
Today

 Computer system overview

Next time

 OS components & structure

Architectural Support for Operating Systems

EECS 343 Operating Systems

Northwestern University

2

Bus

Monitor

Computer architecture and OS

OS is intimately tied to the hardware it runs on

– The OS design is impacted by it

– The OS needs result on new architectural features

Abstract model of a simple computer

The brain with a basic operation cycle

– Fetch next instruction

– Decode it to determine type & operands

– Execute it

… and a specific set of instructions

– Architecture specific - Pentium != SPARC

– Includes: combine operands (ADD), control flow, data
movement, etc

Since memory access is slow … registers

– General registers to hold variables & temp. results

– Special registers: Program Counter (PC), Stack Pointer
(SP), Program Status Word (PSW)‏

This model is overly simplistic: pipeline
architectures, superscalar, …

3EECS 343 Operating Systems

Northwestern University

Processor

Memory

Ideally – fast, large, cheap and

persistent

Reality – storage hierarchy

– Registers

• Internal to the CPU &

just as fast

• 32x32 in a 32 bit machine

– Cache

• Split into cache lines

• If word needs is in cache, get in ~2 cycles

– Main memory

– Hard disk

– Magnetic tape

– Coherency?

First core-based memory: IBM 405
Alphabetical Accounting Machine

EECS 343 Operating Systems

Northwestern University

Architectural trends impact OS design …

Processing power

– Doubling every 18 months (100x per decade)

– but power is a serious issue

5EECS 343 Operating Systems

Northwestern University

*http://www.intel.com/pressroom/kits/cor

e2duo/pdf/epi-trends-final2.pdf

Normalized power versus normalized scalar performance for

multiple generations of Intel microprocessors

Architectural trends impact OS design …

Primary memory capacity

– Same and for the same reason
1980 64KB $405.00 ($6,480/MB)

1990 8MB $851.00 ($106/MB)

2000 64MB $99.89 ($1.56/MB)

2009 4GB $39.99 ($0.010/MB)*

Disk capacity

– Double every 12 months (1000x per decade)

6EECS 343 Operating Systems

Northwestern University

*http://www.jcmit.com/memoryprice.htm

WD 1TB My Book

Essential ~ $100

1961 IBM 1301

~26MB ~$115,500

Architectural trends impact OS design …

Gap between CPU and I/O speeds

7EECS 343 Operating Systems

Northwestern University

*http://www.cmu.com/~dga

Relative speed of key

components – an

unbalanced system

FAWN project @ CMU

Architectural trends impact OS design

Solid state storage (SSD)

– 10-100k random IOs per second

– 800 MB/s transfer rates

– Costly,‏but‏quickly‏riding‏Moore’s‏law

2009 G-Tech 500GB SSD RAID $2,199

Optical bandwidth today

– Doubling every 9 months‏(Butter’s‏law)

– (law‏Nielsen’s)‏users‏home‏for‏year‏each‏improvement‏50%

– Factor of 10,000 every decade

– 10x as fast as disk capacity!

– 100x as fast as processor performance!

What are some of the implications of these trends?

– E.g.: from mainframes to desktops to cloud computing

8EECS 343 Operating Systems

Northwestern University

HP IO Accelerator

… and OS needs shape the architecture

Architectural support can simplify/complicate OS tasks

– E.g.: Early PC operating systems (DOS, MacOS) lacked

support for virtual memory, partly because hardware lacked

necessary hardware support

These‏features‏were‏built‏primarily‏to‏support‏OS’s:

– Protected modes of execution (kernel vs. user)

– Protected instructions

– System calls (and software interrupts)

– Memory protection

– I/O control operations

– Timer (clock) operation

– Interrupts and exceptions

– Synchronization instructions

9EECS 343 Operating Systems

Northwestern University

OS protection

Multiprogramming & timesharing are useful but

– How to protect programs from each other & kernel from all?

– How to handle relocation?

Some instructions are restricted to the OS

– e.g. Directly access I/O devices

– e.g. Manipulate memory state management

How does the CPU know if a protected instructions

should be executed?

– Architecture must support 2+ mode of operation

– Mode is set by status bit in a protected register (PSW)‏

• User programs execute in user mode, OS in kernel mode

Protected instructions can only be executed in kernel

mode

EECS 343 Operating Systems

Northwestern University

Crossing protection boundaries

How can apps. do something privileged?

– e.g. how do you write to disk if you can't do I/O?

User programs must call an OS procedure

– OS defines a sequence of system calls

– How does the user to kernel-mode transition happen?

There‏must‏be‏a‏system‏call‏instruction,‏which‏…

– Causes an exception (throws a soft interrupt) which vector to

a kernel handler

– Passes a parameter indicating which syscall is

– Saves caller's state so it can be restored

– OS must verify caller's parameters

– Must be a way to go back to user once done

EECS 343 Operating Systems

Northwestern University

Memory relocation

OS‏must‏protect‏…

– user programs from each other

– itself from user programs

Simplest model – base + limit

– Base (start) of program + limit registers

– Also solves relocation problem

– Cost 2 registers + cycle time incr

More sophisticated alternatives

– 2 base and 2 limit registers for text

& data; allow sharing program text

– Paging, segmentation, virtual memory

EECS 343 Operating Systems

Northwestern University

I/O Device

– Device + Controller (simpler I/F to OS; think SCSI)‏

• Read sector x from disk y → (disk, cylinder, sector,
head), …

How does the kernel start an I/O?

– Special I/O instructions

– Memory-mapped I/O‏

How does it notice when the I/O is done?

– Polling

– Interrupts

How does it exchange data with the I/O device?

– Programmed I/O

– Direct Memory Access (DMA)‏

EECS 343 Operating Systems

Northwestern University

13

I/O

OSs are event driven
– Once booted, all entry to kernel happens as result of

an event (e.g. signal by an interrupt), which

• Immediately stops current execution

• Changes to kernel mode, event handler is called

Kernel defines handlers for each event type
– Specific types are defined by the architecture

•e.g. timer event, I/O interrupt, system call trap

Handling the interrupt
– Push PC & PSW onto stack and switch to kernel mode

– Device # is index in interrupt vector - get handler

– Interrupt handler

•Stores stack data

•Handles interrupt

•Returns to user program after restoring program state

14EECS 343 Operating Systems

Northwestern University

OS control flow

Three main types of events: interrupts &
exceptions

– Exceptions/traps caused by SW executing instructions

• E.g., a page fault

• E.g., an attempted write to a read-only page

• An expected exception is a “trap”, unexpected is a “fault”

– Interrupts caused by HW devices

• E.g., device finishes I/O

• E.g., timer fires

15EECS 343 Operating Systems

Northwestern University

Interrupts and exceptions

How can the OS retains control when a user
program gets stuck in an infinite loop?‏

– Use a hardware timer that generates a periodic
interrupt

– Before it transfers to a user program, the OS loads
the timer with a time to interrupt (how long?)

– When time's up, interrupt transfers control back to OS

• OS decides which program to schedule next (which
one?)

Should the timer be privileged?

– For reading or for writing?

16EECS 343 Operating Systems

Northwestern University

Timers

17EECS 343 Operating Systems

Northwestern University

Synchronization

Issues with interrupts

– May occur any time, causing code to execute that interferes

with the interrupted code

– OS must be able to synchronize concurrent processes

Synchronization

– Guarantee that short instruction sequences (e.g. read-modify-

write) execute atomically

– Two methods

• Turn off interrupts, execute sequence, re-enable interrupts

• Have special, complex atomic instructions – test-and-set

Management of concurrency & asynchronous events

is the biggest difference bet/ systems-level &

traditional application programming.

EECS 343 Operating Systems

Northwestern University

18

Summary

This is far from over – new architectural features are

still being introduced

– Support for virtual machine monitors

– Hardware transaction support

– Support for security

– …

Transistors‏are‏free‏so‏Intel/AMD/…‏need‏to‏find‏

applications that require new hardware that you would

want‏to‏buy‏…

