
Scheduling

Today
Introduction to scheduling

Classical algorithms

Next Time
Process interaction & communication

Scheduling

Problem

– Several ready processes & much fewer CPUs

A choice has to be made

– By the scheduler, using a scheduling algorithm

Scheduling through time

– Early batch systems – Just run the next job in the tape

– Early timesharing systems – Scarce CPU time so scheduling

is critical

– PCs – Commonly one active process so scheduling is easy;

with fast & per-user CPU scheduling is not critical

– Networked workstations & servers – All back again, multiple

ready processes & expensive CS, scheduling is critical

EECS 343 Operating Systems

Northwestern University

2

3

Process behavior

Bursts of CPU usage alternate with periods of I/O wait

– A property key to scheduling

– CPU-bound & I/O bound process

As CPU gets faster – more I/O bound processes

Histogram of CPU-burst times

Large number of

short CPU bursts

Small number of

long CPU bursts

EECS 343 Operating Systems

Northwestern University

Long CPU burst Waiting for I/O

Short CPU burst

4

Environments and goals

Different scheduling algorithms for different application
areas

Worth distinguishing
– Batch

– Interactive

– Real-time

All systems
– Fairness – comparable processes getting comparable service

– Policy enforcement – seeing that stated policy is carried out

– Balance – keeping all parts of the system busy (mix pool of
processes)

EECS 343 Operating Systems

Northwestern University

5

Environments and goals

Batch systems

– Throughput – max. jobs per hour

– Turnaround time – min. time bet/ submission & termination

• Waiting time – sum of periods spent waiting in ready queue

– CPU utilization – keep CPU busy all time (anything wrong?)

Interactive systems

– Response time – respond to requests quickly (time to start

responding)

– Proportionality – meet users’ expectations

Real-time system

– Meeting deadlines – avoid losing data

– Predictability – avoid quality degradation in multimedia

systems

Average, maximum, minimum or variance?

EECS 343 Operating Systems

Northwestern University

When to schedule?

When to make scheduling decisions?

1. At process creation

2. When a process exits

3. When a process blocks on I/O, a semaphore, etc

4. When an I/O interrupts occurs

5. A fix periods of time – Need a HW clock interrupting

EECS 343 Operating Systems

Northwestern University 6

new

ready

admitted
interrupt

running

dispatched

terminatedexit

waiting
I/O or event

wait

I/O or event

completion

(1) (2)

(3)

(4)

(4)

When to schedule?

A fixed periods of times … preemptive and non-

preemptive

– No-preemptive

• Once a process gets the CPU, it doesn’t release it until the

process terminates or switches to waiting

– Preemptive

• Using a timer, the OS can preempt the CPU even it the thread

doesn’t relinquish it voluntarily

• Of course, re-assignment involves overhead

EECS 343 Operating Systems

Northwestern University 7

8

First-Come First-Served scheduling

First-Come First-Served (FCFS)

– Simplest, easy to implement, non-preemptive

EECS 343 Operating Systems

Northwestern University

Average waiting time:

(0 + 24 + 27)/3 = 17

Average waiting time = 3

Process Burst

Time

P1 24

P2 3

P3 3

Change order of arrival ….

P1

0 24

P2

27

P3

30

P2

0 3

P3

6

P1

30

9

FCFS issues

Potentially bad average response time

– 1 CPU-bound process (burst of 1 sec.)

– Many I/O-bound ones (needing to read 1000 records)

– Each I/O-bound process reads one block per sec!

May lead to poor utilization of resources

– Poor overlap of CPU and I/O

EECS 343 Operating Systems

Northwestern University

10

Shortest Job/Remaining Time First sched.

Shortest-Job First
– Assumption – total time needed (or length of next CPU burst)

is known

– Provably optimal
First job finishes at time a

Second job at time a + b
…

Mean turnaround time

(4a + 3 b + 2c + d)/4

A preemptive variation – Shortest Remaining Time (or
SRPT)

Job # Finish time

1 a

2 b

3 c

4 d

Biggest

contributor

Preempetive or not?

EECS 343 Operating Systems

Northwestern University

11

Shortest Job First – Non-preemptive

Shortest Remaining Time First – Preemptive

SJF and SRT

Process Arrival Burst

Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

avg. waiting time = (9 + 1 + 0 +2)/4 = 3

avg. waiting time = (0 + 6 + 3 + 7)/4 = 4

EECS 343 Operating Systems

Northwestern University

P1

0 7

P2

12

P3

8

P4

16

P1

0 2

P2

4

P3

5

P4

11

P2

7

P1

16

12

Determining length of next CPU burst

Can only estimate length

Can be done using length of previous CPU bursts and

exponential averaging

:Define -

10 , -

burst CPUnext for the valuepredicted -

burst CPU oflenght actual -

1











 n

th

n nt

  .1
1 nnn

t  


Most recent

information
Past history

Weight of history

EECS 343 Operating Systems

Northwestern University

What’s α?

13

Priority scheduling

SJF is a special case of priority-based scheduling

– Priority = reverse of predicted next CPU burst

Pick process with highest priority (lowest number)

Process Burst time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

avg. waiting time = (6 + 0 + 16 +18 + 1)/5 = 8.2

EECS 343 Operating Systems

Northwestern University

P2

0 1

P5

6

P1

16

P4

19

P3

18

14

Priority scheduling issues

And how do you assign priorities?

Starvation

– With an endless supply of high priority jobs, low priority

processes may never execute

Solution

– Increases priority with age, i.e. accumulated waiting time

– Decrease priority as a function of accumulated processing

time

– Assigned maximum quantum

EECS 343 Operating Systems

Northwestern University

15

Round-robin scheduling

Simple, fair, easy to implement, & widely-used

Each process gets a fix quantum or time slice

When quantum expires, if running preempt CPU

With n processes & quantum q, each one gets 1/n of

the CPU time, no-one waits more than (n-1) q

Process Burst

Time

P1 24

P2 3

P3 3

q = 4

avg. waiting time = (6 + 4 +7)/3 = 5.66

Preempetive or not?

EECS 343 Operating Systems

Northwestern University

P1

0 4

P2

7

P3

10

P1

14

P1

18

P1

22

P1

26

P1

30

16

Quantum & Turnaround time

Length of quantum

– Too short – low CPU efficiency (why?)

– Too long – low response time
(really long, what do you get?)

– Commonly ~ 50-100 msec.

Largest quantums

don’t imply shortest

turnaround times

EECS 343 Operating Systems

Northwestern University

17

Combining algorithms

In practice, any real system uses some hybrid

approach, with elements of each algorithm

Multilevel queue

– Ready queue partitioned into separate queues

– Each queue has its own scheduling algorithm

– Scheduling must be done between the queues

• Fixed priority scheduling; (i.e., foreground first); starvation?

• Time slice – each queue gets a certain amount of CPU time which it can

schedule amongst its processes

System processes

Interactive processes

Interactive editing processes

Batch processes

Highest

priority

Lowest

priority

EECS 343 Operating Systems

Northwestern University

18

Multiple (feedback) queues

Multiple queues, allow processes to move bet/ queues

Example CTSS – Idea: separate processes based on

CPU bursts

– IBM 7094 had space for 1 process in memory (switch = swap)

– Goals: low context switching cost & good response time

– Priority classes: class i gets 2i quantas

– Scheduler executes first all processes in queue 0; if empty, all

in queue 1, …

– If process uses all its quanta → move to next lower queue

(leave I/O-bound & interact. processes in high-priority queue)

– What about process with long start but interactive after that?

Carriage-return hit → promote process to top class

EECS 343 Operating Systems

Northwestern University

19

Multiple-processor scheduling

Scheduling more complex w/ multiple CPUs

Asymmetric/symmetric (SMP) multiprocessing

– Supported by most OSs (common or independent ready

queues)

Processor affinity – benefits of past history in a

processor

Load balancing – keep workload evenly distributed

– Push migration – specific task pushes processes for balance

– Pull migration – idle processor asks for/pulls work

Symmetric multithreading (hyperthreading or SMT)

– Multiple logical processors on a physical one

– Each w/ own architecture state, supported by hardware

– Shouldn’t require OS to know about it (but could benefit from)

EECS 343 Operating Systems

Northwestern University

20

Thread scheduling

Now add threads – user or kernel level?

User-level (process-contention scope)

– Context switch is cheaper

– You can have an application-specific scheduler at user level

– Kernel doesn’t know of your threads

Kernel-level (system-contention scope)

– Any scheduling of threads is possible (since the kernel knows

of all)

– Switching threads inside same process is cheaper than

switching processes

EECS 343 Operating Systems

Northwestern University

21

Real-time scheduling

Different categories

– Hard RT – not on time ~ not at all

– Soft RT – important to meet guarantees but not critical

Scheduling can be static or dynamic

Schedulable real-time system

– The events that a RT system may have to respond could be

periodic or aperiodic

– Given a set of m periodic events, can it handle it? schedulable

• event i occurs within period Pi and requires Ci seconds

Then the load can only be handled if

1

1
m

i

i i

C

P


P1: C = 50 msec, P = 100msec (.5)

P2: C = 30 msec, P = 200msec (.15)

P3: C = 100 msec, P = 500msec (.2)

P4: C = 200 msec, P= 1000msec (.2)

EECS 343 Operating Systems

Northwestern University

Scheduling the server-side of P2P systems

P2P users’ response is dominated by download
– >80% download requests in Kazaa are rejected due to capacity

saturation at server peers

– >50% of all requests for large objects (>100MB) take more than one

day & ~20% take over one week to complete

Most implementations

use FCFS or PS

Apply SRPT!

Work from

Nortwestern

22

PS – Process Sharing

FCFS – First-Come First-Serve

SRPT – Shortest-Remaining Processing-Time

Mean response time of

object download as a

function of system load.

EECS 343 Operating Systems

Northwestern University

23

Some other algorithms

Guaranteed sched. - e.g. proportional to # processes

– Priority = amount used / amount promised

– Lower ratio → higher priority

Lottery scheduling – simple & predictable

– Each process gets lottery tickets for resources (CPU time)

– Scheduling – lottery, i.e. randomly pick a ticket

– Priority – more tickets means higher chance

– Processes may exchange tickets

Fair-Share scheduling

– Schedule aware of ownership

– Owners get a % of CPU, processes are picked to enforce it

EECS 343 Operating Systems

Northwestern University

24

Policy vs. mechanism

Separate what is done from how it is done

– Think of parent process with multiple children

– Parent process may knows relative importance of children (if,

for example, each one has a different task)

None of the algorithms presented takes the parent

process input for scheduling

Scheduling algorithm parameterized

– Mechanism in the kernel

Parameters filled in by user processes

– Policy set by user process

– Parent controls scheduling w/o doing it

EECS 343 Operating Systems

Northwestern University

25

Scheduling in xv6

EECS 343 Operating Systems

Northwestern University

void

scheduler(void)

{

struct proc *p;

for(;;){

// Enable interrupts on this processor.

sti();

// Loop over process table looking for process to run.

acquire(&ptable.lock);

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)

continue;

// Switch to chosen process. It is the process’s job to release

// ptable.lock and then reacquire it before jumping back to us.

proc = p;

switchuvm(p);

p−>state = RUNNING;

swtch(&cpu−>scheduler, proc−>context);

switchkvm();

// Process is done running for now.

// It should have changed its p−>state before coming back.

proc = 0;

}

release(&ptable.lock);

}

Enable interrupts to handle whatever is

there before continuing

Switches hw page table register to the kernel-only

page table, for when no process is running

Switches hw page table and TSS

registers to point to process

26

Scheduling in xv6

EECS 343 Operating Systems

Northwestern University

// Give up the CPU for one scheduling round.

void

yield(void)

{

acquire(&ptable.lock);

proc−>state = RUNNABLE;

sched();

release(&ptable.lock);

}

void

sched(void)

{

int intena;

if(!holding(&ptable.lock))

panic("sched ptable.lock");

if(cpu−>ncli != 1)

panic("sched locks");

if(proc−>state == RUNNING)

panic("sched running");

if(readeflags()&FL_IF)

panic("sched interruptible");

intena = cpu−>intena;

swtch(&proc−>context, cpu−>scheduler);

cpu−>intena = intena;

}

Convention in xv6: a process

that wants to give up the CPU

must acquire the process table loc,

release any other lock it is holding,
update its own state and call sched.

27

Scheduling in xv6

EECS 343 Operating Systems

Northwestern University

Context switch

void swtch(struct context **old, struct context *new);

Save current register context in old

and then load register context from new.

.globl swtch

swtch:

movl 4(%esp), %eax

movl 8(%esp), %edx

Save old callee−save registers

pushl %ebp

pushl %ebx

pushl %esi

pushl %edi

Switch stacks

movl %esp, (%eax)

movl %edx, %esp

Load new callee−save registers

popl %edi

popl %esi

popl %ebx

popl %ebp

ret

Loads arguments off the stack into %eax

and %edx before changing stack pointer

Pushes register state creating a context

structure on the current stack;

%esp is save implicitly to *old;
%eip was saved by call instruction that

invoked swtch and is above %ebp

Switch stacks

New stack has same format, so just undo;
ret has the %eip at the top

28

Next time

Process synchronization

– Race condition & critical regions

– Software and hardware solutions

– Review of classical synchronization problems

– …

What really happened on Mars?
http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

EECS 343 Operating Systems

Northwestern University

