
Memory Management

Today

 Basic memory management

 Swapping

 Kernel memory allocation

Next Time

 Virtual memory

EECS 343 Operating Systems

Northwestern University

2

Memory management

Ideal memory for a programmer

– Large

– Fast

– Non volatile

– Cheap

Nothing like that → memory hierarchy

– Small amount of fast, expensive memory – cache

– Some medium-speed, medium price main memory

– Gigabytes of slow, cheap disk storage

Memory manager handles the memory hierarchy

– Allocates scarce resource given competing requests to

maximize memory utilization and system throughput

– Offers a convenient abstraction for programming

– Provides isolation between processes

EECS 343 Operating Systems

Northwestern University

3

Virtual memory

A basic abstraction commonly supported by all OS for

desktops and servers today

– Efficient use of physical memory – processes can execute

without needing to have all their address space in memory

– Program flexibility – processes can run in machines with less

physical memory than they need

– Protection – virtual memory isolates the address spaces of

processes from each other

Of course, virtual memory needs hardware and OS

support

– Today and the next few lectures

But first let‟s take a history detour …

Basic memory management

Simplest memory abstraction – no abstraction at all

– Early mainframes (before „60), minicomputers (before „70) and

PCs (before „80)

– MOV REG1, 1000 moves content of physical memory 1000

to register 1

– Logically, only one program running at a time Why?

– Still here, some alternatives for organizing memory

4 EECS 343 Operating Systems

Northwestern University

BIOS

MSDOS

Mainframes &

minicomputers

User

program

Some palmtops &

embedded systems

 Operating

system in

ROM

Early PCs

User

program

User

program

 Operating

system in

RAM

 Operating

system in

RAM

 Devices in

ROM

5

Multiprogramming

With a bit of hardware – Multiprogramming – while one

process waits for I/O, another one can use the CPU

Multiprogramming with fixed partitions

– Split memory in n parts (possible != sizes)

– Single or separate input queues for each partition

– ~IBM OS/360 – MFT: Multiprogramming with Fixed number

of Tasks

EECS 343 Operating Systems

Northwestern University

Partition 4

Partition 3

Partition 2

Partition 1

Operating

System
0

100K

200K

400K

700K

800K

Multiple

input queues
Single

input queue

Partition 4

Partition 3

Partition 2

Partition 1

Operating

System
0

100K

200K

400K

700K

800K

6

Two problems w/ multiprogramming

Protection and relocation

– Keep a process out of other processes‟ partitions

• IBM 360 - modify instructions on the fly

– Split memory into 2KB blocks,

– Add key/code combination (4 bit)

– Key was kept in a register (PSW, program status word) with

other condition code bits

– OS trapped any process trying to access memory with

protection != the PSW key

– Don‟t know where a program will be loaded in memory

• Address locations of variables & code routines

• IBM 360 – modify program at loading time (static relocation)

Better, a new abstraction: Address space

– The set of addresses a process can use to address memory

– Each process has its own address space

EECS 343 Operating Systems

Northwestern University

7

Two problems w/ multiprogramming

Use base and limit values (CDC 6600 & Intel 8088)

– Address locations + base value → physical address

– Ideally, the base and limit registers can only be modified by

the OS

– A disadvantage – Comparisons can be done fast but additions

can be expensive

EECS 343 Operating Systems

Northwestern University

CPU

base base+limit

 ≥ <
address

memory

yes yes

no no

Trap to OS; addressing error

8

Swapping

If physical memory is enough to hold all processes,

then we are mostly done

Not enough memory for all processes?

– Swapping

• Simplest

• Bring each process entirely

• Move another one to disk

• Compatible Time Sharing System

(CTSS) – a uniprogrammed

swapping system

– Virtual memory (your other option)

• Allow processes to be only partially in main memory

EECS 343 Operating Systems

Northwestern University

Operating

System

User

Space

Main memory Backing store

Swap out

Swap in

Process

P1

Process

P2

9

Swapping

How is different from MFT?

– Much more flexible

• Size & number of partitions changes dynamically

– Higher memory utilization, but harder memory management

Swapping in/out creates multiple holes

– Fragmentation …

Operating

System

Operating

System

A

Operating

System

A

B

Operating

System

A

B

C

Operating

System

B

C

Operating

System

B

C

D

Operating

System

C

D

Operating

System

C

D

A

Space for A is

available, but not as

a single piece.

EECS 343 Operating Systems

Northwestern University

10

Fragmentation

External Fragmentation – total memory space exists to
satisfy a request, but it is not contiguous

Reduce external fragmentation by compaction
– Shuffle contents to group free memory as one block

– Possible only if relocation is dynamic; done at execution time

– I/O problem

• Latch job in memory while it is involved in I/O

• Do I/O only into OS buffers

Too expensive (1GB machine that can copy at
4B/20nsec will take 5 sec to compact memory!)

EECS 343 Operating Systems

Northwestern University

11

How much memory to allocate?

If process‟ memory doesn‟t grow – easy

In real world, memory needs change dynamically:

– Swapping to make space?

– Allocate more space to start with

• Internal Fragmentation – leftover memory is internal

to a partition

– Remember what you used when swapping

More than one growing area per processes

– Stack & data segment

– If need more, same as before

EECS 343 Operating Systems

Northwestern University

A

B

12

Memory management

With dynamically allocated memory

– OS must keep track of allocated/free memory

– Two general approaches - bit maps and linked lists

Bit maps

– Divide memory into allocation units, track usage with a bitmap

– Design issues - Size of allocation unit

• The smaller the size, the larger the bitmap

• The larger the size, the bigger the waste

– Simple, but slow – find a big enough chunk?

Linked list of allocated or free spaces

– List ordered by address

– Double link will make your life easier

• Updating when a process is swapped out or terminates

EECS 343 Operating Systems

Northwestern University

13

Picking a place – different algorithms

If list of processes & holes is ordered by addresses,
different ways to get memory for a new processes …
– First fit – simple and fast

– Next fit - ~ First fit but start where it left off

• Slightly worst performance than First fit

– Best fit – try to waste the least but …

• More wasted in tiny holes!

– Worst fit – try to “waste” the most (easier to reuse)

• Not too good either

– Speeding things up

• Two lists (free and allocated) – slows down de-allocation

• Order the hole list – first fit ~ best fit

• Use the same holes to keep the list

• Quick fit – list of commonly used hole sizes - allocation is quick,
merging is expensive

EECS 343 Operating Systems

Northwestern University

Virtual memory

Handling processes >> than allocated memory

Keep in memory only what‟s needed

– Full address space does not need to be resident in memory

– OS uses main memory as a cache

Overlay approach

– Implemented by user

– Easy on the OS, hard on the

programmer

EECS 343 Operating Systems

Northwestern University

14

20K

30K

10K

Common

routines

Symbol

tables

Overlay

driver

Overlay for a two-pass assembler:

Pass 1 70KB

Pass 2 80KB

Symbol Table 20KB

Common Routines 30KB

Total 200KB

Two overlays: 120 + 130KB

Pass 1 70K

Pass 2

80K

15

Virtual memory – paging

Paging – hide the complexity, let the OS do the job

– Virtual address space split into pages, each a contiguous

range of addresses;

– Physical memory split into page frames

– Pages are mapped onto frames

• Doing the translation – OS + MMU

• Not all have to be in at once

• If page is in memory, system does the mapping, if not the OS is

told to get the missing page and re-execute the failed instruction

Good for everyone

– Developers – memory seems a contiguous address space

with size independent of hardware

– Mem manager can efficiently use mem with minimal internal

(small units) & no external fragmentation (fixed size units)

– Protection since processes can‟t access each other‟s memory

EECS 343 Operating Systems

Northwestern University

16

Address translation with paging

Virtual to physical address

– Two parts – virtual page number and offset

– Virtual page number – index into a page table

– Page table maps virtual pages to page frames

• Managed by the OS

• One entry per page in virtual address space

– Physical address – page number and offset

EECS 343 Operating Systems

Northwestern University

Page frame #

Page table

Page frame 0

Page frame i

Page frame N

Physical memory Virtual page # offset

Virtual address

Page frame # offset

Physical address

Each process has

its own page table

17

Pages, page frames and tables

A simple example with

64KB virtual address space

4KB pages

32KB physical address space

16 pages and 8 page frames

Try to access :

• MOV REG, 0

 Virtual address 0

 Page frame 2

 Physical address 8192

• MOV REG, 8192

 Virtual address 8192

 Page frame 6

 Physical address 24576

• MOV REG, 20500

 Virtual address 20500 (20480 + 20)

 Page frame 3

 Physical address 20+12288

EECS 343 Operating Systems

Northwestern University

18

Since virtual memory >> physical memory

Use a present/absent bit

MMU checks –

– If not there, “page fault” to

the OS (trap)

– OS picks a victim (?)

– … sends victim to disk

– … brings new one

– … updates page table

MOVE REG, 32780

 Virtual address 32780

 Virtual page 8, byte 12 (32768+12)

 Page is unmapped – page fault!

EECS 343 Operating Systems

Northwestern University

19

Page table entry

An opportunity – there‟s a PTE lookup per memory

reference, what else can we do with it?

Looking at the details

– Page frame number – the most important field

– Protection – 1 bit for R&W or R or 3 bits for RWX

– Present/absent bit

• Says whether or not the virtual address is used

– Modified (M): dirty bit

• Set when a write to the page has occurred

– Referenced (R): Has it being used?

– To ensure we are not reading from cache (D)

• Key for pages that map onto device registers rather than memory

… Page frame number Prot.

Present/absent

R M D

Caching disable

EECS 343 Operating Systems

Northwestern University

20

Kernel memory allocation

Most OS manage memory as set of fixed-size pages

Kernel maintains a list of free pages

Page-level allocator has

– Two main routines: e.g get_page() & freepage() in SVR4

– Two main clients: Paging system & KMA

Network

Buffers

Proc

strutcures

inodes, file

descriptors

User

processes

Block buffer

cache

Page-level

allocator

Kernel

memory

allocator

Paging

system

Physical

memory

Paging

system

Provides odd-size buffers to

various kernel subsystems

EECS 343 Operating Systems

Northwestern University

21

Kernel memory allocation

KMA‟s common users
– The pathname translation routine

– Proc structures, vnodes, file descriptor blocks, …

Since requests << page → page-level allocator is
inappropriate

KMA & the page-level allocator
– Pre-allocates part of memory for the KMA

– Allow KMA to request memory

– Allow two-way exchange with the paging system

Evaluation criteria
– Memory utilization – physical memory is limited after all

– Speed – it is used by various kernel subsystems

– Simple API

– Allow a two-way exchange with page-level allocator

EECS 343 Operating Systems

Northwestern University

22

KMA – Resource map allocator

Resource map – a set of <base, size> pairs

Initially the pool is described by a single pair

… after a few exchanges … a list of entries per

contiguous free regions

Allocate requests based on

– First fit, Best fit, Worst fit

A simple interface
offset_t rmalloc(size);

void rmfree(base, size);

0, 1024 rmalloc(256) 256, 768 rmalloc(320) 576,448

rmfree(256,128)

256,128

EECS 343 Operating Systems

Northwestern University

23

Resource map allocator

Pros

– Easy to implement

– Not restricted to memory allocation

– It avoid waste (although normally rounds up requests sizes for

simplicity)

– Client can release any part of the region

– Allocator coalesces adjacent free regions

Cons

– After a while maps ended up fragmented – low utilization

– Higher fragmentation, longer map

– Map may need an allocator for its own entries

• How would you implement it?

– To coalesce regions, keep map sorted – expensive

– Linear search to find a free region large enough

EECS 343 Operating Systems

Northwestern University

24

KMA – Simple power-of-two free list

A set of free lists

Each list keeps free buffers of a particular size (2x)

Each buffer has one word header

– Pointer to next free buffer, if free or to

– Pointer to free list (or size), if allocated

EECS 343 Operating Systems

Northwestern University

32

64

128

256

512

25

KMA – Simple power-of-two free list

Allocating(size)

– allocating (size + header) rounded up to next power of two

– Return pointer to first byte after header

Freeing doesn‟t require size as argument

– Move pointer back header-size to access header

– Put buffer in list

Initialize allocator by preallocating buffers or get pages

on demand; if it needs a buffer from an empty list …

– Block request until a buffer is released

– Satisfy request with a bigger buffer if available

– Get a new page from page allocator

26

Power-of-two free lists

Pros

– Simple and pretty fast (avoids linear search)

– Familiar programming interface (malloc, free)

– Free does not require size; easier to program with

Cons

– Rounding means internal fragmentation

– As many requests are power of two and we loose header; a

lot of waste

– No way to coalesce free buffers to get a bigger one

– Rounding up may be a costly operation

EECS 343 Operating Systems

Northwestern University

27

Coming up …

The nitty-gritty details of virtual memory …

EECS 343 Operating Systems

Northwestern University

