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Scheduling

Problem 

– Several ready processes & much fewer CPUs

A choice has to be made

– By the scheduler, using a scheduling algorithm

Scheduling through time

– Early batch systems – Just run the next job in the tape

– Early timesharing systems – Scarce CPU time so scheduling 

is critical

– PCs – Commonly one active process so scheduling is easy; 

with fast & per-user CPU scheduling is not critical

– Networked workstations & servers – All back again, multiple 

ready processes & expensive CS, scheduling is critical
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Process behavior

Bursts of CPU usage alternate with periods of I/O wait

– A property key to scheduling

– CPU-bound & I/O bound process

As CPU gets faster – more I/O bound processes

Histogram of CPU-burst times

Large number of 

short CPU bursts

Small number of 

long CPU bursts
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Environments and goals

Different scheduling algorithms for different application 
areas

Worth distinguishing
– Batch

– Interactive

– Real-time 

All systems
– Fairness – comparable processes getting comparable service

– Policy enforcement – seeing that stated policy is carried out

– Balance – keeping all parts of the system busy (mix pool of 
processes)
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Environments and goals

Batch systems

– Throughput – max. jobs per hour

– Turnaround time – min. time bet/ submission & termination

• Waiting time – sum of periods spent waiting in ready queue

– CPU utilization – keep CPU busy all time (anything wrong?)

Interactive systems

– Response time – respond to requests quickly (time to start 

responding)

– Proportionality – meet users’ expectations

Real-time system

– Meeting deadlines – avoid losing data

– Predictability – avoid quality degradation in multimedia 

systems

Average, maximum, minimum or variance?
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When to schedule?

When to make scheduling decisions?

1. At process creation

2. When a process exits

3. When a process blocks on I/O, a semaphore, etc

4. When an I/O interrupts occurs

5. A fix periods of time – Need  a HW clock interrupting
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When to schedule?

A fixed periods of times … preemptive and non-

preemptive

– No-preemptive

• Once a process gets the CPU, it doesn’t release it until the 

process terminates or switches to waiting

– Preemptive

• Using a timer, the OS can preempt the CPU even it the thread 

doesn’t relinquish it voluntarily

• Of course, re-assignment involves overhead
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First-Come First-Served scheduling

First-Come First-Served (FCFS)

– Simplest, easy to implement, non-preemptive
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Average waiting time:  

(0 + 24 + 27)/3 = 17

Average waiting time = 3

Process Burst 

Time

P1 24

P2 3

P3 3

Change order of arrival ….

P1

0 24

P2

27

P3

30

P2

0 3

P3

6

P1

30
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FCFS issues

Potentially bad average response time

– 1 CPU-bound process (burst of 1 sec.) 

– Many I/O-bound ones (needing to read 1000 records)

– Each I/O-bound process reads one block per sec!

May lead to poor utilization of resources

– Poor overlap of CPU and I/O
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Shortest Job/Remaining Time First sched.

Shortest-Job First
– Assumption – total time needed (or length of next CPU burst) 

is known

– Provably optimal
First job finishes at time a

Second job at time a + b
…

Mean turnaround time

(4a + 3 b + 2c + d)/4

A preemptive variation – Shortest Remaining Time (or 
SRPT)

Job # Finish time

1 a

2 b

3 c

4 d

Biggest 

contributor

Preempetive or not?
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Shortest Job First – Non-preemptive 

Shortest Remaining Time First – Preemptive

SJF and SRT

Process Arrival Burst 

Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

avg. waiting time = (9 + 1 + 0 +2)/4 = 3

avg. waiting time = (0 + 6 + 3 + 7)/4 = 4
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Determining length of next CPU burst

Can only estimate length

Can be done using length of previous CPU bursts and 

exponential averaging
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Priority scheduling

SJF is a special case of priority-based scheduling

– Priority = reverse of predicted next CPU burst

Pick process with highest priority (lowest number)

Process Burst time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

avg. waiting time = (6 + 0 + 16 +18 + 1)/5 = 8.2
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Priority scheduling issues

And how do you assign priorities?

Starvation

– With an endless supply of high priority jobs, low priority 

processes may never execute

Solution

– Increases priority with age, i.e. accumulated waiting time

– Decrease priority as a function of accumulated processing 

time

– Assigned maximum quantum
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Round-robin scheduling

Simple, fair, easy to implement, & widely-used

Each process gets a fix quantum or time slice

When quantum expires, if running preempt CPU

With n processes & quantum q, each one gets 1/n of 

the CPU time, no-one waits more than (n-1) q

Process Burst 

Time

P1 24

P2 3

P3 3

q = 4

avg. waiting time = (6 + 4 +7)/3 = 5.66

Preempetive or not?

EECS 343 Operating Systems

Northwestern University

P1

0 4

P2

7

P3

10

P1

14

P1

18

P1

22

P1

26

P1

30



16

Quantum & Turnaround time

Length of quantum

– Too short – low CPU efficiency (why?)

– Too long – low response time 
(really long, what do you get?)

– Commonly ~ 50-100 msec.

Largest quantums 

don’t imply shortest 

turnaround times
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Combining algorithms

In practice, any real system uses some hybrid 

approach, with elements of each algorithm

Multilevel queue

– Ready queue partitioned into separate queues

– Each queue has its own scheduling algorithm

– Scheduling must be done between the queues

• Fixed priority scheduling; (i.e., foreground first); starvation?

• Time slice – each queue gets a certain amount of CPU time which it can 

schedule amongst its processes

System processes

Interactive processes

Interactive editing processes

Batch processes

Highest 

priority

Lowest 

priority
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Multiple (feedback) queues

Multiple queues, allow processes to move bet/ queues

Example CTSS – Idea: separate processes based on 

CPU bursts

– IBM 7094 had space for 1 process in memory (switch = swap)

– Goals:  low context switching cost & good response time

– Priority classes: class i gets 2i quantas

– Scheduler executes first all processes in queue 0; if empty, all 

in queue 1, …

– If process uses all its quanta → move to next lower queue

(leave I/O-bound & interact. processes in high-priority queue)

– What about process with long start but interactive after that?

Carriage-return hit → promote process to top class
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Multiple-processor scheduling

Scheduling more complex w/ multiple CPUs

Asymmetric/symmetric (SMP) multiprocessing

– Supported by most OSs (common or independent ready 

queues)

Processor affinity – benefits of past history in a 

processor

Load balancing – keep workload evenly distributed

– Push migration – specific task pushes processes for balance

– Pull migration – idle processor asks for/pulls work

Symmetric multithreading (hyperthreading or SMT)

– Multiple logical processors on a physical one

– Each w/ own architecture state, supported by hardware

– Shouldn’t require OS to know about it (but could benefit from)
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Thread scheduling

Now add threads – user or kernel level?

User-level (process-contention scope)

– Context switch is cheaper

– You can have an application-specific scheduler at user level

– Kernel doesn’t know of your threads

Kernel-level (system-contention scope)

– Any scheduling of threads is possible (since the kernel knows 

of all)

– Switching threads inside same process is cheaper than 

switching processes
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Real-time scheduling

Different categories

– Hard RT – not on time ~ not at all

– Soft RT – important to meet guarantees but not critical

Scheduling can be static or dynamic

Schedulable real-time system

– The events that a RT system may have to respond could be 

periodic or aperiodic

– Given a set of m periodic events, can it handle it? schedulable

• event i occurs within period Pi and requires Ci seconds

Then the load can only be handled if

1

1
m

i

i i

C

P


P1: C = 50 msec, P = 100msec (.5)

P2: C = 30 msec, P = 200msec (.15)

P3: C = 100 msec, P = 500msec (.2)

P4: C = 200 msec, P= 1000msec (.2)
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Scheduling the server-side of P2P systems

P2P users’ response is dominated by download
– >80% download requests in Kazaa are rejected due to capacity 

saturation at server peers

– >50% of all requests for large objects (>100MB) take more than one 

day & ~20% take over one week to complete

Most implementations 

use FCFS or PS

Apply SRPT! 

Work from 

Nortwestern
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PS – Process Sharing

FCFS – First-Come First-Serve

SRPT – Shortest-Remaining Processing-Time

Mean response time of 

object download as a 

function of system load.
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Some other algorithms

Guaranteed sched. - e.g. proportional to # processes

– Priority = amount used / amount promised

– Lower ratio → higher priority

Lottery scheduling – simple & predictable

– Each process gets lottery tickets for resources (CPU time)

– Scheduling – lottery, i.e. randomly pick a ticket

– Priority – more tickets means higher chance

– Processes may exchange tickets

Fair-Share scheduling 

– Schedule aware of ownership

– Owners get a % of CPU, processes are picked to enforce it
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Policy vs. mechanism

Separate what is done from how it is done

– Think of parent process with multiple children

– Parent process may knows relative importance of children (if, 

for example, each one has a different task)

None of the algorithms presented takes the parent 

process input for scheduling

Scheduling algorithm parameterized

– Mechanism in the kernel

Parameters filled in by user processes

– Policy set by user process

– Parent controls scheduling w/o doing it
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Scheduling in xv6
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void

scheduler(void)

{

struct proc *p;

for(;;){

// Enable interrupts on this processor.

sti();

// Loop over process table looking for process to run.

acquire(&ptable.lock);

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)  

continue;

// Switch to chosen process. It is the process’s job to release 

// ptable.lock and then reacquire it before jumping back to us. 

proc = p;

switchuvm(p);

p−>state = RUNNING;

swtch(&cpu−>scheduler, proc−>context);

switchkvm();

// Process is done running for now. 

// It should have changed its p−>state before coming back.

proc = 0;

}

release(&ptable.lock);

}

Enable interrupts to handle whatever is 

there before continuing

Switches hw page table register to the kernel-only 

page table, for when no process is running

Switches hw page table and TSS 

registers to point to process
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Scheduling in xv6
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// Give up the CPU for one scheduling round.

void

yield(void)

{

acquire(&ptable.lock);

proc−>state = RUNNABLE;

sched();

release(&ptable.lock);

}

void

sched(void)

{

int intena;

if(!holding(&ptable.lock))

panic("sched ptable.lock");

if(cpu−>ncli != 1)

panic("sched locks");

if(proc−>state == RUNNING)

panic("sched running");

if(readeflags()&FL_IF)

panic("sched interruptible");

intena = cpu−>intena;

swtch(&proc−>context, cpu−>scheduler);

cpu−>intena = intena;

}

Convention in xv6: a process 

that wants to give up the CPU 

must acquire the process table loc, 

release any other lock it is holding, 
update its own state and call sched.
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Scheduling in xv6
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# Context switch

# void swtch(struct context **old, struct context *new);

# Save current register context in old

# and then load register context from new.

.globl swtch

swtch:

movl 4(%esp), %eax

movl 8(%esp), %edx

# Save old callee−save registers

pushl %ebp

pushl %ebx

pushl %esi

pushl %edi

# Switch stacks

movl %esp, (%eax)

movl %edx, %esp

# Load new callee−save registers

popl %edi

popl %esi

popl %ebx

popl %ebp

ret

Loads arguments off the stack into %eax

and %edx before changing stack pointer

Pushes register state creating a context 

structure on the current stack; 

%esp is save implicitly to *old; 
%eip was saved by call instruction that 

invoked swtch and is above %ebp

Switch stacks

New stack has same format, so just undo; 
ret has the %eip at the top
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Next time

Process synchronization

– Race condition & critical regions

– Software and hardware solutions

– Review of classical synchronization problems

– …

What really happened on Mars?
http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html
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