
Today

 Welcome to OS

 Administrivia

 OS overview and history

Next time

 Architectural support

Introduction

Course overview …

Everything you need to know
http://www.aqualab.cs.northwestern.edu/classes/eecs-343-f10/

Course staff

– Fabián Bustamante

– Mario Sánchez (TA)

Overall structure

– Lectures – read the text before class

– TA Sessions - Once a week and focused on projects

– Homework (4+1)‏

• Part of their role is reading enforcers – textbook + xv6 code

• First one is posted on the web; due in eight days (Sep. 30)

– …

EECS 343 Operating Systems

Northwestern University

2

Course overview … xv6

A teaching OS developed in MIT

Based on UNIX Sixth Edition (aka V6)

– Used to run on PDP-11 (~40 year arch)

– Based for Lions' Commentary on UNIX'

6th Edition, John Lions

Ported to x86 and some bug fixes

7,300 SLOC (compare: Windows XP – 40 million

SLOC; Linux kernel 2.6.32 - 12.6 million SLOC)

EECS 343 Operating Systems

Northwestern University

3

Course overview

Overall structure

– …

– Projects (4)‏

• First one will be posted next Monday

• Discuss on Wednesday

• Due 9 days later (Oct. 6)

– Exams (2)

• Final on first day of final weeks (Dec. 6)

It’s not that bad!

– They are really two classes in one: lectures + projects

– Sometimes they are aligned, sometimes not

– You will work a lot and you will also learn a lot

EECS 343 Operating Systems

Northwestern University

4

A computer system - Where's the OS?

Hardware provides basic computing resources

Applications define ways in which resources are used

to solve users' problems

OS controls & coordinates use of hardware by users’

applications

A few vantage points

– End user

– Programmer

– OS Designer

systems and application programs

compiler text editor DBMS…

operating system

machine language
microarchitecture
physical devices

User 1 …User 1 User 1

EECS 343 Operating Systems

Northwestern University

5

What is an operating system?

Extended machine – top-down/user-view

– Hiding the messy details, presenting a virtual machine that's

easier to program than the HW

Resource manager – bottom-up/system-view

– Everybody gets a fair-share of time/space from a resource

(multiplexing in space/time)‏

– A control program – to prevent errors & improper use (CP/M?)‏

A bundle of helpful, commonly used things

Goals

– Convenience – make solving user problems easier

– Efficiency – use hardware in an efficient manner ($$$

machines demand efficient use)‏

– Easy to modify/evolve

EECS 343 Operating Systems

Northwestern University

6

What's part of the OS?

Trickier than you think: file system, device drivers,

shells, window systems, browser, ...

Everything a vendor ships with your order?

The one program running at all times, or running in

kernel mode

– Everything else is either a system program (ships with the

OS) or an application program

– Can the user change it?

Why does it matter? In 1998 the US Department of

Justice filed suit against MS claiming its OS was too

big

EECS 343 Operating Systems

Northwestern University

7

Why having one?

For applications

– Programming simplicity

• High-level abstractions instead of low-level hardware details

• Abstractions are reusable across many programs

– Portability (to != machines configurations/architectures)

For user

– Safety

• Program works within its own virtual machine

• OS protects programs from each other

• OS fairly multiplexes resources across programs

– Efficiency (cost and speed)

• Share one computer across many users

• Concurrent execution of multiple programs

8EECS 343 Operating Systems

Northwestern University

Why study operating systems?

Tangible reasons

– Build/modify one - OSs are everywhere

– Administer and use them well

– Tune your favorite application performance

– Great capstone course

Intangible reasons

– Curiosity

– Use/gain knowledge from other areas

– Challenge of designing large, complex systems

EECS 343 Operating Systems

Northwestern University

9

Major OS issues

Structure: how is the OS organized?

Sharing: how are resources shared?

Naming: how are resources named?

Security: how is integrity of the OS and its resources

ensured?

Protection: how is one user/program protected from

another?

Performance: how do we make it all go fast?

Reliability: what happens if something goes wrong?

Extensibility: can we add new features?

Communication: how do programs exchange

information, including across a network?

10EECS 343 Operating Systems

Northwestern University

Other OS issues

Concurrency: how are parallel activities created and

controlled?

Scale and growth: what happens as demands or

resources increase?

Persistence: how do you make data last longer than

program executions?

Distribution: how do multiple computers interact with

each other? how do we make distribution invisible?

Accounting: how do we keep track of resource usage,

and perhaps charge for it?

There are a huge number of engineering tradeoffs in

dealing with these issues!

11EECS 343 Operating Systems

Northwestern University

The evolution of operating systems

A brief history & a framework to introduce OS

principles

Early attempts – Babbage's (1702-1871)‏

– Analytical Engine (Ada Lovelace – World's first programmer)‏

1945-55 – Vacuum tubes and plugboards

– ABC, MARK 1, ENIAC

– No programming

languages, no OS

– A big problem

• Scheduling –

signup sheet

on the wall

EECS 343 Operating Systems

Northwestern University

12

Evolution ... Batch systems (1955)‏

Transistors → machs. reliable enough to sell

– Separation of builders & programmers

Getting your program to run

– Write it in paper (maybe in FORTRAN)‏

– Punch it on cards & drop cards in input room

– Operator may have to mount/dismount tapes, setting up card

decks, ... setup time!

Batch systems

– Collect a tray of full jobs, read them all into tape with a cheap

computer

– Bring‏them‏to‏the‏main‏computer‏where‏the‏“OS”‏will‏go‏over‏

each jobs one at a time

– Print output offline

EECS 343 Operating Systems

Northwestern University

13

Evolution ... Spooling (1965)‏

Disks much faster than card readers

& printers

Spool (Simultaneous Peripheral Operations On-Line)‏

– While one job is executing, spool next one from card reader

onto disk

• Slow card reader I/O overlapped with CPU

– Can even spool multiple programs onto disk

• OS must choose which one to run next (job sched)‏

– But CPU still idle when program interact with a peripheral

during execution

EECS 343 Operating Systems

Northwestern University

14

Evolution ... Multiprogramming (1965)‏

To increase system utilization

– Keeps multiple runnable jobs loaded in memory at once

– Overlap I/O of a job with computing of another

– Needs asynchronous I/O devices

• Some way to know when devices are done

– Interrupt or polling

– Goal- optimize system throughput

– Maybe at the cost of response time

IBM OS/360 & the tar pit

EECS 343 Operating Systems

Northwestern University

15

Evolution ... Timesharing (1961)‏

To support interactive use

– Multiple terminals into one machine

– Each user has the illusion of owing the entire machine

– Goal – optimize response time maybe at the cost of

throughput

Time-slicing

– Dividing CPU equally among users

– If jobs are truly interactive, CPU can jump between them

without users noticing it

– Recovers interactivity for the user (why do you care?)‏

CTSS (Compatible Time Sharing System), MULTICS

(second-system effect) and UNIX

EECS 343 Operating Systems

Northwestern University

16

Evolution … Parallel systems (1962)

Some applications can be written as multiple parallel

threads or processes

– Can speed up the execution by running on several CPUs

– Need OS and language primitives for dividing program into

multiple parallel activities

– Need OS primitives for fast communication among activities

• Degree of speedup dictated by communication/computation ratio

– Many flavors of parallel computers today

• SMPs (symmetric multi-processors, multi-core)

• SMT‏(simultaneous‏multithreading‏[“hyperthreading”]

• MPPs (massively parallel processors)

• NOWs (networks of workstations) [clusters]

• computational grid (SETI @home)

17EECS 343 Operating Systems

Northwestern University

Evolution ... PCs (197x)‏

Large-scale integration >> small & cheap machines

1974 – Intel's 8080 & Gary Kildall's CP/M

Early 1980s – IBM PC, BASIC, CP/M & MS-DOS

User interfaces, XEROX Altos, MACs and Windows

EECS 343 Operating Systems

Northwestern University

IBM PC circa 1981

X
e
ro

x
 A

lt
o

 1
9

7
3

18

Evolution ... Distributed and pervasive

Facilitate use of geographically distributed resources
– Workstations on a LAN or across the Internet

Support communication between programs

Speed up is not always the issue, but access to
resources

Architectures
– Client/servers

• Mail server, print server, web server

– Peer-to-peer

• (Most) everybody is both, server and client

EECS 343 Operating Systems

Northwestern University

19

Evolution … Embedded and pervasive

Pervasive computing

– cheap processors embedded everywhere

– how many are on your body now? in your car?

– cell‏phones,‏PDAs,‏games,‏iPod,‏network‏computers,‏…

Typically very constrained hardware resources

– slow processors

– small amount of memory

– no disk or tiny disk

– typically only one dedicated application

– limited power

But technology changes fast

20EECS 343 Operating Systems

Northwestern University

“Ontogeny recapitulates phylogeny”*

EECS 343 Operating Systems

Northwestern University

The development of an embryo repeats the
evolution of the species (* Ernst Haeckel)‏

But new problems arise
and others redefine
themselves

21

EECS 343 Operating Systems

Northwestern University

22

Summary

In this class you will learn
– Major components of an OS

– How are they structured

– The most important interfaces

– Policies typically used in an OS

– Algorithms used to implement those policies

Philosophy
– You many not ever build an OS, but

– As a CS/CE you need to understand the foundations

– Most importantly, OSs exemplify the sorts of engineering tradeoffs

you'll need to make throughout your careers

