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The process model

Most computers can do more than one thing at a time

– Hard to keep track of multiple tasks

How do you call each of them?

– Process - program in execution 

– a.k.a. job, task

CPU switches back & forth among processes

– Pseudo-parallelism

Multiprogramming on a single CPU

– At any instant of time one CPU means 

one executing task, but over time …

– Every processes as if having its own CPU

Process rate of execution – not reproducible
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What’s in a process

A process consists of (at least)…

– An address space

– The code of the running program

– The data for the running program

– Execution stack and stack pointer

– Program counter

– A set of general purpose registers

– A set of OS resources including open files, network 

connections, … 

– Other process metadata (e.g. signal handlers)
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Process creation

Principal events that cause process creation

– System initialization

– Execution of a process creation system 

– User request to create a new process

– Initiation of a batch job

In all cases – a process creates another one

– Running user process, system process or batch manager 

process

Process hierarchy 

– UNIX calls this a "process group"

– No hierarchies in Windows - all created equal (parent does 

get a handle to child, but this can be transferred)
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Process creation

Resource sharing

– Parent and children share all resources, a subset or none

Execution

– Parent and children execute concurrently or parent waits

Address space

– Child duplicate of parent or one of its own from the start

UNIX example

– fork system call creates new process; a clone of parent

– Both processes continue execution at the instruction after the 

fork

– execve replaces process’ memory space with new one

Why two steps?
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Process identifiers

Every process has a unique ID

Since it’s unique sometimes used to guarantee 
uniqueness of other identifiers (tmpnam/tmpfile)

Special process IDs: 0 – swapper, 1 – init

Creating process in Unix – fork
– pid_t fork(void);

– Call once, returns twice

– Returns 0 in child, pid in parent, -1 on error

Child is a copy of the parent

– Expensive task!

EECS 343 Operating Systems

Northwestern University



7

Hierarchy of processes in Solaris

sched is first process (initcode in xv6)

Its children pageout, fsflush, init …

csh (pid = 7778), user logged using telnet

…
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Process termination

Conditions which terminate processes

Normal exit (voluntary)
– the job is done

Error exit (voluntary)
– oops, missing file?

Fatal error (involuntary)
– Referencing non-existing memory perhaps?

Killed by another process (involuntary) 
– “kill -9”

Unix – ways to terminate

Normal – return from main, calling exit (or _exit)

Abnormal – calling abort, terminated by a signal
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Process states

Possible process states (in Unix run ps)

– New – being created

– Ready – waiting to get the processor

– Running – being executed (how many at once?)

– Waiting – waiting for some event to occur

– Terminated – finished executing

Transitions between states

new

ready

admitted
interrupt

running

dispatched

terminatedexit

waiting
I/O or 

event wait

I/O or event 

completion
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Implementing processes

Process

– A program in execution (i.e. more than code, text section)

– Program: passive; process: active

Current activity

– Program counter & content of processor’s registers

– Stack – temporary data 

including function 

parameters, return 

address, …

– Data section – global 

variables

– Heap – dynamically 

allocated memory
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Implementing processes

OS maintains a process table of Process Control 

Blocks (PCB)

PCB: information associated with each process

– Process state: ready, waiting, …

– Program counter: next instruction to execute

– CPU registers

– CPU scheduling information: e.g. priority

– Memory-management information

– Accounting information

– I/O status information

– …
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Processes in xv6
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// Per-process state

struct proc {

char *mem; // Start of process memory (kernel address)

uint sz; // Size of process memory (bytes)

char *kstack; // Bottom of kernel stack for this process

enum procstate state; // Process state

volatile int pid; // Process ID

struct proc *parent; // Parent process

struct trapframe *tf; // Trap frame for current syscall

struct context *context; // Switch here to run process

void *chan; // If non-zero, sleeping on chan

int killed; // If non-zero, have been killed

struct file *ofile[NOFILE]; // Open files

struct inode *cwd; // Current directory

char name[16]; // Process name (debugging)

};

…

enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };

struct {

struct spinlock lock;

struct proc proc[NPROC];

} ptable;

Statically-size process table

EECS343/repos/xv6-rev4.pdf
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Switch between processes

When a process is running, its hardware state is 

loaded on a CPU

When the process is  transitioned to waiting, the OS 

saves the register values in the PCB

The act of switching 

a CPU from one 

process to another

– context switch 

– ~5 microseconds

Choosing which 

process to run next –

scheduling

Context 

switch
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State queues

OS maintains a collection of queues that represent the 

state of processes in the system

– Typically one queue for each state

– PCBs are queued onto state queues according to current 

state of the associated process

– As a process changes state, its PCB is unlinked from one 

queue, and linked onto another

There may be many wait queues, one for each type of 

wait (devices, timer, message, …)
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PCB and state queues

PCB are data structures

– Dynamically allocated inside OS memory

When a process is created

– OS allocates and initializes a PCB for it

– OS places it on the correct queue

As process computes

– OS moves its PCB from queue to queue

When process terminates

– PCB may hang around for a while (exit code …)

– Eventually OS deallocates its PCB

– Check out xv6/proc.c:exit()
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Process creation in UNIX

#include <stdio.h> 

#include <sys/types.h> 

int tglob = 6; 

int main (int argc, char* argv[]) 

{ 

int pid, var; 

var = 88; 

printf("write to stdout\n"); 

fflush(stdout); 

printf("before fork\n");

…

… 

if ((pid = fork()) < 0){

perror("fork failed"); 

return 1; 

} else {  

if (pid == 0){ 

tglob++;  

var++; 

} else  /* parent */  

sleep(2);  

}  

printf("pid = %d, tglob = %d, var

= %d\n", 

getpid(), tglob, var); 

return 0;   

} /* end main */

[fabianb@eleuthera tmp]$ ./creatone 

a write to stdout

before fork

pid = 31848, tglob = 7, var = 89

pid = 31847, tglob = 6, var = 88

EECS 343 Operating Systems

Northwestern University



17

Process creation in UNIX

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h> 

int main (void)

{

pid_t childpid;

pid_t mypid;

mypid = getpid();

childpid = fork();

if (childpid == -1) {

perror("Failed to fork\n");

return 1;

}

if (childpid == 0) /* child code */

printf(“Child %ld, ID = %ld\n”, (long) getpid(), (long) mypid); 

else /* parent code */

printf(“Parent %ld, ID = %ld\n”, (long) getpid(), (long) mypid);

return 0;

}

[fabianb@eleuthera tmp]$ ./badpid 4

Child 3948, ID = 3947

Parent 3947, ID = 3947
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Process creation in UNIX

...

if ((pid = fork()) < 0) {

perror(“fork failed”);

return 1;

} else {

if (pid == 0) {

printf(“Child before exec … now the ls output\n”);

execlp("/bin/ls", "ls", NULL);

} else {

wait(NULL); /* block parent until child terminates */

printf("Child completed\n");

return 0;

}

}  

} /* end main */

[fabianb@eleuthera tmp]$ ./creattwo 

Child before exec ... now the ls output

copy_shell      creatone.c~  p3id    skeleton

copy_shell.tar  creattwo     p3id.c  uwhich.tar

creatone        creattwo.c   p3id.c~

creatone.c      creattwo.c~  

Child completed
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Faster creation

The semantics of fork() says that the child’s address 

space is a copy of the parent’s

Expensive (i.e. slow) implementation

– Allocate physical memory for the new address space

– Copy one into the other

– Set up child’s page tables to map to new address space

To make it faster …
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Faster creation …

To make it faster

– vfork()  - change problem definition a  bit

• “child address space is a copy of the parent’s” -> “child 

address space *is* the parent’s”

• Promise the child won’t modify the address space before 

doing an exec

– COW – copy on write

• Retains the semantics

• Copy only what’s necessary 

– Initialize page tables to the same mappings as parent’s and 

set both parents and child page tables to read-only

– If anybody tries to write – page fault

» Allocate new physical page for child

» Copy content, mark entries as writable, restart process
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UNIX shells
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int

main(int argc, char **argv)

{

while (1) {

printf(“% “);

char *cmd = get_next_cmd();

int pid = fork();

if (pid == 0) {

exec(cmd);

panic(“exec failed!”);

} else {

wait(pid);

}

}

}

Xv6/sh.c has a bit but not much more! 
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Summary

Today

– The process abstraction

– Its implementation

• How they are represented

• How the CPU is scheduled across processes

• …

– Processes in Unix

– Perhaps the most important part of the class

Coming up 

– Threads & synchronization
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