Processes & Threads

Today

® Process concept

® Process model

® Implementing processes

® Multiprocessing once again

Next Time
® More of the same ©

The process model

» Most computers can do more than one thing at a time
— Hard to keep track of multiple tasks

» How do you call each of them?
— Process - program in execution
— a.k.a. job, task

» CPU switches back & forth among processes
— Pseudo-parallelism

» Multiprogramming on a single CPU

— At any instant of time one CPU means
one executing task, but over time ...

— Every processes as if having its own CPU
» Process rate of execution — not reproducible g | Comext

switch

Four programs

-O

°1

One PC

EECS 343 Operating Systems \4
Northwestern University

What's in a process

» A process consists of (at least)...
— An address space
— The code of the running program
— The data for the running program
— Execution stack and stack pointer
— Program counter
— A set of general purpose registers

— A set of OS resources including open files, network
connections, ...

— Other process metadata (e.g. signal handlers)

EECS 343 Operating Systems
Northwestern University

Process creation

* Principal events that cause process creation
— System initialization
— Execution of a process creation system
— User request to create a new process
— Initiation of a batch job

* In all cases — a process creates another one
— Running user process, system process or batch manager
process
* Process hierarchy
— UNIX calls this a "process group"

— No hierarchies in Windows - all created equal (parent does
get a handle to child, but this can be transferred)

EECS 343 Operating Systems
Northwestern University

Process creation

» Resource sharing
— Parent and children share all resources, a subset or none

» EXxecution
— Parent and children execute concurrently or parent waits

» Address space
— Child duplicate of parent or one of its own from the start

* UNIX example
— fork system call creates new process; a clone of parent

— Both processes continue execution at the instruction after the
fork

— execve replaces process’ memory space with new one

Why two steps?

EECS 343 Operating Systems
Northwestern University

Process identifiers

» Every process has a unique ID

» Since it's unique sometimes used to guarantee
uniqgueness of other identifiers (tmpnam/tmpfile)

» Special process IDs: 0 — swapper, 1 — init

» Creating process in Unix — fork
- pid t fork(void);
— Call once, returns twice
— Returns 0 in child, pid in parent, -1 on error

» Child is a copy of the parent
— EXxpensive task!

EECS 343 Operating Systems
Northwestern University

Hierarchy of processes in Solaris

* sched s first process (initcode In Xv6)
» |ts children pageout, fsflush, init ...

+ csh (pid = 7778), user logged using telnet
pia =

L
pid = 2
inetd dtlogin
pid = 140 pid = 25

elnetdaemo Xsession
nid = 7776 pid = 294

std_shel
pid = 340

EECS 343 Operating Systems
Northwestern University

Process termination

Conditions which terminate processes

* Normal exit (voluntary)

— thejob is done
» Error exit (voluntary)

— 0ops, missing file?
» Fatal error (involuntary)

— Referencing non-existing memory perhaps?
» Killed by another process (involuntary)

“kill -97

Unix — ways to terminate
* Normal — return from main, calling exit (or _exit)

» Abnormal — calling abort, terminated by a signal

EECS 343 Operating Systems
Northwestern University

Process states

» Possible process states (in Unix run ps)
— New — being created
— Ready — waiting to get the processor
— Running — being executed (how many at once?)
— Waiting — waiting for some event to occur
— Terminated — finished executing

» Transitions between states

interrupt

exit

dispatched

admitted

terminated
®O

1/O or
event wait

I/O or event
completion

Which state is a process in
most of the time?

EECS 343 Operating Systems
Northwestern University

Implementing processes

* Process
— A program in execution (i.e. more than code, text section)
— Program: passive; process: active

* Current activity

— Program counter & content of processor’s registers
— Stack — temporary data

Including function — } Snck
parameters, return (dynamic allocated mem)| | segment
SP >
address, ... \%
— Data section — global 1
: heap
variables (dynamic allocated mem) Data
— Heap — dynamically Static data, | segment
allocated memory global variables _
PC —> code | Code or text
segment

EECS 343 Operating Systems
Northwestern University

Implementing processes

» OS maintains a process table of Process Control
Blocks (PCB)

+ PCB: information associated with each process
— Process state: ready, waiting, ...
— Program counter: next instruction to execute
— CPU regqisters
— CPU scheduling information: e.g. priority
— Memory-management information e
— Accounting information program counter
— 1/O status information registers

process

in
pointer Stata

memory limits

list of open files

EECS 343 Operating Systems
Northwestern University

Processes in xv6

enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };

// Per-process state
struct proc {

char *mem; // Start of process memory (kernel address)
uint sz; // Size of process memory (bytes)
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
volatile int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // Switch here to run process
void *chan; // 1If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)
}i
Stzzzzci{: spinlock lock; <[Statically-size process table]

struct proc proc[NPROC] ;

} ptable;
EECS343/repos/xv6-rev4.pdf

EECS 343 Operating Systems
Northwestern University

Switch between processes

* When a process is running, its hardware state is
loaded on a CPU

» When the process is transitioned to waiting, the OS
saves the register values in the PCB

* The act of switching

a C P U fro m O n e process P, | operating system process P,
process to another oo
— context switch Contert { [e }
switch . e
_ ~5 m ICrosecondS | reload state from PCB, I
« Choosing which
process 1o run next —] T
Schedu“ng | save state:into PCB, | }idle
| reload state from PCB, |

b
executing I¥

EECS 343 Operating Systems
Northwestern University

State queues

» OS maintains a collection of queues that represent the
state of processes in the system
— Typically one queue for each state

— PCBs are queued onto state queues according to current
state of the associated process

— As a process changes state, its PCB is unlinked from one
gueue, and linked onto another

» There may be many wait queues, one for each type of
wait (devices, timer, message, ...)

EECS 343 Operating Systems
Northwestern University

PCB and state queues

» PCB are data structures
— Dynamically allocated inside OS memory

* When a process is created
— OS allocates and initializes a PCB for it
— OS places it on the correct queue

* AS process computes
— OS moves its PCB from queue to queue

» When process terminates
— PCB may hang around for a while (exit code ...)
— Eventually OS deallocates its PCB
— Check out xv6/proc.c:exit()

EECS 343 Operating Systems
Northwestern University

Process creation in UNIX

#include <stdio.h> "
#include <sys/types.h> if ((pid = fork()) < 0){

perror ("fork failed");
int tglob = 6; return 1;
} else {
int main (int argc, char* argv[]) if (pid == 0){
{ tglob++;
int pid, var; var++;
} else /* parent */
var = 88; sleep(2) ;
printf ("write to stdout\n"); }
fflush (stdout) ; printf ("pid = %d, tglob = %d, var
printf ("before fork\n"); = %d\n",
getpid(), tglob, var);
return O;

} /* end main */

[fabianbReleuthera tmp]$./creatone
a write to stdout
before fork

pid = 31848, tglob
pid = 31847, tglob

7, wvar 89
6, var = 88

EECS 343 Operating Systems
Northwestern University

Process creation in UNIX

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main (void)

{ [fabianb@eleuthera tmpl$./badpid 4
pid t childpid; Child 3948, ID = 3947
pid _t mypid; Parent 3947, ID = 3947

mypid = getpid();
childpid = fork();

if (childpid == -1) {
perror ("Failed to fork\n");
return 1;

if (childpid == 0) /* child code */

printf (“Child %1d, ID = %1d\n”, (long) getpid(), (long) mypid) ;
else /* parent code */

printf (“Parent %1d, ID = %1d\n”, (long) getpid(), (long) mypid) ;
return 0O;

EECS 343 Operating Systems
Northwestern University

Process creation in UNIX

if ((pid = fork()) < 0) {
perror (“fork failed”) ;
return 1;
} else {
if (pid == 0) {
printf (“Child before exec .. now the ls output\n”);
execlp("/bin/1ls", "ls", NULL);
} else {
wait (NULL); /* block parent until child terminates */
printf ("Child completed\n") ;
return O;

}
} [fabianb@eleuthera tmp]$./creattwo
. Child before exec ... now the 1ls output
} /* end main */ copy_shell creatone.c~ p3id skeleton

copy_shell.tar creattwo p3id.c wuwhich. tar
creatone creattwo.c p3id.c~
creatone.c creattwo.c~
Child completed

EECS 343 Operating Systems
Northwestern University

Faster creation

» The semantics of fork() says that the child’'s address
space is a copy of the parent’'s

» EXxpensive (i.e. slow) implementation
— Allocate physical memory for the new address space
— Copy one into the other
— Set up child’s page tables to map to new address space

» To make it faster ...

EECS 343 Operating Systems
Northwestern University

Faster creation ...

» To make it faster

— vfork() - change problem definition a bit

 “child address space is a copy of the parent’s” -> “child
address space *is* the parent’s”

» Promise the child won’t modify the address space before
doing an exec

— COW - copy on write
* Retains the semantics

» Copy only what’s necessary

— Initialize page tables to the same mappings as parent’s and
set both parents and child page tables to read-only
— If anybody tries to write — page fault
» Allocate new physical page for child
» Copy content, mark entries as writable, restart process

EECS 343 Operating Systems
Northwestern University

UNIX shells

int
main (int argc, char **argv)
{
while (1) {
printf (“% V) ;
char *cmd = get next cmd();
int pid = fork();
if (pid == 0) {
exec (cmd) ;
panic (“exec failed!”);
} else {
wait (pid) ;

Xv6/sh.c has a bit but not much more!

EECS 343 Operating Systems
Northwestern University

Summary

+ Today
— The process abstraction

— Its implementation
» How they are represented
* How the CPU is scheduled across processes

— Processes in Unix

— Perhaps the most important part of the class
» Coming up

— Threads & synchronization

EECS 343 Operating Systems
Northwestern University

