
Threads

Today
Why threads?

Thread model & implementation

…

Next time
CPU Scheduling

2

Concurrency and parallelism

Many programs need to perform mostly independent

tasks that do not need to be serialized, e.g.

– Web server – multiple requests from clients, updating carts,

checking credit card, put a web page reply together, …

– Text editor – update screen, save file just in case, do spell

checking, …

– Web client – multiple request for each piece of a site

– Parallel program – large matrix multiplication in blocks

– …

Concurrency and parallelism
– Concurrency – what‟s possible with infinite processors; for

convenience

– Parallelism – your actual degree of parallel exec.; for
performance

EECS 343 Operating Systems

Northwestern University

How can we get this?

Given the process abstraction as we know it

– fork several processes

– cause each to map to the same address space to share data

• see the shmget() system call for one way to do this (kind of)

Not very efficient

– Space: PCB, page tables, etc.

– Time: creating OS structures, fork and copy addr space, etc.

Some equally bad alternatives for some of the cases:

– Entirely separate web servers

– Finite-state machine or event-driven – a single process and

asynchronous programming (non-blocking I/O)

3EECS 343 Operating Systems

Northwestern University

EECS 343 Operating Systems

Northwestern University

4

The problem with processes …

A process consists of (at least):

– An address space

– The code for the running program

– The data for the running program

– An execution stack and stack pointer (SP)

• Traces state of procedure calls made

– The program counter (PC), indicating the next instruction

– A set of general-purpose processor registers and their values

– A set of OS resources

• open files, network connections, sound channels, …

A lot of concepts bundled together!

EECS 343 Operating Systems

Northwestern University

5

The problem with processes

In each examples

– Everybody wants to run the same code

– … wants to access the same data

– … has the same privileges

– … uses the same resources (open files, net connections, etc.)

But you‟d like to have multiple HW execution states:

– An execution stack & SP

– PC indicating the next instruction

– A set of general-purpose processor registers & their values

6

The thread model

Traditionally

– Process = 1 address space + 1 thread of execution

– Process = resource grouping + execution stream

• Resources: program text, data, open files, child processes,

pending alarms, accounting info, …

Key idea with threads

– Separate the concept of a process (address space, etc.)

– From that of a minimal “thread of control” (execution state)

– Threads are concurrent executions sharing an address space

(and some OS resources)

EECS 343 Operating Systems

Northwestern University

7

Threads and processes

Most modern OS‟s support two entities

– Process – defines the address space and general process

attributes

– Thread – defines a sequential execution stream within a

process

A thread is bound to a process/address space

– Address space provides isolation

• If you can‟t name it, you can‟t use it (read or write)

– So, communication between processes is difficult (you have to

involve the OS), but sharing data between threads is cheap

Threads become the unit of scheduling

– Process / address spaces are just containers where threads

execute

EECS 343 Operating Systems

Northwestern University

8

Benefits of threads

Simpler programming model when application has

multiple, concurrent activities

– Code that deals with asynchronous events can be written with

a separate thread to handle each using a synchronous

programming model

Easy/fast to communicate between threads than

processes

Easy/cheaper to create/destroy than processes since

they have no resources attached to them

With good mix of CPU and I/O bound activities, better

performance

Even better if you have multiple CPUs

EECS 343 Operating Systems

Northwestern University

9

The classical thread model

Threads and processes

Threads states ~ processes states

Threads are not as independent as processes
– They all share the same address space so they all can read,

write or delete each other‟s stacks

– There‟s no protection between threads (Should they be?)

– Also share set of open files, child processes, alarms, signals,
etc

• If one thread opens a file, the file is visible to the others

EECS 343 Operating Systems

Northwestern University

Kernel space

User space

Kernel space

User space

Three traditional

single-threaded

processes
One multithreaded

process

10

The classical thread model

Remember the per thread items
– Program counter, registers, stack, state

– Each thread‟s stack contains one frame

for each procedure called but not yet

returned from

Typical thread calls

EECS 343 Operating Systems

Northwestern University

Thread call Description

thread_create Create a new thread

thread _exit Terminate the calling thread

thread_join Wait for a specific thread to exit

thread_yield Release the CPU to let another thread run

Kernel space

User space

11

A simple example

void do_wrap_up(int one, int
another)

{

int total;

total = one + another;

printf(“wrap up: one %d, another
%d and total %d\n”, one,
another, total);

}

int main (int argc, char *argv[])

{

do_one_thing(&r1);

do_another_thing(&r2);

do_wrap_up(r1,r2);

return 0;

} /* main! */

int r1 = 0, r2 = 0;

void do_one_thing(int *ptimes)

{

int i, j, k;

for (i = 0; i < 4; i++) {

printf(“doing one\n”);

for (j = 0; j < 1000; j++)

x = x + i;

(*ptimes)++;

} /* do_one_thing! */

void do_another_thing(int *ptimes)

{

int i, j, k;

for (i = 0; i < 4; i++) {

printf(“doing another\n”);

for (j = 0; j < 1000; j++)

x = x + i;

(*ptimes)++;

} /* do_another_thing! */

EECS 343 Operating Systems

Northwestern University

12

Registers SP

PC

GP0

GP1

…

Layout in memory & threading

Identity

Resources

PID

UID

GID

…

Open Files

Locks

Sockets

…

do_one_thing()

i, j, k

main()

main()

--

--

do_one_thing()

--

--

do_another_thing()

--

--

Lowest address

Stack

Text

Data

Heap

Highest address

r1

r2

Virtual Address Space

Thread 1

Registers SP

PC

GP0

GP1

…

do_another_thing()

i, j, k

Thread 2

Stack

EECS 343 Operating Systems

Northwestern University

13

User-level threads

Kernel unaware of threads – no modification required

Run-time system or thread manager

– A collection of procedures

– No need to manipulate address space (only kernel can do)

Each process needs its own thread table

– Run-time system multiplexes user-level threads on top of

“virtual processors”

EECS 343 Operating Systems

Northwestern University

Kerrnel

Process Thread

Thread table

Process table

User-level

thread library

14

User-level threads

Pros

– Thread switch is very fast

– No need for kernel support

– Customized scheduler

– Each process ~ virtual processor

Cons - „real world‟ factors
– Multiprogramming, I/O, Page faults

– Blocking system calls? Can you check?

EECS 343 Operating Systems

Northwestern University

Kerrnel

What you see …

And what the kernel sees …

15

Kernel-level threads

No need for runtime system

No wrapper for system calls

But … creating threads is more expensive

– Recycle? Mark a destroy thread as not runnable and reuse it

later to save overhead

And system calls are expensive

EECS 343 Operating Systems

Northwestern University

Kerrnel

Thread

Thread tableProcess table

Process

16

Hybrid thread implementations

Trying to get the best of both worlds

Multiplexing user-level threads onto kernel- level

threads

One popular variation – two-level model (you can

bound a user-level thread to a kernel one)

EECS 343 Operating Systems

Northwestern University

Kerrnel

User-level

thread

Kernel thread

Process

17

Processes and threads’ performance

Creation time Process User-level

threads

LWP/Kernel-

level threads

SPARCstation 2, Solaris 1700μsec 52μsec

(6.7x faster)

350μsec

(4.8x faster)

700MHz Pentium, Linux

2.2.*

251μsec

fork/exit

4.5μsec

create/join

(21x faster)

94μsec

create/join

(2.6x faster)

EECS 343 Operating Systems

Northwestern University

18

Scheduler activations*

Goal

– Functionality of kernel threads &

– Performance of user-level threads

– Without special non-blocking system calls

Problem : needed control & scheduling information

distributed bet/ kernel & each app‟s address space

Basic idea

– When kernel finds out a thread is about to block, upcalls the

runtime system (activates it at a known starting address)

– When kernel finds out a thread can run again, upcalls again

– Run-time system can now decide what to do

Pros – fast & smart

Cons – upcalls violate layering approach

*Anderson et al., “Scheduler Activations: effective

Kernel Support for the User-level Management of

Parallelism,” SOSP, Oct. 1991.
EECS 343 Operating Systems

Northwestern University

19

Thread libraries

Pthreads – POSIX standard (IEEE 1003.1c) API for

thread creation & synchronization

Win32 threads – slightly different (more complex API)

Java threads

– Managed by the JVM

– May be created by

• Extending Thread class

• Implementing the Runnable interface

– Implementation model depends on OS (1-to-1 in Windows but

many-to-many in early Solaris)

EECS 343 Operating Systems

Northwestern University

20

POSIX threads

Pthreads – POSIX standard (IEEE 1003.1c)

– API specifies behavior of the thread library, implementation is

up to the developers of the library

– Common in UNIX OSs (Solaris, Linux, Mac OS X)

EECS 343 Operating Systems

Northwestern University

Thread call Description

Pthread_create Create a new thread

Pthread _exit Terminate the calling thread

Pthread_join Wait for a specific thread to exit

Phtread_yield Release the CPU to let another thread run

Pthread_attr_init Create and initialize a thread‟s attribute

structure

Pthread_attr_destroy Remove a thread‟s attribute structure

21

Multithreaded C/POSIX

/* shared by thread(s) */

int sum;

/* runner: the thread */

void *runner(void *param)

{

int i, upper = atoi(param);

sum = 0;

for (i = 1; i < upper; i++)

sum += 1;

pthread_exit(0);

} /* runner! */

int main (int argc, char *argv[])

{

pthread_t tid; /* thread id */

/* set of thread attrs */

pthread_attr_t attr;

if (argc != 2 || atoi(argv[1]) < 0) {

fprintf (stderr, "usage: %s
<int>\n", argv[0]);

exit(1);

}

/* get default attrs */

pthread_attr_init(&attr);

pthread_create(&tid, &attr, runner,
argv[1]);

/* wait to exit */

pthread_join(tid, NULL);

printf("sum = %d\n", sum);

exit(0);

} /* main! */

 


N

i
isum

0

EECS 343 Operating Systems

Northwestern University

22

Complications with threads …

Semantics of fork() & exec() system calls
– Duplicate all threads or single-threaded child?

– Are you planning to invoke exec()?

Other system calls (closing a file, lseek, …?)

Signal handling, handlers and masking
1. Send signal to each thread – too expensive

2. A master thread per process – asymmetric threads

3. Send signal to an arbitrary thread (control C?)

4. Use heuristics to pick thread (SIGSEGV & SIGILL – caused
by thread, SIGTSTP & SIGINT – caused by external events)

5. Create a thread to handle each signal – situation specific

Stack growth

EECS 343 Operating Systems

Northwestern University

23

Threads and global variables

– An example problem

– Prohibit global variables? Legacy code?

– Assign each thread its own global variables

• Allocate a chunk of memory and pass it around

• Create new library calls to create/set/destroy global variables

Single-threaded to multithreaded

EECS 343 Operating Systems

Northwestern University

24

Single-threaded to multithreaded

Many library procedures are not reentrant

Re-entrant: able to handle a second call while not

done with previous one

e.g. assemble msg in a buffer before sending it

Solutions

– Rewrite library?

– Wrappers for each call?

EECS 343 Operating Systems

Northwestern University

25

Summary

You really want multiple threads per address space

Kernel-level threads are more efficient than processes,

but not cheap

– All operations require a kernel call and parameter verification

User-level threads are:

– Really fast

– Great for common-case operations, but

– Can suffer in uncommon cases due to kernel obliviousness

Scheduler activations are a good answer

Next time

– Multiple processes in the ready queue, but only one processor

… which you should you pick next?

EECS 343 Operating Systems

Northwestern University

