
Semaphores & Monitors

Today
Semaphores

Monitors

… and some other primitives

Next time
Deadlocks

Last time - locks

Memory objects with two operations

– acquire() & release()

acquire()

– Prevents progress of the thread until the lock can be acquired

We can implement it with a spinlock
acquire (lock) {

while(lock->held); // caller busy waits

lock->held = 1;

}

Of course, both operations must be atomic

– Need hw help! TSL or xchg

while(xchg(&lk−>locked, 1) != 0)

EECS 343 Operating Systems

EECS, Northwestern University 2

Last time - locks

Problems with locks

– Spinlocks can waste cycles (a schedule quantum)

– You could block the thread, but that‟s wasteful too – if the lock

is busy you have at least two extra context switches

– Spin-then-lock is an alternative

• Spin for a bit, then block

EECS 343 Operating Systems

EECS, Northwestern University 3

4

Semaphores

A synchronization primitive

Higher level of abstraction than locks

Invented by Dijkstra in „68 as part of THE operating

system

Atomically manipulated by two operations

– Down(sem) /wait/P

• Block until semaphore sem > 0, then substract 1 from sem and proceed

• P – not really for proberen or passeer but for a made-up word prolaag –

“try to reduce”

– Up(sem) /signal/V

• Add 1 to sem

• V – verhogen – increase in Dutch

EECS 343 Operating Systems

Northwestern University

5

Blocking in semaphores

Each semaphore has an associated queue of

processes/threads

– P/wait/down(sem)

• If sem was “available” (>0), decrement sem & let thread continue

• If sem was “unavailable” (<=0), place thread on associated

queue; run some other thread

EECS 343 Operating Systems

Northwestern University

typedef struct {

int value;

struct thread *L;

} semaphore;

down(S):

--Sem.value;

if (Sem.value < 0){

add this thread to Sem.L;

block;

6

Semaphores

…
– V/signal/up(sem)

• If thread(s) are waiting on the queue, unblock one

• If no threads are waiting, increment sem

– The signal is “remembered” for next time up(sem) is called

• Might as well let the “up-ing” thread continue execution

With multiple CPUs – lock semaphore with TSL

But then how’s this different from previous busy-
waiting?

EECS 343 Operating Systems

Northwestern University

typedef struct {

int value;

struct thread *L;

} semaphore;

up(S):

Sem.value++;

if (Sem.value <= 0) {

remove a process P from Sem.L;

wakeup(P);

}

7

Semaphores

Operation Value Sem.L CR

1 {} <>

P1 down

P2 down

P3 down

P1 up

down(Sem):

--Sem.value;

if (Sem.value < 0){

add this thread to Sem.L;

block;

}

up(Sem):

Sem.value++;

if (S.value <= 0) {

remove a thread P from Sem.L;

wakeup(P);

}

EECS 343 Operating Systems

Northwestern University

-2 {P2,P3} P1

-1 {P3} P2

-1 {P2} P1

0 {} P1

8

Types of semaphores

Binary semaphores – mutex

– Sem is initialized to 1

– Used to guarantee mutual exclusion

– Useful with thread packages

Counting semaphores

– Let N threads into critical section, not just one

– Sem is initialized to N, number of (identical) units available

– Allow threads to enter as long as there are units available

EECS 343 Operating Systems

Northwestern University

mutex_unlock:

MOVE MUTEX, #0

RET

mutex_lock:

TSL REGISTER, MUTEX

CMP REGISTER, #0

JXE ok

CALL thread_yield

JMP mutex_lock

ok: RET

9

Semaphores

Using both counting semaphores and mutexs

Producer

while (TRUE){

item = produce_item();

down(empty);

down(mutex);

insert_item(item);

up(mutex);

up(full);

}

Consumer

while (TRUE){

down(full);

down(mutex);

item = remove_item();

up(mutex);

up(empty);

consume_item(item);

}

semaphore empty, // # of empty buffers, set to all

full, // count of full buffers, set to 0

mutex; // initially 1

EECS 343 Operating Systems

Northwestern University

Readers-writers problem

Model access to database

One shared database

– Multiple readers allowed at once

– Only one writer allowed at a time

• If writers is in, nobody else is

EECS 343 Operating Systems

Northwestern University 10

semaphore db, // mutex for writers (only one) and

// first/last reader

mutex; // mutual exclusion for rc upate

int rc; // read count or number of readers in

void writer(void)

{

while(TRUE) {

think_up_data();

down(&db);

write_db();

up(&db);

}

}

11

Readers-writers problem

void reader(void)

{

while(TRUE) {

down(&mutex);

++rc;

if (rc == 1) down(&db);

up(&mutex);

read_db();

down(&mutex);

--rc;

if (rc == 0) up(&db);

up(&mutex);

use_data();

}

}

What problem do you see for the writer?

EECS 343 Operating Systems

Northwestern University

Idea for an alternative solution: When a reader arrives, if there‟s a

writer waiting, the reader could be suspended behind the writer
instead of being immediately admitted.

Mutexes in Pthreads

Basic mechanism – mutex

Also supports conditions variables

– Typically used to block threads until a condition is met

– Must always be associated with a mutex to avoid a race

condition between a thread preparing to wait and another one

signaling it (signal arriving before the thread is actually

waiting)

EECS 343 Operating Systems

EECS, Northwestern University 12

pthread_mutex_init – create it

pthread_mutex_destroy – destroy it

pthread_mutex_lock – acquire it or block

pthread_mutex_trylock – acquire or fail (you can spin then)

pthread_mutex_unlock – release it

pthread_cond_init – create it

pthread_cond_destroy – destroy it

pthrad_cond_wait – yield until the condition is satisfied

pthread_cond_signal – restart one of the threads waiting on it

pthread_broadcast – restart all threads waiting on it

13

Mutexes in Pthreads

pthread_mutex_t mutex;

pthread_cond_t condc, condp;

void *producer(void *ptr)

{

int i;

for (i = 1; i <= MAX; i++) {

pthread_mutex_lock(&mutex);

while (buffer !=0) pthread_cond_wait(&condp, &mutex);

buffer = i;

ptread_cond_signal(&condc); /* wakeup consumer */

pthread_mutex_unlock(&mutex);

}

pthread_exit(0);

}

void *consumer(void *ptr)

{

int i;

for (i = 1; i <= MAX; i++) {

pthread_mutex_lock(&mutex);

while (buffer ==0) pthread_cond_wait(&condc, &mutex);

buffer = 0;

ptread_cond_signal(&condp); /* wakeup producer */

pthread_mutex_unlock(&mutex);

}

pthread_exit(0);

}

EECS 343 Operating Systems

Northwestern University

Clearly missing a few

definitions, including
main

14

Problems with semaphores & mutex

Solves most synchronization problems, but:

– Semaphores are essentially shared global variables

• Can be accessed from anywhere (bad software engineering)

– No connection bet/ the semaphore & the data controlled by it

– Used for both critical sections & for coordination (scheduling)

– No control over their use, no guarantee of proper usage

EECS 343 Operating Systems

Northwestern University

// producer

while (TRUE){

item = produce_item();

down(empty);

down(mutex);

insert_item(item);

up(mutex);

up(full);

}

// producer

while (TRUE){

item = produce_item();

down(mutex);

down(empty);

insert_item(item);

up(mutex);

up(full);

}

What happens if

the buffer is full?

“Minor” change?

Operations (procedures)

15

Monitors

Monitors - higher level synchronization primitive

– A programming language construct
• Collection of procedures, variables and data structures

– Monitor‟s internal data structures are private

Monitors and mutual exclusion
– Only one process active at a time - how?

– Synchronization code is added by the compiler

EECS 343 Operating Systems

Northwestern University

Shared data

At most one thread in the

monitor at any given time

Queue of threads waiting

to get into the monitor
x

Condition

variable

16

Monitors

Once inside a monitor, a thread may discover it can‟t

continue, and

– wants to wait, or

– inform another one that some condition has been satisfied

To enforce sequences of events – Condition variables

– Can only be accessed from within the monitor

– Two operations – wait & signal

– A thread that waits “steps outside” the monitor (to a wait
queue associated with that condition variable)

– What happen after the signal?

• Hoare – process awakened run, the other one is suspended

• Brinch Hansen – process doing the signal must exit the monitor

• Third option? Process doing the signal continues to run (Mesa)

– Wait is not a counter – signal may get lost

EECS 343 Operating Systems

Northwestern University

Monitors in Java

Not truly a monitor

– Every object contains a lock

– The synchronized keyword locks that lock

– Can be applied to methods or blocks of statements

Synchronized method

– e.g. atomic integer

Synchronized statements

– You can lock any object,

and have the lock released

when you leave the block

of statements

EECS 343 Operating Systems

Northwestern University 17

void foo (ArrayList list) {

…

synchronized(list) {

// manipulate list now

}

…

}

public class atomicInt {

int value;

…

public synchronized postIncrement() {

return value++;

}

…

Message passing

IPC in distributed systems

Message passing
send(dest, &msg)

recv(src, &msg)

Design issues

– Lost messages: acks

– Duplicates: sequence #s

– Naming processes

– Performance

– …

EECS 343 Operating Systems

Northwestern University 18

19

Producer-consumer with message passing

EECS 343 Operating Systems

Northwestern University

#define N 100 /* num. of slots in buffer */

void producer(void)

{

int item; message m;

while(TRUE) {

item = produce_item();

receive(consumer, &m);

build_message(&m, item);

send(consumer, &m);

}

}

void consumer(void)

{

int item, i; message m;

for(i = 0; i < N; i++)

send(producer, &m);

while(TRUE) {

receive(producer, &m);

item = extract_item(&m);

send(producer, &m);

consume_item(item);

}

}

20

Barriers

To synchronize groups of processes

Type of applications

– Execution divided in phases

– Process cannot go into new phase until all can

e.g. Temperature propagation in a material

EECS 343 Operating Systems

Northwestern University

Time

B
a
rr

ie
r

A

B

C

D

B
a
rr

ie
r

A

B

C

D

B
a
rr

ie
r

A

B

C

D

Processes

21

Coming up

Deadlocks

How deadlock arise and what you can do about them

EECS 343 Operating Systems

Northwestern University

