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Memory management  

Ideal memory for a programmer 

– Large 

– Fast 

– Non volatile 

– Cheap 

Nothing like that → memory hierarchy  

– Small amount of fast, expensive memory – cache  

– Some medium-speed, medium price main memory 

– Gigabytes of slow, cheap disk storage 

Memory manager handles the memory hierarchy 

– Allocates scarce resource given competing requests to 

maximize memory utilization and system throughput 

– Offers a convenient abstraction for programming 

– Provides isolation between processes 
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Virtual memory 

A basic abstraction commonly supported by all OS for 

desktops and servers today 

– Efficient use of physical memory – processes can execute 

without needing to have all their address space in memory 

– Program flexibility – processes can run in machines with less 

physical memory than they need 

– Protection – virtual memory isolates the address spaces of 

processes from each other 

Of course, virtual memory needs hardware and OS 

support 

– Today and the next few lectures 

But first let‟s take a history detour … 



Basic memory management 

Simplest memory abstraction – no abstraction at all 

– Early mainframes (before „60), minicomputers (before „70) and 

PCs (before „80) 

– MOV REG1, 1000 moves content of physical memory 1000 

to register 1 

– Logically, only one program running at a time Why? 

– Still here, some alternatives for organizing memory 
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Multiprogramming 

With a bit of hardware – Multiprogramming – while one 

process waits for I/O, another one can use the CPU 

Multiprogramming with fixed partitions 

– Split memory in n parts (possible != sizes) 

– Single or separate input queues for each partition 

– ~IBM OS/360 – MFT: Multiprogramming with Fixed number  

of Tasks 
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Two problems w/ multiprogramming 

Protection and relocation 

– Keep a process out of other processes‟ partitions 

• IBM 360 - modify instructions on the fly 

– Split memory into 2KB blocks,  

– Add key/code combination (4 bit) 

– Key was kept in a register (PSW, program status word) with 

other condition code bits 

– OS trapped any process trying to access memory with 

protection != the PSW key 

– Don‟t know where a program will be loaded in memory 

• Address locations of variables & code routines 

• IBM 360 – modify program at loading time (static relocation) 

Better, a new abstraction: Address space 

– The set of addresses a process can use to address memory 

– Each process has its own address space 
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Two problems w/ multiprogramming 

Use base and limit values (CDC 6600 & Intel 8088) 

– Address locations + base value → physical address 

– Ideally, the base and limit registers can only be modified by 

the OS 

– A disadvantage – Comparisons can be done fast but additions 

can be expensive 
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Swapping 

If physical memory is enough to hold all processes, 

then we are mostly done 

Not enough memory for all processes? 

– Swapping 

• Simplest 

• Bring each process entirely 

• Move another one to disk 

• Compatible Time Sharing System  

(CTSS) – a uniprogrammed  

swapping system 

 

 

– Virtual memory (your other option) 

• Allow processes to be only partially in main memory 
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Swapping 

How is different from MFT? 

– Much more flexible 

• Size & number of partitions changes dynamically 

– Higher memory utilization, but harder memory management 

Swapping in/out creates multiple holes 

– Fragmentation … 
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Fragmentation 

External Fragmentation – total memory space exists to 
satisfy a request, but it is not contiguous 

Reduce external fragmentation by compaction 
– Shuffle contents to group free memory as one block 

– Possible only if relocation is dynamic; done at execution time 

– I/O problem 

• Latch job in memory while it is involved in I/O 

• Do I/O only into OS buffers 

Too expensive (1GB machine that can copy at 
4B/20nsec will take 5 sec to compact memory!) 
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How much memory to allocate? 

If process‟ memory doesn‟t grow – easy 

In real world, memory needs change dynamically: 

– Swapping to make space? 

– Allocate more space to start with 

• Internal Fragmentation – leftover memory is internal  

to a partition 

– Remember what you used when swapping 

More than one growing area per processes 

– Stack & data segment 

– If need more, same as before 
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Memory management 

With dynamically allocated memory 

– OS must keep track of allocated/free memory 

– Two general approaches - bit maps and linked lists 

Bit maps 

– Divide memory into allocation units, track usage with a bitmap 

– Design issues - Size of allocation unit 

• The smaller the size, the larger the bitmap 

• The larger the size, the bigger the waste 

– Simple, but slow – find a big enough chunk? 

Linked list of allocated or free spaces 

– List ordered by address 

– Double link will make your life easier 

• Updating when a process is swapped out or terminates 
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Picking a place – different algorithms 

If list of processes & holes is ordered by addresses, 
different ways to get memory for a new processes … 
– First fit – simple and fast 

– Next fit - ~ First fit but start where it left off 

• Slightly worst performance than First fit 

– Best fit – try to waste the least but … 

• More wasted in tiny holes! 

– Worst fit – try to “waste” the most (easier to reuse) 

• Not too good either 

– Speeding things up 

• Two lists (free and allocated) – slows down de-allocation 

• Order the hole list – first fit ~ best fit 

• Use the same holes to keep the list 

• Quick fit – list of commonly used hole sizes  - allocation is quick, 
merging is expensive 
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Virtual memory 

Handling processes >> than allocated memory 

Keep in memory only what‟s needed 

– Full address space does not need to be resident in memory 

– OS uses main memory as a cache 

Overlay approach 

– Implemented by user 

– Easy on the OS, hard on the  

programmer 
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Virtual memory – paging 

Paging – hide the complexity, let the OS do the job 

– Virtual address space split into pages, each a contiguous 

range of addresses;  

– Physical memory split into page frames 

– Pages are mapped onto frames 

• Doing the translation – OS + MMU 

• Not all have to be in at once 

• If page is in memory, system does the mapping, if not the OS is 

told to get the missing page and re-execute the failed instruction 

Good for everyone 

– Developers – memory seems a contiguous address space 

with size independent of hardware 

– Mem manager can efficiently use mem with minimal internal 

(small units) & no external fragmentation (fixed size units) 

– Protection since processes can‟t access each other‟s memory 
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Address translation with paging 

Virtual to physical address 

– Two parts – virtual page number and offset 

– Virtual page number – index into a page table 

– Page table maps virtual pages to page frames 

• Managed by the OS 

• One entry per page in virtual address space 

– Physical address – page number and offset 
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Pages, page frames and tables 

A simple example with  

64KB virtual address space 

4KB pages 

32KB physical address space 

16 pages and 8 page frames 

Try to access : 

•  MOV REG, 0 

        Virtual address 0 

        Page frame 2 

        Physical address 8192 

   

• MOV REG, 8192 

        Virtual address 8192 

        Page frame 6 

        Physical address 24576 

 

• MOV REG, 20500 

        Virtual address 20500 (20480 + 20) 

        Page frame 3 

        Physical address 20+12288  
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Since virtual memory >> physical memory 

Use a present/absent bit 

MMU checks – 

– If not there, “page fault” to 

the OS (trap) 

– OS picks a victim (?) 

– … sends victim to disk 

– … brings new one 

– … updates page table 

MOVE REG, 32780 

     Virtual address 32780 

     Virtual page 8, byte 12 (32768+12) 

     Page is unmapped – page fault! 
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Page table entry 

An opportunity – there‟s a PTE lookup per memory 

reference, what else can we do with it? 

Looking at the details 

 

 

– Page frame number – the most important field 

– Protection – 1 bit for R&W or R or 3 bits for RWX 

– Present/absent bit 

• Says whether or not the virtual address is used 

– Modified (M): dirty bit 

• Set when a write to the page has occurred 

– Referenced (R): Has it being used? 

– To ensure we are not reading from cache (D) 

• Key for pages that map onto device registers rather than memory 

 

 

… Page frame number Prot. 

Present/absent 

R M D 

Caching disable 
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Kernel memory allocation 

Most OS manage memory as set of fixed-size pages 

Kernel maintains a list of free pages 

Page-level allocator has 

– Two main routines: e.g get_page() & freepage() in SVR4 

– Two main clients: Paging system & KMA 
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Kernel memory allocation 

KMA‟s common users 
– The pathname translation routine 

– Proc structures, vnodes, file descriptor blocks, … 

Since requests << page → page-level allocator is 
inappropriate 

KMA & the page-level allocator  
– Pre-allocates part of memory for the KMA 

– Allow KMA to request memory 

– Allow two-way exchange with the paging system 

Evaluation criteria 
– Memory utilization – physical memory is limited after all 

– Speed – it is used by various kernel subsystems 

– Simple API 

– Allow a two-way exchange with page-level allocator 
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KMA – Resource map allocator  

Resource map – a set of <base, size> pairs 

Initially the pool is described by a single pair 

… after a few exchanges … a list of entries per 

contiguous free regions 

Allocate requests based on 

– First fit, Best fit, Worst fit 

A simple interface 
offset_t rmalloc(size); 

void rmfree(base, size); 

0, 1024 rmalloc(256) 256, 768 rmalloc(320) 576,448 

rmfree(256,128) 

256,128 
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Resource map allocator 

Pros 

– Easy to implement 

– Not restricted to memory allocation 

– It avoid waste (although normally rounds up requests sizes for 

simplicity) 

– Client can release any part of the region 

– Allocator coalesces adjacent free regions 

Cons 

– After a while maps ended up fragmented – low utilization 

– Higher fragmentation, longer map 

– Map may need an allocator for its own entries 

• How would you implement it? 

– To coalesce regions, keep map sorted – expensive 

– Linear search to find a free region large enough 
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KMA – Simple power-of-two free list  

A set of free lists 

Each list keeps free buffers of a particular size (2x) 

Each buffer has one word header 

– Pointer to next free buffer, if free or to  

– Pointer to free list (or size), if allocated 
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KMA – Simple power-of-two free list  

Allocating(size) 

– allocating (size + header) rounded up to next power of two 

– Return pointer to first byte after header 

Freeing doesn‟t require size as argument 

– Move pointer back header-size to access header 

– Put buffer in list 

Initialize allocator by preallocating buffers or get pages 

on demand; if it needs a buffer from an empty list … 

– Block request until a buffer is released 

– Satisfy request with a bigger buffer if available 

– Get a new page from page allocator 
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Power-of-two free lists 

Pros 

– Simple and pretty fast (avoids linear search) 

– Familiar programming interface (malloc, free) 

– Free does not require size; easier to program with 

Cons 

– Rounding means internal fragmentation 

– As many requests are power of two and we loose header; a 

lot of waste 

– No way to coalesce free buffers to get a bigger one 

– Rounding up may be a costly operation 
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Coming up … 

The nitty-gritty details of virtual memory … 
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