
Processes & Threads

Today
Process concept

Process model

Implementing processes

Multiprocessing once again

Next Time
More of the same 

EECS 343 Operating Systems

Northwestern University

2

The process model

Most computers can do more than one thing at a time

– Hard to keep track of multiple tasks

How do you call each of them?

– Process - program in execution

– a.k.a. job, task

CPU switches back & forth among processes

– Pseudo-parallelism

Multiprogramming on a single CPU

– At any instant of time one CPU means

one executing task, but over time …

– Every processes as if having its own CPU

Process rate of execution – not reproducible

A
B

C
D

A

B

C

D

Four programs

One PC

Context

switch

3

What’s in a process

A process consists of (at least)…

– An address space

– The code of the running program

– The data for the running program

– Execution stack and stack pointer

– Program counter

– A set of general purpose registers

– A set of OS resources including open files, network

connections, …

– Other process metadata (e.g. signal handlers)

EECS 343 Operating Systems

Northwestern University

4

Process creation

Principal events that cause process creation

– System initialization

– Execution of a process creation system

– User request to create a new process

– Initiation of a batch job

In all cases – a process creates another one

– Running user process, system process or batch manager

process

Process hierarchy

– UNIX calls this a "process group"

– No hierarchies in Windows - all created equal (parent does

get a handle to child, but this can be transferred)

EECS 343 Operating Systems

Northwestern University

5

Process creation

Resource sharing

– Parent and children share all resources, a subset or none

Execution

– Parent and children execute concurrently or parent waits

Address space

– Child duplicate of parent or one of its own from the start

UNIX example

– fork system call creates new process; a clone of parent

– Both processes continue execution at the instruction after the

fork

– execve replaces process’ memory space with new one

Why two steps?

EECS 343 Operating Systems

Northwestern University

6

Process identifiers

Every process has a unique ID

Since it’s unique sometimes used to guarantee
uniqueness of other identifiers (tmpnam/tmpfile)

Special process IDs: 0 – swapper, 1 – init

Creating process in Unix – fork
– pid_t fork(void);

– Call once, returns twice

– Returns 0 in child, pid in parent, -1 on error

Child is a copy of the parent

– Expensive task!

EECS 343 Operating Systems

Northwestern University

7

Hierarchy of processes in Solaris

sched is first process (initcode in xv6)

Its children pageout, fsflush, init …

csh (pid = 7778), user logged using telnet

…

EECS 343 Operating Systems

Northwestern University

Sched

pid = 0

init

pid = 1
pageout

pid = 2

fsflush

pid = 3

inetd

pid = 140

dtlogin

pid = 251

telnetdaemon

pid = 7776

Csh

pid = 7778

Firefox

pid = 7785

xemacs

pid = 8105

xsession

pid = 294

std_shel

pid = 340

Csh

pid = 1400

ls

pid = 2123

cat

pid = 2536

8

Process termination

Conditions which terminate processes

Normal exit (voluntary)
– the job is done

Error exit (voluntary)
– oops, missing file?

Fatal error (involuntary)
– Referencing non-existing memory perhaps?

Killed by another process (involuntary)
– “kill -9”

Unix – ways to terminate

Normal – return from main, calling exit (or _exit)

Abnormal – calling abort, terminated by a signal

EECS 343 Operating Systems

Northwestern University

9

Process states

Possible process states (in Unix run ps)

– New – being created

– Ready – waiting to get the processor

– Running – being executed (how many at once?)

– Waiting – waiting for some event to occur

– Terminated – finished executing

Transitions between states

new

ready

admitted
interrupt

running

dispatched

terminatedexit

waiting
I/O or

event wait

I/O or event

completion

EECS 343 Operating Systems

Northwestern University

Which state is a process in

most of the time?

10

Implementing processes

Process

– A program in execution (i.e. more than code, text section)

– Program: passive; process: active

Current activity

– Program counter & content of processor’s registers

– Stack – temporary data

including function

parameters, return

address, …

– Data section – global

variables

– Heap – dynamically

allocated memory

EECS 343 Operating Systems

Northwestern University

Stack

(dynamic allocated mem)

heap

(dynamic allocated mem)

Static data,

global variables

codePC

SP

Stack

segment

Data

segment

Code or text

segment

11

Implementing processes

OS maintains a process table of Process Control

Blocks (PCB)

PCB: information associated with each process

– Process state: ready, waiting, …

– Program counter: next instruction to execute

– CPU registers

– CPU scheduling information: e.g. priority

– Memory-management information

– Accounting information

– I/O status information

– …

EECS 343 Operating Systems

Northwestern University

12

Processes in xv6

EECS 343 Operating Systems

Northwestern University

// Per-process state

struct proc {

char *mem; // Start of process memory (kernel address)

uint sz; // Size of process memory (bytes)

char *kstack; // Bottom of kernel stack for this process

enum procstate state; // Process state

volatile int pid; // Process ID

struct proc *parent; // Parent process

struct trapframe *tf; // Trap frame for current syscall

struct context *context; // Switch here to run process

void *chan; // If non-zero, sleeping on chan

int killed; // If non-zero, have been killed

struct file *ofile[NOFILE]; // Open files

struct inode *cwd; // Current directory

char name[16]; // Process name (debugging)

};

…

enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };

struct {

struct spinlock lock;

struct proc proc[NPROC];

} ptable;

Statically-size process table

EECS343/repos/xv6-rev4.pdf

13

Switch between processes

When a process is running, its hardware state is

loaded on a CPU

When the process is transitioned to waiting, the OS

saves the register values in the PCB

The act of switching

a CPU from one

process to another

– context switch

– ~5 microseconds

Choosing which

process to run next –

scheduling

Context

switch

EECS 343 Operating Systems

Northwestern University

14

State queues

OS maintains a collection of queues that represent the

state of processes in the system

– Typically one queue for each state

– PCBs are queued onto state queues according to current

state of the associated process

– As a process changes state, its PCB is unlinked from one

queue, and linked onto another

There may be many wait queues, one for each type of

wait (devices, timer, message, …)

EECS 343 Operating Systems

Northwestern University

15

PCB and state queues

PCB are data structures

– Dynamically allocated inside OS memory

When a process is created

– OS allocates and initializes a PCB for it

– OS places it on the correct queue

As process computes

– OS moves its PCB from queue to queue

When process terminates

– PCB may hang around for a while (exit code …)

– Eventually OS deallocates its PCB

– Check out xv6/proc.c:exit()

EECS 343 Operating Systems

Northwestern University

16

Process creation in UNIX

#include <stdio.h>

#include <sys/types.h>

int tglob = 6;

int main (int argc, char* argv[])

{

int pid, var;

var = 88;

printf("write to stdout\n");

fflush(stdout);

printf("before fork\n");

…

…

if ((pid = fork()) < 0){

perror("fork failed");

return 1;

} else {

if (pid == 0){

tglob++;

var++;

} else /* parent */

sleep(2);

}

printf("pid = %d, tglob = %d, var

= %d\n",

getpid(), tglob, var);

return 0;

} /* end main */

[fabianb@eleuthera tmp]$./creatone

a write to stdout

before fork

pid = 31848, tglob = 7, var = 89

pid = 31847, tglob = 6, var = 88

EECS 343 Operating Systems

Northwestern University

17

Process creation in UNIX

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

int main (void)

{

pid_t childpid;

pid_t mypid;

mypid = getpid();

childpid = fork();

if (childpid == -1) {

perror("Failed to fork\n");

return 1;

}

if (childpid == 0) /* child code */

printf(“Child %ld, ID = %ld\n”, (long) getpid(), (long) mypid);

else /* parent code */

printf(“Parent %ld, ID = %ld\n”, (long) getpid(), (long) mypid);

return 0;

}

[fabianb@eleuthera tmp]$./badpid 4

Child 3948, ID = 3947

Parent 3947, ID = 3947

EECS 343 Operating Systems

Northwestern University

18

Process creation in UNIX

...

if ((pid = fork()) < 0) {

perror(“fork failed”);

return 1;

} else {

if (pid == 0) {

printf(“Child before exec … now the ls output\n”);

execlp("/bin/ls", "ls", NULL);

} else {

wait(NULL); /* block parent until child terminates */

printf("Child completed\n");

return 0;

}

}

} /* end main */

[fabianb@eleuthera tmp]$./creattwo

Child before exec ... now the ls output

copy_shell creatone.c~ p3id skeleton

copy_shell.tar creattwo p3id.c uwhich.tar

creatone creattwo.c p3id.c~

creatone.c creattwo.c~

Child completed

EECS 343 Operating Systems

Northwestern University

19

Faster creation

The semantics of fork() says that the child’s address

space is a copy of the parent’s

Expensive (i.e. slow) implementation

– Allocate physical memory for the new address space

– Copy one into the other

– Set up child’s page tables to map to new address space

To make it faster …

EECS 343 Operating Systems

Northwestern University

20

Faster creation …

To make it faster

– vfork() - change problem definition a bit

• “child address space is a copy of the parent’s” -> “child

address space *is* the parent’s”

• Promise the child won’t modify the address space before

doing an exec

– COW – copy on write

• Retains the semantics

• Copy only what’s necessary

– Initialize page tables to the same mappings as parent’s and

set both parents and child page tables to read-only

– If anybody tries to write – page fault

» Allocate new physical page for child

» Copy content, mark entries as writable, restart process

EECS 343 Operating Systems

Northwestern University

21

UNIX shells

EECS 343 Operating Systems

Northwestern University

int

main(int argc, char **argv)

{

while (1) {

printf(“% “);

char *cmd = get_next_cmd();

int pid = fork();

if (pid == 0) {

exec(cmd);

panic(“exec failed!”);

} else {

wait(pid);

}

}

}

Xv6/sh.c has a bit but not much more!

22

Summary

Today

– The process abstraction

– Its implementation

• How they are represented

• How the CPU is scheduled across processes

• …

– Processes in Unix

– Perhaps the most important part of the class

Coming up

– Threads & synchronization

EECS 343 Operating Systems

Northwestern University

