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 Computer system overview

Next time

 OS components & structure

Architectural Support for Operating Systems
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Bus

Monitor

Computer architecture and OS

OS is intimately tied to the hardware it runs on

– The OS design is impacted by it

– The OS needs result on new architectural features

Abstract model of a simple computer



The brain with a basic operation cycle 

– Fetch next instruction

– Decode it to determine type & operands

– Execute it

…  and a specific set of instructions

– Architecture specific - Pentium != SPARC

– Includes: combine operands (ADD), control flow, data 
movement, etc

Since memory access is slow … registers

– General registers to hold variables & temp. results

– Special registers: Program Counter (PC), Stack Pointer 
(SP), Program Status Word (PSW)‏

This model is overly simplistic: pipeline 
architectures, superscalar, …
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Memory

Ideally – fast, large, cheap and 

persistent

Reality – storage hierarchy

– Registers

• Internal to the CPU & 

just as fast

• 32x32 in a 32 bit machine

– Cache

• Split into cache lines

• If word needs is in cache, get in ~2 cycles

– Main memory

– Hard disk

– Magnetic tape

– Coherency?

First core-based memory: IBM 405 
Alphabetical Accounting Machine
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Architectural trends impact OS design …

Processing power

– Doubling every 18 months (100x per decade)

– but power is a serious issue
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*http://www.intel.com/pressroom/kits/cor

e2duo/pdf/epi-trends-final2.pdf

Normalized power versus normalized scalar performance for 

multiple generations of Intel microprocessors



Architectural trends impact OS design …

Primary memory capacity

– Same and for the same reason
1980 64KB $405.00 ($6,480/MB)

1990 8MB $851.00 ($106/MB)

2000 64MB $99.89 ($1.56/MB)

2009 4GB $39.99 ($0.010/MB)*

Disk capacity

– Double every 12 months (1000x per decade)
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*http://www.jcmit.com/memoryprice.htm

WD 1TB My Book 

Essential ~ $100

1961 IBM 1301 

~26MB ~$115,500



Architectural trends impact OS design …

Gap between CPU and I/O speeds
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*http://www.cmu.com/~dga

Relative speed of key 

components – an 

unbalanced system

FAWN project @ CMU



Architectural trends impact OS design

Solid state storage (SSD)

– 10-100k random IOs per second

– 800 MB/s transfer rates

– Costly,‏but‏quickly‏riding‏Moore’s‏law

2009 G-Tech 500GB SSD RAID $2,199 

Optical bandwidth today

– Doubling every 9 months‏(Butter’s‏law)

– (law‏Nielsen’s)‏users‏home‏for‏year‏each‏improvement‏50%

– Factor of 10,000 every decade

– 10x as fast as disk capacity!

– 100x as fast as processor performance!

What are some of the implications of these trends?

– E.g.: from mainframes to desktops to cloud computing
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HP IO Accelerator



… and OS needs shape the architecture

Architectural support can simplify/complicate OS tasks

– E.g.: Early PC operating systems (DOS, MacOS) lacked 

support for virtual memory, partly because hardware lacked 

necessary hardware support

These‏features‏were‏built‏primarily‏to‏support‏OS’s:

– Protected modes of execution (kernel vs. user)

– Protected instructions

– System calls (and software interrupts)

– Memory protection

– I/O control operations

– Timer (clock) operation

– Interrupts and exceptions

– Synchronization instructions
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OS protection

Multiprogramming & timesharing are useful but

– How to protect programs from each other & kernel from all?

– How to handle relocation?

Some instructions are restricted to the OS

– e.g. Directly access I/O devices

– e.g. Manipulate memory state management

How does the CPU know if a protected instructions 

should be executed?

– Architecture must support 2+ mode of operation

– Mode is set by status bit in a protected register (PSW)‏

• User programs execute in user mode, OS in kernel mode

Protected instructions can only be executed in kernel 

mode
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Crossing protection boundaries

How can apps. do something privileged?

– e.g. how do you write to disk if you can't do I/O?

User programs must call an OS procedure

– OS defines a sequence of system calls

– How does the user to kernel-mode transition happen?

There‏must‏be‏a‏system‏call‏instruction,‏which‏…

– Causes an exception (throws a soft interrupt) which vector to 

a kernel handler

– Passes a parameter indicating which syscall is

– Saves caller's state so it can be restored

– OS must verify caller's parameters

– Must be a way to go back to user once done
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Memory relocation

OS‏must‏protect‏…

– user programs from each other

– itself from user programs

Simplest model – base + limit

– Base (start) of program + limit registers

– Also solves relocation problem

– Cost 2 registers + cycle time incr

More sophisticated alternatives

– 2 base and 2 limit registers for text 

& data; allow sharing program text

– Paging, segmentation, virtual memory
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I/O Device

– Device + Controller (simpler I/F to OS; think SCSI)‏

• Read sector x from disk y → (disk, cylinder, sector, 
head), …

How does the kernel start an I/O?

– Special I/O instructions

– Memory-mapped I/O‏

How does it notice when the I/O is done?

– Polling

– Interrupts

How does it exchange data with the I/O device?

– Programmed I/O

– Direct Memory Access (DMA)‏
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I/O



OSs are event driven
– Once booted, all entry to kernel happens as result of 

an event (e.g. signal by an interrupt), which

• Immediately stops current execution

• Changes to kernel mode, event handler is called

Kernel defines handlers for each event type
– Specific types are defined by the architecture

•e.g. timer event, I/O interrupt, system call trap

Handling the interrupt
– Push PC & PSW onto stack and switch to kernel mode

– Device # is index in interrupt vector - get handler

– Interrupt handler

•Stores stack data

•Handles interrupt 

•Returns to user program after restoring program state
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OS control flow



Three main types of events: interrupts & 
exceptions

– Exceptions/traps caused by SW executing instructions

• E.g., a page fault

• E.g., an attempted write to a read-only page

• An expected exception is a “trap”, unexpected is a “fault”

– Interrupts caused by HW devices

• E.g., device finishes I/O

• E.g., timer fires
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Interrupts and exceptions



How can the OS retains control when a user 
program gets stuck in an infinite loop?‏

– Use a hardware timer that generates a periodic 
interrupt

– Before it transfers to a user program, the OS loads 
the timer with a time to interrupt (how long?)

– When time's up, interrupt transfers control back to OS

• OS decides which program to schedule next (which 
one?)

Should the timer be privileged?

– For reading or for writing?
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Timers
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Synchronization

Issues with interrupts

– May occur any time, causing code to execute that interferes 

with the interrupted code

– OS must be able to synchronize concurrent processes

Synchronization

– Guarantee that short instruction sequences (e.g. read-modify-

write) execute atomically

– Two methods

• Turn off interrupts, execute sequence, re-enable interrupts

• Have  special, complex atomic instructions – test-and-set

Management of concurrency & asynchronous events 

is the biggest difference bet/ systems-level & 

traditional application programming.
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Summary

This is far from over – new architectural features are 

still being introduced

– Support for virtual machine monitors

– Hardware transaction support

– Support for security

– …

Transistors‏are‏free‏so‏Intel/AMD/…‏need‏to‏find‏

applications that require new hardware that you would 

want‏to‏buy‏…


