
Semaphores & Monitors

Today
Semaphores

Monitors

… and some other primitives

Next time
Deadlocks



Last time - locks

Memory objects with two operations 

– acquire() & release()

acquire() 

– Prevents progress of the thread until the lock can be acquired

We can implement it with a spinlock
acquire (lock) {

while(lock->held); // caller busy waits

lock->held = 1;

}

Of course, both operations must be atomic

– Need hw help! TSL or xchg

while(xchg(&lk−>locked, 1) != 0)
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Last time - locks

Problems with locks

– Spinlocks can waste cycles (a schedule quantum)

– You could block the thread, but that‟s wasteful too – if the lock 

is busy you have at least two extra context switches

– Spin-then-lock is an alternative

• Spin for a bit, then block
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Semaphores

A synchronization primitive

Higher level of abstraction than locks

Invented by Dijkstra in „68 as part of THE operating 

system

Atomically manipulated by two operations

– Down(sem) /wait/P 

• Block until semaphore sem > 0, then substract 1 from sem and proceed

• P – not really for proberen or passeer but for a made-up word prolaag –

“try to reduce”

– Up(sem) /signal/V

• Add 1 to sem

• V – verhogen – increase in Dutch
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Blocking in semaphores

Each semaphore has an associated queue of 

processes/threads

– P/wait/down(sem)

• If sem was “available” (>0), decrement sem & let thread continue

• If sem was “unavailable” (<=0), place thread on associated 

queue; run some other thread
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typedef struct {

int value;

struct thread *L;

} semaphore;

down(S):

--Sem.value;

if (Sem.value < 0){

add this thread to Sem.L;

block;
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Semaphores

…
– V/signal/up(sem)

• If thread(s) are waiting on the queue, unblock one

• If no threads are waiting, increment sem

– The signal is “remembered” for next time up(sem) is called

• Might as well let the “up-ing” thread continue execution

With multiple CPUs – lock semaphore with TSL

But then how’s this different from previous busy-
waiting?
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typedef struct {

int value;

struct thread *L;

} semaphore;

up(S):

Sem.value++;

if (Sem.value <= 0) {

remove a process P from Sem.L;

wakeup(P);

}
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Semaphores

Operation Value Sem.L CR

1 {} <>

P1 down

P2 down

P3 down           

P1 up 

down(Sem):

--Sem.value;

if (Sem.value < 0){

add this thread to Sem.L;

block;

}

up(Sem):

Sem.value++;

if (S.value <= 0) {

remove a thread P from Sem.L;

wakeup(P);

}
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-2        {P2,P3} P1

-1        {P3} P2

-1         {P2} P1

0         {} P1
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Types of semaphores

Binary semaphores – mutex

– Sem is initialized to 1

– Used to guarantee mutual exclusion

– Useful with thread packages

Counting semaphores

– Let N threads into critical section, not just one

– Sem is initialized to N, number of (identical) units available

– Allow threads to enter as long as there are units available
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mutex_unlock:

MOVE MUTEX, #0

RET

mutex_lock:

TSL REGISTER, MUTEX

CMP REGISTER, #0

JXE ok

CALL thread_yield

JMP mutex_lock

ok: RET
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Semaphores

Using both counting semaphores and mutexs

Producer

while (TRUE){

item = produce_item();

down(empty);

down(mutex);

insert_item(item);

up(mutex);

up(full);

}

Consumer

while (TRUE){

down(full);

down(mutex);

item = remove_item();

up(mutex);

up(empty);

consume_item(item);

}

semaphore empty, // # of empty buffers, set to all

full,  // count of full buffers, set to 0 

mutex; // initially 1
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Readers-writers problem

Model access to database

One shared database

– Multiple readers allowed at once

– Only one writer allowed at a time

• If writers is in, nobody else is
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semaphore db,      // mutex for writers (only one) and 

// first/last reader

mutex;   // mutual exclusion for rc upate

int rc;            // read count or number of readers in

void writer(void)

{

while(TRUE) {

think_up_data();

down(&db);

write_db();

up(&db);

}

}
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Readers-writers problem

void reader(void)

{

while(TRUE) {

down(&mutex);

++rc;

if (rc == 1) down(&db);

up(&mutex);

read_db();

down(&mutex);

--rc;

if (rc == 0) up(&db);

up(&mutex);

use_data();

}

}

What problem do you see for the writer?
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Idea for an alternative solution: When a reader arrives, if there‟s a 

writer waiting, the reader could be suspended behind the writer 
instead of being immediately admitted.



Mutexes in Pthreads

Basic mechanism – mutex

Also supports conditions variables

– Typically used to block threads until a condition is met

– Must always be associated with a mutex to avoid a race 

condition between a thread preparing to wait and another one 

signaling it (signal arriving before the thread is actually 

waiting)
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pthread_mutex_init – create it

pthread_mutex_destroy – destroy it

pthread_mutex_lock – acquire it or block

pthread_mutex_trylock – acquire or fail (you can spin then)

pthread_mutex_unlock – release it

pthread_cond_init – create it

pthread_cond_destroy – destroy it

pthrad_cond_wait – yield until the condition is satisfied

pthread_cond_signal – restart one of the threads waiting on it

pthread_broadcast – restart all threads waiting on it
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Mutexes in Pthreads

pthread_mutex_t mutex;

pthread_cond_t condc, condp;

void *producer(void *ptr)

{

int i;

for (i = 1; i <= MAX; i++) {

pthread_mutex_lock(&mutex);

while (buffer !=0) pthread_cond_wait(&condp, &mutex);

buffer = i;

ptread_cond_signal(&condc);    /* wakeup consumer */

pthread_mutex_unlock(&mutex);

}

pthread_exit(0);

}

void *consumer(void *ptr)

{

int i;

for (i = 1; i <= MAX; i++) {

pthread_mutex_lock(&mutex);

while (buffer ==0) pthread_cond_wait(&condc, &mutex);

buffer = 0;

ptread_cond_signal(&condp);   /* wakeup producer */

pthread_mutex_unlock(&mutex);

}

pthread_exit(0);

}
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Clearly missing  a few 

definitions, including 
main
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Problems with semaphores & mutex

Solves most synchronization problems, but:

– Semaphores are essentially shared global variables

• Can be accessed from anywhere (bad software engineering)

– No connection bet/ the semaphore & the data controlled by it

– Used for both critical sections & for coordination (scheduling)

– No control over their use, no guarantee of proper usage
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// producer

while (TRUE){

item = produce_item();

down(empty);

down(mutex);

insert_item(item);

up(mutex);

up(full);

}

// producer

while (TRUE){

item = produce_item();

down(mutex);

down(empty);

insert_item(item);

up(mutex);

up(full);

}

What happens if 

the buffer is full?

“Minor” change?



Operations (procedures)
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Monitors

Monitors - higher level synchronization primitive

– A programming language construct
• Collection of procedures, variables and data structures

– Monitor‟s internal data structures are private

Monitors and mutual exclusion
– Only one process active at a time - how?

– Synchronization code is added by the compiler
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Shared data

At most one thread in the 

monitor at any given time

Queue of threads waiting 

to get into the monitor
x

Condition 

variable
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Monitors

Once inside a monitor, a thread may discover it can‟t 

continue, and 

– wants to wait, or 

– inform another one that some condition has been satisfied

To enforce sequences of events – Condition variables

– Can only be accessed from within the monitor

– Two operations – wait & signal

– A thread that waits “steps outside” the monitor (to a wait 
queue associated with that condition variable)

– What happen after the signal?

• Hoare – process awakened run, the other one is suspended

• Brinch Hansen – process doing the signal must exit the monitor

• Third option? Process doing the signal continues to run (Mesa)

– Wait is not a counter – signal may get lost
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Monitors in Java

Not truly a monitor

– Every object contains a lock

– The synchronized keyword locks that lock

– Can be applied to methods or blocks of statements

Synchronized method 

– e.g. atomic integer

Synchronized statements

– You can lock any object, 

and have the lock released 

when you leave the block 

of statements
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void foo (ArrayList list) {

…

synchronized(list) {

// manipulate list now

}

…

}

public class atomicInt {

int value;

…

public synchronized postIncrement() {

return value++;

}

…



Message passing

IPC in distributed systems

Message passing
send(dest, &msg)

recv(src, &msg)

Design issues

– Lost messages: acks

– Duplicates: sequence #s

– Naming processes

– Performance

– …
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Producer-consumer with message passing
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#define N 100    /* num. of slots in buffer */

void producer(void)

{

int item; message m;

while(TRUE) {

item = produce_item();

receive(consumer, &m);

build_message(&m, item);

send(consumer, &m);

}

}

void consumer(void)

{  

int item, i; message m;

for(i = 0; i < N; i++) 

send(producer, &m);

while(TRUE) {

receive(producer, &m);

item = extract_item(&m);

send(producer, &m);

consume_item(item);

}

}
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Barriers

To synchronize groups of processes

Type of applications

– Execution divided in phases

– Process cannot go into new phase until all can

e.g. Temperature propagation in a material
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Coming up

Deadlocks

How deadlock arise and what you can do about them
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