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Concurrency and parallelism 

Many programs need to perform mostly independent 

tasks that do not need to be serialized, e.g.

– Web server – multiple requests from clients, updating carts, 

checking credit card, put a web page reply together, …

– Text editor – update screen, save file just in case, do spell 

checking, …

– Web client – multiple request for each piece of a site

– Parallel program – large matrix multiplication in blocks

– …

Concurrency and parallelism
– Concurrency – what‟s possible with infinite processors; for 

convenience

– Parallelism – your actual degree of parallel exec.; for 
performance
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How can we get this?

Given the process abstraction as we know it

– fork several processes

– cause each to map to the same address space to share data

• see the shmget() system call for one way to do this (kind of)

Not very efficient

– Space:  PCB, page tables, etc.

– Time: creating OS structures, fork and copy addr space, etc.

Some equally bad alternatives for some of the cases:

– Entirely separate web servers

– Finite-state machine or event-driven – a single process and 

asynchronous programming (non-blocking I/O) 
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The problem with processes …

A process consists of (at least):

– An address space

– The code for the running program

– The data for the running program

– An execution stack and stack pointer (SP)

• Traces state of procedure calls made

– The program counter (PC), indicating the next instruction

– A set of general-purpose processor registers and their values

– A set of OS resources

• open files, network connections, sound channels, …

A lot of concepts bundled together!
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The problem with processes

In each examples

– Everybody wants to run the same code

– … wants to access the same data

– … has the same privileges

– … uses the same resources (open files, net connections, etc.)

But you‟d like to have multiple HW execution states:

– An execution stack & SP

– PC indicating the next instruction

– A set of general-purpose processor registers & their values
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The thread model

Traditionally

– Process = 1 address space + 1 thread of execution

– Process = resource grouping + execution stream

• Resources: program text, data, open files, child processes, 

pending alarms, accounting info, …

Key idea with threads

– Separate the concept of a process (address space, etc.)

– From that of a minimal “thread of control” (execution state)

– Threads are concurrent executions sharing an address space 

(and some OS resources)
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Threads and processes

Most modern OS‟s support two entities

– Process – defines the address space and general process 

attributes

– Thread – defines a sequential execution stream within a 

process

A thread is bound to a process/address space

– Address space provides isolation

• If you can‟t name it, you can‟t use it (read or write)

– So, communication between processes is difficult (you have to 

involve the OS), but sharing data between threads is cheap

Threads become the unit of scheduling

– Process / address spaces are just containers where threads 

execute
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Benefits of threads

Simpler programming model when application has 

multiple, concurrent activities

– Code that deals with asynchronous events can be written with 

a separate thread to handle each using a synchronous 

programming model

Easy/fast to communicate between threads than 

processes

Easy/cheaper to create/destroy than processes since 

they have no resources attached to them

With good mix of CPU and I/O bound activities, better 

performance

Even better if you have multiple CPUs
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The classical thread model

Threads and processes

Threads states ~ processes states

Threads are not as independent as processes
– They all share the same address space so they all can read, 

write or delete each other‟s stacks

– There‟s no protection between threads (Should they be?)

– Also share set of open files, child processes, alarms, signals, 
etc

• If one thread opens a file, the file is visible to the others
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User space

Kernel space

User space

Three traditional 

single-threaded 

processes
One multithreaded

process
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The classical thread model

Remember the per thread items
– Program counter, registers, stack, state

– Each thread‟s stack contains one frame 

for each procedure called but not yet 

returned from

Typical thread calls
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Thread call Description

thread_create Create a new thread

thread _exit Terminate the calling thread

thread_join Wait for a specific thread to exit

thread_yield Release the CPU to let another thread run

Kernel space

User space
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A simple example

void do_wrap_up(int one, int
another)

{ 

int total;

total = one + another;

printf(“wrap up: one %d, another 
%d and total %d\n”, one, 
another, total);

}

int main (int argc, char *argv[])

{

do_one_thing(&r1);

do_another_thing(&r2);

do_wrap_up(r1,r2);

return 0;

} /* main! */

int r1 = 0, r2 = 0;

void do_one_thing(int *ptimes)

{ 

int i, j, k;

for (i = 0; i < 4; i++) {

printf(“doing one\n”);

for (j = 0; j < 1000; j++)     

x = x + i;

(*ptimes)++;

} /* do_one_thing! */

void do_another_thing(int *ptimes)

{ 

int i, j, k;

for (i = 0; i < 4; i++) {

printf(“doing another\n”);

for (j = 0; j < 1000; j++)     

x = x + i;

(*ptimes)++;

} /* do_another_thing! */
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Registers SP

PC

GP0

GP1

…

Layout in memory & threading

Identity

Resources

PID

UID

GID

…

Open Files

Locks

Sockets

…

do_one_thing()

i, j, k

_______________________

main()

main()

--

--

do_one_thing()

--

--

do_another_thing()

--

--

Lowest address

Stack

Text

Data

Heap

Highest address

r1

r2

Virtual Address Space

Thread 1

Registers SP

PC

GP0

GP1

…

do_another_thing()

i, j, k

Thread 2

Stack
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User-level threads

Kernel unaware of threads – no modification required

Run-time system or thread manager

– A collection of procedures

– No need to manipulate address space (only kernel can do)

Each process needs its own thread table

– Run-time system multiplexes user-level threads on top of 

“virtual processors”
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Kerrnel

Process Thread

Thread table

Process table

User-level 

thread library
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User-level threads

Pros

– Thread switch is very fast

– No need for kernel support

– Customized scheduler

– Each process ~ virtual processor

Cons - „real world‟ factors
– Multiprogramming, I/O, Page faults

– Blocking system calls? Can you check?
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What you see …

And what the kernel sees …
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Kernel-level threads

No need for runtime system

No wrapper for system calls

But … creating threads is more expensive

– Recycle? Mark a destroy thread as not runnable and reuse it 

later to save overhead

And system calls are expensive
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Thread
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Hybrid thread implementations

Trying to get the best of both worlds

Multiplexing user-level threads onto kernel- level 

threads

One popular variation – two-level model (you can 

bound a user-level thread to a kernel one)
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User-level 

thread

Kernel thread

Process
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Processes and threads’ performance

Creation time Process User-level 

threads

LWP/Kernel-

level threads

SPARCstation 2, Solaris 1700μsec 52μsec

(6.7x faster)

350μsec

(4.8x faster)

700MHz Pentium, Linux 

2.2.*

251μsec

fork/exit

4.5μsec

create/join

(21x faster)

94μsec

create/join

(2.6x faster)
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Scheduler activations*

Goal 

– Functionality of kernel threads & 

– Performance of user-level threads

– Without special non-blocking system calls

Problem : needed control & scheduling information 

distributed bet/ kernel & each app‟s address space

Basic idea

– When kernel finds out a thread is about to block, upcalls the 

runtime system (activates it at a known starting address)

– When kernel finds out a thread can run again, upcalls again

– Run-time system can now decide what to do

Pros – fast & smart

Cons – upcalls violate layering approach

*Anderson et al., “Scheduler Activations: effective 

Kernel Support for the User-level Management of 

Parallelism,” SOSP, Oct. 1991.
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Thread libraries

Pthreads – POSIX standard (IEEE 1003.1c) API for 

thread creation & synchronization

Win32 threads – slightly different (more complex API)

Java threads

– Managed by the JVM

– May be created by

• Extending Thread class

• Implementing the Runnable interface

– Implementation model depends on OS (1-to-1 in Windows but 

many-to-many in early Solaris)
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POSIX threads

Pthreads – POSIX standard (IEEE 1003.1c)

– API specifies behavior of the thread library, implementation is 

up to the developers of the library

– Common in UNIX OSs (Solaris, Linux, Mac OS X)
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Thread call Description

Pthread_create Create a new thread

Pthread _exit Terminate the calling thread

Pthread_join Wait for a specific thread to exit

Phtread_yield Release the CPU to let another thread run

Pthread_attr_init Create and initialize a thread‟s attribute 

structure

Pthread_attr_destroy Remove a thread‟s attribute structure
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Multithreaded C/POSIX

/* shared by thread(s) */

int sum;

/* runner: the thread */

void *runner(void *param)

{

int i, upper = atoi(param);  

sum = 0;

for (i = 1; i < upper; i++) 

sum += 1;

pthread_exit(0);

} /* runner! */

int main (int argc, char *argv[])

{

pthread_t tid;   /* thread id */

/* set of thread attrs */

pthread_attr_t attr;  

if (argc != 2 || atoi(argv[1]) < 0) {

fprintf (stderr, "usage: %s 
<int>\n", argv[0]);

exit(1);

}

/* get default attrs */

pthread_attr_init(&attr);

pthread_create(&tid, &attr, runner, 
argv[1]);

/* wait to exit */

pthread_join(tid, NULL); 

printf("sum = %d\n", sum);

exit(0);

} /* main! */

 


N

i
isum

0
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Complications with threads …

Semantics of fork() & exec() system calls 
– Duplicate all threads or single-threaded child?

– Are you planning to invoke exec()?

Other system calls (closing a file, lseek, …?)

Signal handling, handlers and masking
1. Send signal to each thread – too expensive

2. A master thread per process – asymmetric threads

3. Send signal to an arbitrary thread (control C?)

4. Use heuristics to pick thread (SIGSEGV & SIGILL – caused 
by thread, SIGTSTP & SIGINT – caused by external events)

5. Create a thread to handle each signal – situation specific

Stack growth

EECS 343 Operating Systems

Northwestern University



23

Threads and global variables

– An example problem

– Prohibit global variables? Legacy code?

– Assign each thread its own global variables

• Allocate a chunk of memory and pass it around

• Create new library calls to create/set/destroy global variables

Single-threaded to multithreaded
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Single-threaded to multithreaded

Many library procedures are not reentrant

Re-entrant: able to handle a second call while not 

done with previous one

e.g. assemble msg in a buffer before sending it

Solutions

– Rewrite library?

– Wrappers for each call?
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Summary

You really want multiple threads per address space

Kernel-level threads are more efficient than processes, 

but not cheap

– All operations require a kernel call and parameter verification

User-level threads are:

– Really fast

– Great for common-case operations, but

– Can suffer in uncommon cases due to kernel obliviousness

Scheduler activations are a good answer

Next time

– Multiple processes in the ready queue, but only one processor 

… which you should you pick next?
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