Scheduling

Today
® Introduction to scheduling
® Classical algorithms

Next Time
® Process interaction & communication

Scheduling

* Problem

Several ready processes & much fewer CPUs

* A choice has to be made

By the scheduler, using a scheduling algorithm

» Scheduling through time

Early batch systems — Just run the next job in the tape

Early timesharing systems — Scarce CPU time so scheduling
IS critical

PCs — Commonly one active process so scheduling is easy;
with fast & per-user CPU scheduling is not critical

Networked workstations & servers — All back again, multiple
ready processes & expensive CS, scheduling is critical

EECS 343 Operating Systems
Northwestern University

Process behavior

» Bursts of CPU usage alternate with periods of 1/O wait
— A property key to scheduling
— CPU-bound & I/O bound process

* As CPU gets faster — more 1/0O bound processes

i \ Histogram of CPU-burst times

Long CPU burst Waiting for /O -
\ 140 A Large number of
-—-TI—I—-—-—I—-—I—I- 120 I\ short CPU bursts
L
g 100 \
Short CPU burst S &0 \\
60
\ Small number of
0 \ long CPU bursts
20 7 —
0 8 16 24 32 40

burst duration (milliseconds)

EECS 343 Operating Systems
Northwestern University

Environments and goals

» Different scheduling algorithms for different application
areas

» Worth distinguishing
— Batch
— Interactive
— Real-time

» All systems
— Fairness — comparable processes getting comparable service
— Policy enforcement — seeing that stated policy is carried out

— Balance — keeping all parts of the system busy (mix pool of
processes)

EECS 343 Operating Systems
Northwestern University

Environments and goals

» Batch systems
— Throughput — max. jobs per hour

— Turnaround time — min. time bet/ submission & termination
» Waiting time — sum of periods spent waiting in ready queue

— CPU utilization — keep CPU busy all time (anything wrong?)

* Interactive systems

— Response time — respond to requests quickly (time to start
responding)

— Proportionality — meet users’ expectations
* Real-time system

— Meeting deadlines — avoid losing data

— Predictability — avoid quality degradation in multimedia
systems

* Average, maximum, minimum or variance?

EECS 343 Operating Systems
Northwestern University

When to schedule?

* When to make scheduling decisions?

1.

a bk own

At process creation

When a process exits

When a process blocks on 1/0O, a semaphore, etc
When an /O interrupts occurs

A fix periods of time — Need a HW clock interrupting

(1) . (2)

I/O or event
completion

EECS 343 Operating Systems
Northwestern University

When to schedule?

» A fixed periods of times ... preemptive and non-
preemptive
— No-preemptive

* Once a process gets the CPU, it doesn’t release it until the
process terminates or switches to waiting

— Preemptive

« Using a timer, the OS can preempt the CPU even it the thread
doesn’t relinquish it voluntarily

« Of course, re-assignment involves overhead

EECS 343 Operating Systems
Northwestern University

First-Come First-Served scheduling

» First-Come First-Served (FCFS)

— Simplest, easy to implement, non-preemptive

Process B_urst
Time P1 Pg P§
P 24 0 24 27 30
P2 3
P3 3 Average waiting time:
(0+24+27)/[3=17
Change order of arrival
P, | Ps Py
0 3 6 30

Average waiting time = 3

EECS 343 Operating Systems
Northwestern University

FCFS issues

» Potentially bad average response time
— 1 CPU-bound process (burst of 1 sec.)
— Many I/O-bound ones (needing to read 1000 records)
— Each 1/0O-bound process reads one block per sec!
+ May lead to poor utilization of resources
— Poor overlap of CPU and 1/O

EECS 343 Operating Systems
Northwestern University

Shortest Job/Remaining Time First sched.

*» Shortest-Job First

— Assumption — total time needed (or length of next CPU burst)
IS known
— Provably optimal

First job finishes at time a
Second job attimea+ Db

Job # Finish time
1 a
Mean turnaround time > b
4a+3b+2c+d)4
3 C
1 4 ;

Biggest
contributor

Preempetive or not?

* A preemptive variation — Shortest Remaining Time (or
SRPT)

EECS 343 Operating Systems
Northwestern University

SJF and SRT

» Shortest Job First — Non-preemptive

P1 P3 P2 P4 Process | Arrival Burst

0] 7 8 12 16 Time
Pl 0.0 7
avg. waitingtime=(0+6+3+7)/4=4 P2 2.0 4
P3 4.0 1
P4 5.0 4

» Shortest Remaining Time First — Preemptive

Ps

P,

P4

P,

P, | P,
2 4

0

5

-

11

16

avg. waitingtime=(9+ 1+ 0 +2)/4 =3

EECS 343 Operating Systems
Northwestern University

Determining length of next CPU burst

» Can only estimate length

» Can be done using length of previous CPU bursts and
exponential averaging

-t_ =actual lenght of n"" CPU burst
-7,,,, = predicted value for thenext CPU burst

-a,0<a <1
i .) 12
Deflne . Weight of history //
T; 10
/
! ; 4
Tn:lzatn -I-(l—d)’t'n. L 6 //
--/
T 4
> What's a?
Most recent .
information .
Past history time

CPU burst (1) / 6 4 13 13 13
"guess” (1)) 6 6 5 9 11 12
EECS 343 Operating Systems
Northwestern University

Priority scheduling

» SJF Is a special case of priority-based scheduling
— Priority = reverse of predicted next CPU burst

» Pick process with highest priority (lowest number)

Process | Bursttime Priority
P1 10 3
P2 1
P3 2
P4 1
P5 5

N R

le Ps P, Ps | P,
0 1 6 16 18 19

avg. waitingtime=(6+0+ 16 +18 + 1)/5=8.2

EECS 343 Operating Systems
Northwestern University

Priority scheduling issues

* And how do you assign priorities?

+ Starvation

— With an endless supply of high priority jobs, low priority
processes may never execute

» Solution
— Increases priority with age, i.e. accumulated waiting time

— Decrease priority as a function of accumulated processing
time
— Assigned maximum guantum

EECS 343 Operating Systems
Northwestern University

Round-robin scheduling

» Simple, fair, easy to implement, & widely-used
» Each process gets a fix qguantum or time slice
* When quantum expires, if running preempt CPU

» With n processes & guantum ¢, each one gets 1/n of
the CPU time, no-one waits more than (n-1) g

q=4
Process Burst
Time
Pl Pz I:)3 I:)1 Pl Pl Pl I:)1 P1 24
0 4 7 10 14 18 22 26 30
P2
P3

avg. waiting time = (6 + 4 +7)/3 = 5.66

Preempetive or not?

EECS 343 Operating Systems
Northwestern University

Quantum & Turnaround time

» Length of quantum
— Too short — low CPU efficiency (why?)

— Too long — low response time
(really long, what do you get?)

— Commonly ~ 50-100 msec.

process | time

125 P, :

12.0 / 2 5
£ 115 \ P, 7
£ 110 g S~
o
g 105 Largest quantums
2 f0 don’t imply shortest
g turnaround times
S 95

9.0

1 2 3 4 5 6 7
time quantum

EECS 343 Operating Systems
Northwestern University

Combining algorithms

» |n practice, any real system uses some hybrid
approach, with elements of each algorithm

» Multilevel queue
— Ready queue partitioned into separate queues
— Each queue has its own scheduling algorithm

— Scheduling must be done between the queues
» Fixed priority scheduling; (i.e., foreground first); starvation?

« Time slice — each queue gets a certain amount of CPU time which it can
schedule amongst its processes

Highest

priority
) System processes)
=) Interactive processes)
P Interactive editing processes)
=) Batch processes)

Lowest
priority

EECS 343 Operating Systems
Northwestern University

Multiple (feedback) queues

» Multiple queues, allow processes to move bet/ queues

» Example CTSS - Idea: separate processes based on
CPU bursts
— IBM 7094 had space for 1 process in memory (switch = swap)
— Goals: low context switching cost & good response time
— Priority classes: class i gets 2! quantas

— Scheduler executes first all processes in queue 0; if empty, all
in queue 1, ...

— If process uses all its quanta — move to next lower queue
(leave I/O-bound & interact. processes in high-priority queue)

— What about process with long start but interactive after that?

Carriage-return hit — promote process to top class K

i
—udli

EECS 343 Operating Systems
Northwestern University

Multiple-processor scheduling

* Scheduling more complex w/ multiple CPUs

* Asymmetric/symmetric (SMP) multiprocessing

— Supported by most OSs (common or independent ready
gueues)

» Processor affinity — benefits of past history in a
processor

» Load balancing — keep workload evenly distributed
— Push migration — specific task pushes processes for balance
— Pull migration — idle processor asks for/pulls work

» Symmetric multithreading (hyperthreading or SMT)
— Multiple logical processors on a physical one

— Each w/ own architecture state, supported by hardware
— Shouldn’t require OS to know about it (but could benefit from)

EECS 343 Operating Systems
Northwestern University

Thread scheduling

» Now add threads — user or kernel level?

» User-level (process-contention scope)
— Context switch is cheaper
— You can have an application-specific scheduler at user level
— Kernel doesn’t know of your threads

» Kernel-level (system-contention scope)

— Any scheduling of threads is possible (since the kernel knows
of all)

— Switching threads inside same process is cheaper than
switching processes

EECS 343 Operating Systems
Northwestern University

Real-time scheduling

» Different categories
— Hard RT — not on time ~ not at all
— Soft RT — important to meet guarantees but not critical

» Scheduling can be static or dynamic

» Schedulable real-time system

— The events that a RT system may have to respond could be
periodic or aperiodic

— Given a set of m periodic events, can it handle it? schedulable
« event i occurs within period P; and requires C, seconds

Then the load can only be handled if

n C P1: C = 50 msec, P = 100msec (.5)
Z e | P2: C = 30 msec, P = 200msec (.15)
— P o P3: C =100 msec, P = 500msec (.2)
1= i

P4: C = 200 msec, P=1000msec (.2)

EECS 343 Operating Systems
Northwestern University

Scheduling the server-side of P2P systems

* P2P users’ response is dominated by download
— >80% download requests in Kazaa are rejected due to capacity

saturation at server peers

— >50% of all requests for large objects (>100MB) take more than one
day & ~20% take over one week to complete

* Most implementations
use FCFS or PS

* Apply SRPT!
Work from
Nortwestern

Mean response time of
object download as a
function of system load.

12

Mean Response Time (Seconds)

]
T

]
T

i
T

e
T

il
T

« 10° Mean Response Time For Objects Downloading

FCFS

PS

PS — Process Sharing
FCFS — First-Come First-Serve
SRPT — Shortest-Remaining Processing-Time

SRPT-RS
B il LR
i
T L TL Py
SRPT
1.5 2
System Load

5

EECS 343 Operating Systems
Northwestern University

Some other algorithms

» Guaranteed sched. - e.g. proportional to # processes
— Priority = amount used / amount promised
— Lower ratio — higher priority

» Lottery scheduling — simple & predictable
— Each process gets lottery tickets for resources (CPU time)
— Scheduling — lottery, 1.e. randomly pick a ticket
— Priority — more tickets means higher chance
— Processes may exchange tickets

» Fair-Share scheduling
— Schedule aware of ownership
— Owners get a % of CPU, processes are picked to enforce it

EECS 343 Operating Systems
Northwestern University

Policy vs. mechanism

* Separate what is done from how it is done
— Think of parent process with multiple children

— Parent process may knows relative importance of children (if,
for example, each one has a different task)

* None of the algorithms presented takes the parent
process input for scheduling

» Scheduling algorithm parameterized
— Mechanism in the kernel

» Parameters filled in by user processes
— Policy set by user process
— Parent controls scheduling w/o doing it

EECS 343 Operating Systems
Northwestern University

Scheduling in xv6

void
scheduler (void)

{

struct proc *p; Enable interrupts to handle whatever is
there before continuing
for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire (&ptable.lock) ;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++) {
if (p—>state !'= RUNNABLE)
continue;
// Switch to chosen process. It is the process’s job to release
// ptable.lock and then reacquire it before jumping back to us.

proc = p; Switches hw page table and TSS

switchuvm(p) ; registers to point to process
p—>state = RUNNING;

swtch (&cpu->scheduler, proc->context) ;

switchkvm() ; Switches hw page table register to the kernel-only

_ page table, for when no process is running
// Process is done runhzng ror—mrow:

// It should have changed its p->state before coming back.
proc = 0;
}

release (&ptable.lock) ;

EECS 343 Operating Systems
} Northwestern University

Scheduling in xv6

void
sched (void)
{

int intena;

if ('holding(&ptable.lock))
panic ("sched ptable.lock") ;
if (cpu->ncli '= 1)
panic("sched locks") ;
if (proc—->state == RUNNING)
panic("sched running") ;
if (readeflags () &FL_IF)
panic("sched interruptible");
intena = cpu->intena;
swtch (&proc->context, cpu->scheduler) ;
cpu->intena = intena;

} // Give up the CPU for one scheduling round.
void
Convention in xv6: a process yield(void)
that wants to give up the CPU {
must acquire the process table loc, acquire (&ptable.lock) ;
release any other lock it is holding, proc->state = RUNNABLE;
update its own state and call sched. sched() ;

release (&ptable.lock) ;

EECS 343 Operating Systems
Northwestern University

Scheduling in xv6

Context switch

void swtch(struct context **o0ld, struct context *new);

Save current register context in old

and then load register context from new.

.globl swtch

swtch: Loads arguments off the stack into %eax
movl 4 (sesp), Seax and %edx before changing stack pointer

%eSp) , Sedx

movl 8 (

Save old callee-save registers

pushl %ebp Pushes register state creating a context

pushl %Sebx structure on the current stack;

pushl %esi %esp is save implicitly to *old;

pushl %edi %eip was saved by call instruction that
invoked swtch and is above %ebp

Switch stacks
movl %esp, (%eax)
mov]l %edx, %esp

Switch stacks

Load new callee-save registers
popl %edi

popl %esi New stack has same format, so just undo;
popl %ebx ret has the %eip at the top

popl S%Sebp

ret EECS 343 Operating Systems

Northwestern University

Next time

» Process synchronization
— Race condition & critical regions
— Software and hardware solutions
— Review of classical synchronization problems

» What really happened on Mars?

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

EECS 343 Operating Systems
Northwestern University

