Semaphores & Monitors

Today

» Semaphores

* Monitors

* ... and some other primitives

Next time
» Deadlocks




Last time - locks

» Memory objects with two operations
- acquire () & release()
* acquire ()
— Prevents progress of the thread until the lock can be acquired

» We can implement it with a spinlock

acquire (lock) {
while (lock->held); // caller busy waits
lock->held = 1;
}

» Of course, both operations must be atomic
— Need hw help! TSL or xchg

while (xchg(&lk->locked, 1) !'= 0)

EECS 343 Operating Systems
EECS, Northwestern University




Last time - locks

* Problems with locks
— Spinlocks can waste cycles (a schedule quantum)

— You could block the thread, but that’s wasteful too — if the lock
IS busy you have at least two extra context switches

— Spin-then-lock is an alternative
» Spin for a bit, then block

EECS 343 Operating Systems
EECS, Northwestern University




Semaphores

» A synchronization primitive
» Higher level of abstraction than locks

* |Invented by Dijkstra in ‘68 as part of THE operating
system

» Atomically manipulated by two operations

— Down(sem) /wait/P
« Block until semaphore sem > 0, then substract 1 from sem and proceed

« P —not really for proberen or passeer but for a made-up word prolaag —
“try to reduce”

— Up(sem) /signal/V
« Add 1tosem
« V —verhogen — increase in Dutch

EECS 343 Operating Systems
Northwestern University




Blocking in semaphores

» Each semaphore has an associated queue of
processes/threads
— P/wait/down(sem)

 If sem was “available” (>0), decrement sem & let thread continue

 |If sem was “unavailable” (<=0), place thread on associated
gueue; run some other thread

down (S) :
--Sem.value; typedef struct {
if (Sem.value < 0){ int value;
add this thread to Sem.L; struct thread *L;
block; } semaphore;

EECS 343 Operating Systems
Northwestern University



Semaphores

— VI/signal/up(sem)
« If thread(s) are waiting on the queue, unblock one
 If no threads are waiting, increment sem
— The signal is “remembered” for next time up(sem) is called
« Might as well let the “up-ing” thread continue execution

up (S) :
Sem.value++; typedef struct ({
if (Sem.value <= 0) { int value;
remove a process P from Sem.L; struct thread *L;
wakeup (P) ;

}

} semaphore;

» With multiple CPUs — lock semaphore with TSL

» But then how’s this different from previous busy-
waiting?

EECS 343 Operating Systems
Northwestern University



Semaphores

Operation Value Sem.L CR
1 {} <>
P1 down 0 0 P1

P2 down -1 {P2} P1
P3 down -2 {P2,P3} P1
P1 up -1 {P3} P2

down (Sem) :

--Sem.value;

if (Sem.value < 0){
add this thread to Sem.L;
block;

}

up (Sem) :

Sem.valuet+;

if (S.value <= 0) {
remove a thread P from Sem.L;
wakeup (P) ;

EECS 343 Operating Systems
Northwestern University




Types of semaphores

» Binary semaphores — mutex
— Semi s initialized to 1
— Used to guarantee mutual exclusion
— Useful with thread packages

mutex lock:
TSL REGISTER, MUTEX

CMP REGISTER, #0 mutex unlock:
JXE ok MOVE MUTEX, #O

CALL thread yield RET

JMP mutex lock
ok: RET

» Counting semaphores
— Let N threads into critical section, not just one
— Sem is initialized to N, number of (identical) units available
— Allow threads to enter as long as there are units available

EECS 343 Operating Systems
Northwestern University




Semaphores

» Using both counting semaphores and mutexs

semaphore empty, // # of empty buffers, set to all
full, // count of full buffers, set to 0
mutex; // initially 1

Producer Consumer
while (TRUE) { while (TRUE) {
item = produce item(); down (full) ;
down (empty) ; down (mutex) ;
— down (mutex) ; item = remove item();
insert item(item); up (mutex) ;
— up (mutex) ; up (empty) ;
up (full) ; consume item(item) ;

EECS 343 Operating Systems
Northwestern University




Readers-writers problem

» Model access to database

» One shared database

— Multiple readers allowed at once

— Only one writer allowed at a time
 |If writers is in, nobody else is

semaphore db, // mutex for writers (only one) and
// first/last reader
mutex; // mutual exclusion for rc upate
int rc; // read count or number of readers in

void writer (void)
{
while (TRUE) {
think up data();
down (&db) ;
write db();
up (&db) ;

EECS 343 Operating Systems
Northwestern University




Readers-writers problem

void reader (void)

{
while (TRUE) {

down (&mutex) ;

++rc;

if (rc == 1) down(&db);
up (&mutex) ;

read_db() ; What problem do you see for the writer?

down (&mutex) ;

--rc;

if (rc == 0) up(&db);
up (&mutex) ;

use_data() ;

|dea for an alternative solution: When a reader arrives, if there’s a

writer waiting, the reader could be suspended behind the writer
instead of being immediately admitted.

EECS 343 Operating Systems
Northwestern University




Mutexes in Pthreads

+ Basic mechanism — mutex

pthread mutex init - create it

pthread mutex destroy - destroy it

pthread mutex lock - acquire it or block

pthread mutex trylock — acquire or fail (you can spin then)
pthread mutex unlock - release it

» Also supports conditions variables
— Typically used to block threads until a condition is met

— Must always be associated with a mutex to avoid a race
condition between a thread preparing to wait and another one
signaling it (signal arriving before the thread is actually
waiting)

pthread cond init - create it

pthread cond destroy - destroy it

pthrad cond wait - yield until the condition is satisfied
pthread cond signal - restart one of the threads waiting on it
pthread broadcast - restart all threads waiting on it

EECS 343 Operating Systems
EECS, Northwestern University




Mutexes in Pthreads

pthread mutex t mutex;

pthread cond t condc, condp; Clearly missing a few
vt main
int 1;

for (1 = 1; i <= MAX; i++) {
pthread mutex lock (&mutex) ;
while (buffer !=0) pthread cond wait(&condp, &mutex);
buffer = i;
ptread cond signal (&condc) ; /* wakeup consumer */
pthread mutex unlock (&mutex) ;

}

pthread exit(0);

}

void *consumer (void *ptr)

{

int i;

for (i = 1; i <= MAX; i++) {
pthread mutex lock (&mutex) ;
while (buffer ==0) pthread cond wait(&condc, &mutex);
buffer = 0;
ptread cond signal (&condp) ; /* wakeup producer */
pthread mutex unlock (&mutex) ;

}
pthread exit(0);

EECS 343 Operating Systems
Northwestern University




Problems with semaphores & mutex

» Solves most synchronization problems, but:

— Semaphores are essentially shared global variables
« Can be accessed from anywhere (bad software engineering)

— No connection bet/ the semaphore & the data controlled by it
— Used for both critical sections & for coordination (scheduling)
— No control over their use, no guarantee of proper usage

“Minor” change? What happens if

// producer // producer the buffer is full?
while (TRUE) { while (TRUE) { 7 —

item = produce_item() ; item = produce item() ;

down (empty) ; down (mutex) ;

down (mutex) ; down (empty) ;

insert item(item); insert item(item);

up (mutex) ; up (mutex) ;

up (full) ; up (full) ;
P

EECS 343 Operating Systems
Northwestern University




Monitors

» Monitors - higher level synchronization primitive

— A programming language construct
» Collection of procedures, variables and data structures

— Monitor’s internal data structures are private
» Monitors and mutual exclusion
— Only one process active at a time - how?
— Synchronization code is added by the compiler

At most one thread in the Operations (procedures)
monitor at any given time
“ eo0o
OO O | » O '
Condition
variable
— L Shared data
Queue of threads waiting OO | X

to get into the monitor

EECS 343 Operating Systems
Northwestern University



Monitors

» Once inside a monitor, a thread may discover it can’t
continue, and
— wants to wait, or
— Inform another one that some condition has been satisfied

» To enforce sequences of events — Condition variables

— Can only be accessed from within the monitor
— Two operations — wait & signal
— A thread that waits “steps outside” the monitor (to a wait
gueue associated with that condition variable)
— What happen after the signal?
» Hoare — process awakened run, the other one is suspended
» Brinch Hansen — process doing the signal must exit the monitor
» Third option? Process doing the signal continues to run (Mesa)
— Wait is not a counter — signal may get lost

EECS 343 Operating Systems
Northwestern University



Monitors Iin Java

* Not truly a monitor

— Every object contains a lock
— The synchronized keyword locks that lock
— Can be applied to methods or blocks of statements

* Synchronized method
— e.g. atomic integer

* Synchronized statements

— You can lock any object,
and have the lock released
when you leave the block
of statements

public class atomicInt {
int value;

public synchronized postIncrement() {
return value++;

}

void foo (Arraylist list) {

synchronized (list) {
// manipulate list now

}

}

EECS 343 Operating Systems
Northwestern University




Message passing

» |PC in distributed systems
» Message passing

send (dest, &msq)
recv(src, &msqg)

* Design issues
— Lost messages: acks
— Duplicates: sequence #s
— Naming processes
— Performance

EECS 343 Operating Systems
Northwestern University




Producer-consumer with message passing

##define N 100 /* num. of slots in buffer */

void producer (void)

{

int item; message m;

while (TRUE) ({
item = produce item() ;
receive (consumer, &m);
build message (&m, item);
send (consumer, &m) ; void consumer (void)
} {

} int item, i; message m;

for(i = 0; i < N; i++)
send (producer, &m) ;

while (TRUE) {
receive (producer, &m) ;
item = extract_item(&m);
send (producer, &m);
consume item(item) ;

}

EECS 343 Operating Systems
Northwestern University




Barriers

* To synchronize groups of processes

» Type of applications
— Execution divided in phases
— Process cannot go into new phase until all can

Processes @_ . @
@___.
o] @

Time =>

* e.g. Temperature propagation in a material

Barrier
I
v
Barrier
Barrier
(0) (o) (=) (>

EECS 343 Operating Systems
Northwestern University



Coming up

o

» Deadlocks
How deadlock arise and what you can do about them

EECS 343 Operating Systems
Northwestern University




