
)

ext3-async

xsyncfs

ext3-sync

ext3-barrier

Xsyncfs within 7% of ext3

mounted asynchronously

The MySQL benchmark

EECS 343 Operating Systems

Northwestern University

20

Xsyncfs can group commit

from a single client

How does xsyncfs compares with an application that

perform its own group commit strategy?

Use a modified version of OSDL TPC-C benchmark

using MySQL

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20

N
e

w
 O

rd
e

r
T

ra
n

s
a

c
ti

o
n

s
 P

e
r

M
in

u
te

Number of db clients

xsyncfs

ext3-barrier

Specweb99 throughput

EECS 343 Operating Systems

Northwestern University

21

Impact of external synchrony on a network-intensive

application

Clients issue a mix of http get/post requests – sending

a network message externalizes state

0

50

100

150

200

250

300

350

400

T
h

ro
u

g
h

p
u

t
(K

b
/s

)

ext3-async

xsyncfs

ext3-sync

ext3-barrier

Xsyncfs within 8% of ext3

mounted asynchronously

Specweb99 latency

EECS 343 Operating Systems

Northwestern University

22

Xsyncfs must buffer each message until file system

data has been committed

It adds no more than 33ms of delay (less than the

50ms perception threshold for human users)

Request size ext3-async xsyncfs

0-1 KB 0.064 seconds 0.097 seconds

1-10 KB 0.150 second 0.180 seconds

10-100 KB 1.084 seconds 1.094 seconds

100-1000 KB 10.253 seconds 10.072 seconds

Conclusion

Hard to build simple, reliable software systems over

unreliable foundations

But, given performance trends, commodity file

systems move toward relaxing durability for

performance

Reconsider who are guarantees provided to

(applications or users) – Synchronous I/O can be fast

External synchrony performs with 8% of async

EECS 343 Operating Systems

Northwestern University

23

