
Today
• OS services

• OS interface to programmers/users

• OS components & interconnects

• Structuring OSs

Next time

• Processes

OS Concepts and structure

OS Views

Vantage points

– OS as the services it provides

• To users and applications

– OS as its components and interactions

OS provides a number of services

– To users via a command interpreter/shell or GUI

– To application programs via system calls

– Some services are for convenience

• Program execution, I/O operation, file system

management, communication

– Some to ensure efficient operation

• Resource allocation, accounting, protection and security

EECS 343 Operating Systems
Northwestern University

Command interpreter (shell) & GUI

Command interpreter

– Handle (interpret and execute) user commands

– Could be part of the OS: MS DOS, Apple II

– Could be just a special program: UNIX, Windows XP

• In this way, multiple options – shells – are possible

– The command interpreter could

• Implement all commands

• Simply understand what program to invoke and how (UNIX)‏

GUI

– Friendlier, through a desktop metaphor, if sometimes limiting

– Xerox PARK Alto >> Apple >> Windows >> Linux

EECS 343 Operating Systems
Northwestern University

System calls

Low-level interface to services for applications

Higher-level requests get translated into sequence of

system calls

Writing cp – copy source to destination
– Get file names

– Open source

– Create destination

– Loop

• Read from source

• Copy to destination

– Close destination

– Report completion

– Terminate

EECS 343 Operating Systems
Northwestern University

Before calling the syscall,

push parameters onto the stack

Then call the library procedure,

which places the syscall number

in a register, an executes a TRAP

Kernel runs the right

sys call handler

Before returning to

the user program as

a procedure call

Tracing a system calls in xv6 ...

All starts at the user-level with an app calling a library routine - read()

Library places arguments in relevant registers and issues a trap

EECS 343 Operating Systems
Northwestern University

#define SYSCALL(name) \

.globl name; \

name: \

movl $SYS_ ## name, %eax; \

int $T_SYSCALL; \

ret

SYSALL(read)

xv6/usys.S

.globl read;

read:

movl $6, %eax;

int $64;

ret

// x86 trap and interrupt constants.

// Processor-defined

#define T_DIVIDE 0 // divide error

#define T_DEBUG 1 // debug exception

…

#define T_GPFLT 13 // general protection

fault

#define T_PGFLT 14 // page fault

….

#define T_SYSCALL 64 // system call

…

xv6/traps.h

#define SYS_read 6 xv6/syscall.h

Value placed in %eax, 6, is used to

vector to the right system call.

The int instruction takes one

argument, 64, which tells the hardware

which trap type this is.

Other arguments are passed on the

stack.

Tracing a system calls in xv6 ...

Once int is executed, hardware gets to do some of the work

– Raises the privilege level – from Current Privilege Level 3 to 0 in x86

– Transfers control to trap vectors – as set by the OS in initialization

To let the hardware know what code to run, the OS must make sure to

tell it (at booting) the location of the code for each trap ...

EECS 343 Operating Systems
Northwestern University

int

main(void)

{

…

tvinit();

…

}

xv6/main.c

void

tvinit(void)

{

int i;

for(i = 0; i < 256; i++)

SETGATE(idt[i], 0, SEG_KCODE<<3, vectors[i], 0);

SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);

initlock(&tickslock, "time");

}

xv6/trap.c

Tracing a system calls in xv6 ...

EECS 343 Operating Systems
Northwestern University

// Gate descriptors for interrupts and traps

struct gatedesc {

uint off_15_0 : 16; // low 16 bits of offset in segment

uint cs : 16; // code segment selector

uint args : 5; // # args, 0 for interrupt/trap gates

uint rsv1 : 3; // reserved(should be zero I guess)

uint type : 4; // type(STS_{TG,IG32,TG32})

uint s : 1; // must be 0 (system)

uint dpl : 2; // descriptor(meaning new) privilege level

uint p : 1; // Present

uint off_31_16 : 16; // high bits of offset in segment

};

// Set up a normal interrupt/trap gate descriptor.

// − istrap: 1 for a trap (= exception) gate, 0 for an interrupt gate.

// interrupt gate clears FL_IF, trap gate leaves FL_IF alone

// − sel: Code segment selector for interrupt/trap handler

// − off: Offset in code segment for interrupt/trap handler

// − dpl: Descriptor Privilege Level −

// the privilege level required for software to invoke

// this interrupt/trap gate explicitly using an int instruction.

#define SETGATE(gate, istrap, sel, off, d) \

{ \

(gate).off_15_0 = (uint) (off) & 0xffff; \

(gate).cs = (sel); \

(gate).args = 0; \

(gate).rsv1 = 0; \

(gate).type = (istrap) ? STS_TG32 : STS_IG32; \

(gate).s = 0; \

(gate).dpl = (d); \

(gate).p = 1; \

(gate).off_31_16 = (uint) (off) >> 16; \

}

xv6/mmu.h

Tracing a system calls in xv6 ...

But‏we‏haven’t‏told‏the‏hardware‏yet‏(just‏filled‏in‏some‏data‏structures)

This is also done in the boot sequence, in mpmain() for xv6

EECS 343 Operating Systems
Northwestern University

static void

mpmain(void)

{

…

idtinit();

…

}

xv6/main.c

static void

idtinit(void)

{

lidt(idt, sizeof(idt));

}

static inline void

lidt(struct gatedesc *p, int size)

{

volatile ushort pd[3];

pd[0] = size – 1;

pd[1] = (uint) p;

pd[2] = (uint)p >> 16;

asm volatile(“lidt (%0)” : : “r” (pd));

}

Here is where the hardware is told

where to find the Interrupt Descriptor

Table in memory!

Tracing a system calls in xv6 ...

OS‏has‏set‏up‏its‏trap‏handlers,‏now‏let’s‏see‏what‏happens‏when‏a‏
system call is issue via the int instruction

HW does some work for SW, including saving current PC, then OS runs

EECS 343 Operating Systems
Northwestern University

First code the OS runs ...

Push trap number onto the stack, and

call alltraps to do most of the context

saving

.globl vector64

vector64:

pushl $64

jmp alltraps

xv6/vector.sS; generated from

vectors.pl

.globl alltraps

alltraps:

Build trap frame.

pushl %ds

pushl %es

push %fs

push %gs

pushal

Set up data and per-cpu segments.

movw $(SEG_KDATA<<3), %ax

movw %ax, %ds

movw %ax, %es

movw $(SEG_KCPU<<3), %ax

movw %ax, %ds

movw %ax, %gs

Call trap(tf), where tf=%esp

pushl %esp

call trap

addl %4, %esp

xv6/trapasm.S

... code there saves a few more

segments registers onto the stack,

before pushing the remaining general

registers (pushal)

OS then changes descriptor segments

and extra segment registers so that it

can access its own (kernel) memory

Then the C trap handler is called

Tracing a system calls in xv6 ...

Once done with the low-level details, assembly code calls the generic C

trap handler

EECS 343 Operating Systems
Northwestern University

Trap handler handles all type of

interrupts and traps, so first checks the

trap number.

void

trap(struct trapframe *tf)

{

if(tf−>trapno == T_SYSCALL){

if(proc−>killed)

exit();

proc−>tf = tf;

syscall();

if(proc−>killed)

exit();

return;

}

…

xv6/trap.c

‏the‏handles‏,T_SYSCALL‏it’s‏If‏...

system call

... Making sure the process is still there

before and after doing the syscall

Tracing a system calls in xv6 ... almost

Finally, system call number has been pass in %eax

So we use this to call the appropriate routine ...

In our example, sys_read() will be call and the return value is left in

%eax

EECS 343 Operating Systems
Northwestern University

static int (*syscalls[] (void) = {

[SYS_chdir] sys_chdir;

[SYS_close] sys_close;

…

[SYS_read] sys_read;

…

void

syscall(void)

{

int num;

num = proc−>tf−>eax;

if(num >= 0 && num < NELEM(syscalls) && syscalls[num])

proc−>tf−>eax = syscalls[num]();

else {

cprintf("%d %s: unknown sys call %d\n",

proc−>pid, proc−>name, num);

proc−>tf−>eax = −1;

}

}

xv6/syscall.c

Tracing a system calls in xv6

And the return ... Just pop what was pushed before to restore the context
of the running process and issue iret

Similar to a return from procedure call, but also lowers privilege level to
user mode and jumps to instruction after the int that invoke syscall

Now we are back in read()

EECS 343 Operating Systems
Northwestern University

Return falls through to trapret...

.globl trapret

trapret:

popal

popl %gs

popl %fs

popl %es

popl %ds

addl $0x8, %esp # trapno and errcode

iret

xv6/trapasm.S

Yeah!!

Major OS components & abstractions

Processes

Memory

I/O

Secondary storage

File systems

Protection

Accounting

Shells & GUI

Networking

EECS 343 Operating Systems

EECS, Northwestern University 13

A program in execution

– Address space

– Set of registers

To get a better sense of it

– What data do you need to (re-) start a suspended process?

– Where do you keep this data?

– What is the process abstraction I/F offered by the OS

• Create, delete, suspend, resume & clone a process

• Inter-process communication & synchronization

• Create/delete a child process

14

Processes

Call Description

pid = fork() Create a child process identical to the parent

pid = waitpid(pid, &statloc, options) Wait for a child to terminate

s = execve(name, argv, environp) Replace‏a‏process’‏core‏image

exit(status) Terminate process execution & return status

EECS 343 Operating Systems
Northwestern University

15

Memory management

Main memory – the directly accessed storage for CPU

– Programs must be stored in memory to execute

– Memory access is fast (e.g., 60 ns to load/store)‏

• but‏memory‏doesn’t‏survive‏power‏failures

OS must

– Allocate memory space for programs (explicitly and implicitly)‏

– Deallocate space when needed by rest of system

– Maintain mappings from physical to virtual memory

• e.g. through page tables

– Decide how much memory to allocate to each process

– Decide when to remove a process from memory

Call Description

void *sbrk(intptr_t increment) Increments‏program‏data‏space‏by‏‘increment’‏bytes

EECS 343 Operating Systems
Northwestern University

16

I/O

A big chunk of the OS kernel deals with I/O

– Hundreds of thousands of lines in NT

The OS provides a standard interface between

programs & devices

– file system (disk), sockets (network), frame buffer (video)‏

Device drivers are the routines that interact with

specific device types

– Encapsulates device-specific knowledge

• e.g., how to initialize a device, request I/O, handle errors

– Examples: SCSI device drivers, Ethernet card drivers, video

card‏drivers,‏sound‏card‏drivers,‏…

EECS 343 Operating Systems
Northwestern University

17

Secondary storage

Secondary storage (disk, tape) is persistent memory

– Often magnetic media, survives power failures (hopefully)‏

Routines that interact with disks are typically at a very

low level in the OS

– Used‏by‏many‏components‏(file‏system,‏VM,‏…)‏

– Handle scheduling of disk operations, head movement, error

handling, and often management of space on disks

Usually independent of file system

– Although there may be cooperation

– File system knowledge of device details can help optimize

performance

• e.g., place related files close together on disk

EECS 343 Operating Systems
Northwestern University

18

File systems

Secondary storage devices are hard to work with

File system offers a convenient abstraction

– Defines logical abstractions/objects like files & directories

– As well as operations on these objects

A file is the basic unit of long-term storage

A directory is just a special kind of file

– names of other files & metadata‏containing‏…

Interface:

– File/directory creation/deletion, manipulation, copy, lock

Other higher level services: accounting & quotas,

backup, indexing or search, versioning

EECS 343 Operating Systems
Northwestern University

19

Some I/O related system calls

EECS 343 Operating Systems
Northwestern University

Call Description

open(s, flags) Open a file with mode specified in flags

read(fd, buf, n) Read n bytes from an open file into buf

write(fd,buf,n) Write n bytes from an open file into fd

close(fd) Release fd

dup(fd) Duplicate fd

pipe(p) Create a pipe and return fd’s in p

chdir(s) Change directory to directory s

mkdir(s) Create a new directory s

mknod(s, major, minor) Create a device file

fstat(fd) Return info about an open file

link(s1, s2) Create another name (s2) for the file s1

unlink(s) Remove a name

20

Protection

Protection is a general mechanism used throughout

the OS

– All resources needed to be protected

• memory

• processes

• files

• devices

• …

Protection mechanisms help to detect and contain

errors, as well as preventing malicious destruction

EECS 343 Operating Systems
Northwestern University

21

OS made of number of components

– Process & memory management, file system, …‏

– and system programs

• e.g., bootstrap code, the init program, …

Major design issue

– How do we organize all this?

– What are the modules, and where do they exist?

– How do they interact?

Massive software engineering

– Design a large, complex program that:

• performs well, is reliable, is extensible, is backwards compatible,
…

EECS 343 Operating Systems
Northwestern University

OS structure

OS design & implementation

User goals and System goals
– User – convenient to use, easy to learn, reliable, safe, fast

– System – easy to design, implement, & maintain, also flexible,

reliable, error-free & efficient

Affected by choice of hardware, type of system

Clearly conflicting goals, no unique solution

Some other issues complicating this
– Size: Windows XP ~40G SLOC, RH 7.1 17G SLOC

– Concurrency – multiple users and multiple devices

– Potentially hostile users, but some users want to collaborate

– Long expected lives & no clear ideas on future needs

– Portability and support to thousands of device drivers

– Backward compatibility

22EECS 343 Operating Systems
Northwestern University

23

OS design & implementation

A software engineering principle – separate policy &

mechanism

– Policy: What will be done?

– Mechanism: How to do it?

– Why do you care? Max flexibility, easier to change policies

Implementation on high-level language

– Early on – assembly (e.g. MS-DOS – 8088), later Algol

(MCP), PL/1 (MULTICS),‏C‏(Unix,‏…)‏

– Advantages – faster to write, more compact, easier to

maintain & debug, easier to port

– Cost – Size, speed?, but who cares?!

EECS 343 Operating Systems
Northwestern University

The greater part of UNIX software is written in the above-mentioned C language [6]. Early

versions of the operating system were written in assembly language, but during the summer of

1973, it was rewritten in C. The size of the new system is about one third greater than the old.

Since the new system is not only much easier to understand and to modify but also includes

many functional improvements, including multi-programming and the ability to share reentrant

code among several user programs, we considered this increase in size quite acceptable.

…D.‏Ritchie‏and‏K.‏Thompson,‏The‏UNIX‏time-sharing system, CACM 17(7), July 1974

24

Major advantage:
– Cost of module

interactions is low
(procedure call)‏

Disadvantages:
– Hard to understand

– Hard to modify

– Unreliable (no isolation between system modules)‏

– Hard to maintain

Alternative?
– How to organize the OS in order to simplify its design and

implementation?

EECS 343 Operating Systems
Northwestern University

Monolithic design

25

Layering

The traditional approach
– Implement OS as a set of layers

– Each layer shows an‏enhanced‏‘virtual‏mach’‏to layer above

Each layer can be tested and verified independently

Layer Description

5: Job managers Execute‏users’‏programs

4: Device managers Handle device & provide buffering

3: Console manager Implements virtual consoles

2: Page manager Implements virtual memory for each process

1: Kernel Implements a virtual processor for each process

0: Hardware

EECS 343 Operating Systems
Northwestern University

Dijkstra’s THE system

26

Problems with layering

Imposes hierarchical structure

– but real systems have complex interactions

– Strict layering‏isn’t‏flexible‏enough

Poor performance

– Each layer crossing implies overhead

Disjunction between model and reality

– Systems modelled as layers, but not built that way

EECS 343 Operating Systems
Northwestern University

27

Microkernels

Popular in the late 80’s,‏early90‏’s

– Recent resurgence

Goal

– Minimize what goes
in kernel

– Organize rest of OS as user-level processes

This results in

– Better reliability (isolation between components)‏

– Ease of extension and customization

– Poor performance (user/kernel boundary crossings)‏

First microkernel system was Hydra (CMU, 1970)‏

– Chorus (French UNIX-like OS), OS X ,(CMU)‏Mach‏…
(Apple), in some ways NT (Microsoft)‏, L4 (Karlsruhe),‏…

EECS 343 Operating Systems
Northwestern University

Virtual machines

Initial release of OS/360 were strictly batch but users

wanted timesharing

– IBM CP/CMS, later renamed VM/370 (‘79)

Note that timesharing systems provides

(1) multiprogramming & (2) extended (virtual) machine

Essence of VM/370 – separate the two

– Heart of the system (VMM) does multiprogramming &

provides to next layer up multiple exact copies of bare HW

– Each VM can run any OS

Nowadays – Java VM, VMWare

28

370 Bare hardware

VM/370

CMS CMS CMSI/O instruction here

Trap here

System call here

Trap here

EECS 343 Operating Systems
Northwestern University

29

Summary & preview

Today

– The mess under the carpet

– Basic concepts in OS

– OS design has been an evolutionary process

– Structuring OS - a few alternatives, not a clear winner

Next‏…

– Process – the central concept in OS

• Process model and implementation

• What it is, what it does and how it does it

EECS 343 Operating Systems
Northwestern University

