Memory Management

Today

» Basic memory management
* Swapping

» Kernel memory allocation
Next Time

« Virtual memory




Memory management

» |deal memory for a programmer
— Large
— Fast
— Non volatile
— Cheap

» Nothing like that — memory hierarchy
— Small amount of fast, expensive memory — cache
— Some medium-speed, medium price main memory
— Gigabytes of slow, cheap disk storage

» Memory manager handles the memory hierarchy

— Allocates scarce resource given competing requests to
maximize memory utilization and system throughput

— Offers a convenient abstraction for programming
— Provides isolation between processes

EECS 343 Operating Systems
Northwestern University



Virtual memory

* A basic abstraction commonly supported by all OS for
desktops and servers today

— Efficient use of physical memory — processes can execute
without needing to have all their address space in memory

— Program flexibility — processes can run in machines with less
physical memory than they need

— Protection — virtual memory isolates the address spaces of
processes from each other

» Of course, virtual memory needs hardware and OS
support

— Today and the next few lectures
» But first let’s take a history detour ...

EECS 343 Operating Systems
Northwestern University



Basic memory management

» Simplest memory abstraction — no abstraction at all

— Early mainframes (before ‘60), minicomputers (before ‘70) and
PCs (before ‘80)

- MOV REG1, 1000 moves content of physical memory 1000
to register 1

— Logically, only one program running at a time Why?
— Still here, some alternatives for organizing memory

Operating Devices in A/i BIOS
User system in ROM
program ROM
User
User program
program
Operating Operating MSDOS
system in system in
RAM RAM
Mainframes & Some palmtops & Early PCs
minicomputers embedded systems

EECS 343 Operating Systems
Northwestern University




Multiprogramming

» With a bit of hardware — Multiprogramming — while one
process waits for 1/0O, another one can use the CPU

» Multiprogramming with fixed partitions
— Split memory in n parts (possible != sizes)
— Single or separate input queues for each partition
— ~IBM OS/360 — MFT: Multiprogramming with Fixed number

of Tasks
800K 800K
( H )— Partition 4 iti
200K Partition 4 200K
Partition 3 Partition 3
Multiple Single
input queues input queue

= 400K 400K
O Partition 2 O O O O Partition 2
O_Q_Q_ Partition 1 | 200K Partition 1 | 200K

100K 100K

Operating
System 0

Operating
System 0

EECS 343 Operating Systems
Northwestern University




Two problems w/ multiprogramming

+ Protection and relocation

— Keep a process out of other processes’ partitions
* IBM 360 - modify instructions on the fly
— Split memory into 2KB blocks,
— Add key/code combination (4 bit)

— Key was kept in a register (PSW, program status word) with
other condition code bits

— OS trapped any process trying to access memory with
protection != the PSW key

— Don’t know where a program will be loaded in memory
« Address locations of variables & code routines
* IBM 360 — modify program at loading time (static relocation)
» Better, a new abstraction: Address space
— The set of addresses a process can use to address memory
— Each process has its own address space

EECS 343 Operating Systems
Northwestern University



Two problems w/ multiprogramming

» Use base and limit values (CDC 6600 & Intel 8088)

— Address locations + base value — physical address
— ldeally, the base and limit registers can only be modified by
the OS

— A disadvantage — Comparisons can be done fast but additions
can be expensive

base base+limit

l yes l yes
cPU | address i : i :

- T

Trap to OS; addressing error

memory

EECS 343 Operating Systems
Northwestern University




Swapping

» |If physical memory is enough to hold all processes,

then we are mostly done

* Not enough memory for all proces
— Swapping
« Simplest
« Bring each process entirely
* Move another one to disk

« Compatible Time Sharing System
(CTSS) — a uniprogrammed
swapping system

— Virtual memory (your other option)

ses?

Main memory

Operating
System

Swap out

Backing store

Process

Swap in

Py

Process

P,

User
Space

» Allow processes to be only partially in main memory

EECS 343 Operating Systems
Northwestern University




Swapping

» How Is different from MFT?

— Much more flexible
« Size & number of partitions changes dynamically

— Higher memory utilization, but harder memory management

* Swapping in/out creates multiple holes
— Fragmentation ...

Space for Ais
available, but not as

a single piece. -

Operating Operating Operating Operating Operating Operating Operating Operating
System System System System System System System System

EECS 343 Operating Systems
Northwestern University



Fragmentation

» External Fragmentation — total memory space exists to
satisfy a request, but it is not contiguous

» Reduce external fragmentation by compaction
— Shuffle contents to group free memory as one block
— Possible only if relocation is dynamic; done at execution time

— |/O problem
« Latch job in memory while it is involved in 1/0O
« Do I/O only into OS buffers

» Too expensive (1GB machine that can copy at
4B/20nsec will take 5 sec to compact memory!)

EECS 343 Operating Systems
Northwestern University



How much memory to allocate?

» |f process’ memory doesn’t grow — easy
* In real world, memory needs change dynamically:

— Swapping to make space? s
— Allocate more space to start with B
 Internal Fragmentation — leftover memory is internal
to a partition A
— Remember what you used when swapping A
» More than one growing area per processes
— Stack & data segment _BeEw
I } Room for growth
— If need more, same as before Caen
B-Program
%
A-Stack
| reomiorgrow
A-Data
A-Program
Operating
system

EECS 343 Operating Systems
Northwestern University



Memory management

» With dynamically allocated memory
— OS must keep track of allocated/free memory
— Two general approaches - bit maps and linked lists

» Bit maps
— Divide memory into allocation units, track usage with a bitmap

— Design issues - Size of allocation unit
* The smaller the size, the larger the bitmap
* The larger the size, the bigger the waste

— Simple, but slow — find a big enough chunk?
» Linked list of allocated or free spaces

— List ordered by address

— Double link will make your life easier
« Updating when a process is swapped out or terminates

EECS 343 Operating Systems
Northwestern University



Picking a place — different algorithms

» |f list of processes & holes is ordered by addresses,
different ways to get memory for a new processes ...
— First fit — simple and fast
— Next fit - ~ First fit but start where it left off
« Slightly worst performance than First fit
— Best fit — try to waste the least but ...
* More wasted in tiny holes!
— Worst fit — try to “waste” the most (easier to reuse)
* Not too good either
— Speeding things up
« Two lists (free and allocated) — slows down de-allocation
» Order the hole list — first fit ~ best fit
» Use the same holes to keep the list

* Quick fit — list of commonly used hole sizes - allocation is quick,
merging is expensive

EECS 343 Operating Systems
Northwestern University



Virtual memory

» Handling processes >> than allocated memory

» Keep in memory only what’s needed
— Full address space does not need to be resident in memory
— OS uses main memory as a cache

» Overlay approach

— Implemented by user

— Easy on the OS, hard on the Syrbo
programmer 20K

Common

Overlay for a two-pass assembler: onzs

30K

Pass 1 70KB

Pass 2 80KB 10K

Symbol Table 20KB

Common Routines 30KB

Total 200KB 70K Pass 1 80K

Two overlays: 120 + 130KB

EECS 343 Operating Systems
Northwestern University




Virtual memory — paging

» Paging — hide the complexity, let the OS do the job

— Virtual address space split into pages, each a contiguous
range of addresses;

— Physical memory split into page frames

— Pages are mapped onto frames
* Doing the translation — OS + MMU
* Not all have to be in at once
 If page is in memory, system does the mapping, if not the OS is
told to get the missing page and re-execute the failed instruction

» Good for everyone

— Developers — memory seems a contiguous address space
with size independent of hardware

— Mem manager can efficiently use mem with minimal internal
(small units) & no external fragmentation (fixed size units)

— Protection since processes can’t access each other’'s memory

EECS 343 Operating Systems
Northwestern University



Address translation with paging

» Virtual to physical address
— Two parts — virtual page number and offset
— Virtual page number — index into a page table

— Page table maps virtual pages to page frames
« Managed by the OS
* One entry per page in virtual address space

— Physical address — page number and offset

Virtual address

Virtual page # | offset Physical memory

I Page frame 0
Page table

Physical address

Page frame i

A 4

A 4

A 4

Page frame # Page frame # | offset

Page frame N

Each process has
its own page table

EECS 343 Operating Systems
Northwestern University




Pages, page frames and tables

A simple example with
» 64KB virtual address space

Virtual
address
» 4KB pages opacs
» 32KB physical address space  6ok-64K| X
56K-60K [ X | } Virtual page
» 16 pages and 8 page frames  sxssx [ x
48K-52K X
44K-48K 7
. 40K-44K X
Try to access . KoK . Physical
« MOV REG, 0 i memory
Virtual address 0 32K-36K | X address
Page frame 2 28K-32K X 28K-32K
Physical address 8192 24K -28K X 24K-28K
20K-24K 3 20K-24K
* MOV REG, 8192 16K-20K | 4 16K-20K
Virtual address 8192 19K-16K 0 19K-16K
Page frame 6
Physical address 24576 8K-12K 6 8K-12K
4K-8K 1 4K-8K
- MOV REG, 20500 | B Dlsrais
Virtual address 20500 (20480 + 20) P
age frame

Page frame 3
Physical address 20+12288

EECS 343 Operating Systems
Northwestern University




Since virtual memory >> physical memory

» Use a present/absent bit
* MMU checks —

Virtual
— If not there, “page fault” to ad:;:g:
the OS (trap) 60K-64K [ X
— OS picks a victim (?) 56K-60K | X | } Virtual page
o _ 52K-56K | X
— ... sends victim to disk asKks2K | X
— ... brings new one dd-asi| 7
40K-44K [ X N
ysica
— ... updates page table 36K-40K | 5 | memory
32K-36K X address
28K-32K | X 28K-32K
MOVE REG. 32780 24K-28K | X 24K-28K
Virtual a’ddress 32780 2lis-2nk 8 20K-24K
Virtual page 8, byte 12 (32768+12) 16K-20K | 4 \i 16K-20K
Page is unmapped — page fault! 12K-16K 0 12K-16K
8K-12K | 6 8K-12K
4K-8K | 1 > 4K-8K
oK-4K | 2 N }\OK-4K
Page frame

EECS 343 Operating Systems
Northwestern University




Page table entry

* An opportunity — there’s a PTE lookup per memory
reference, what else can we do with it?

» Looking at the detalls

Caching disable Present/absent

D M |R Prot. Page frame number

— Page frame number — the most important field
— Protection — 1 bit for R&W or R or 3 bits for RWX

— Present/absent bit

« Says whether or not the virtual address is used
— Modified (M): dirty bit

« Set when a write to the page has occurred
— Referenced (R): Has it being used?

— To ensure we are not reading from cache (D)
» Key for pages that map onto device registers rather than memory

EECS 343 Operating Systems
Northwestern University



Kernel memory allocation

» Most OS manage memory as set of fixed-size pages
» Kernel maintains a list of free pages
» Page-level allocator has

Physical
memory

Page-level
allocator
Kernel

— Two main routines: e.g get page () & freepage () in SVR4
Provides odd-size buffers to
memory
Network Proc inodes, file User Block buffer

— Two main clients: Paging system & KMA
various kernel subsystems
\
allocator
Buffers strutcures descriptors processes cache

EECS 343 Operating Systems
Northwestern University



Kernel memory allocation

+ KMA’s common users
— The pathname translation routine
— Proc structures, vnodes, file descriptor blocks, ...

* Since requests << page — page-level allocator Is
Inappropriate

» KMA & the page-level allocator
— Pre-allocates part of memory for the KMA

— Allow KMA to request memory
— Allow two-way exchange with the paging system

» Evaluation criteria
— Memory utilization — physical memory is limited after all
— Speed - it is used by various kernel subsystems
— Simple API
— Allow a two-way exchange with page-level allocator

EECS 343 Operating Systems
Northwestern University



KMA — Resource map allocator

* Resource map — a set of <base, size> pairs
 |nitially the pool is described by a single pair

» ... after a few exchanges ... a list of entries per
contiguous free regions

» Allocate requests based on
— First fit, Best fit, Worst fit

* A simple interface

offset t rmalloc(size);

volid rmfree (base, size);

256,128
576,448 rmalloc(256) rmalloc(320)

rmfree(256,128)

EECS 343 Operating Systems
Northwestern University



Resource map allocator

* Pros
— Easy to implement
— Not restricted to memory allocation
— It avoid waste (although normally rounds up requests sizes for
simplicity)
— Client can release any part of the region
— Allocator coalesces adjacent free regions

 Cons
— After a while maps ended up fragmented — low utilization
— Higher fragmentation, longer map

— Map may need an allocator for its own entries
« How would you implement it?

— To coalesce regions, keep map sorted — expensive
— Linear search to find a free region large enough

EECS 343 Operating Systems
Northwestern University



KMA — Simple power-of-two free list

* A set of free lists
» Each list keeps free buffers of a particular size (2%)

» Each buffer has one word header
— Pointer to next free buffer, if free or to
— Pointer to free list (or size), if allocated

) [t
2| 64
B 128_”. ~i—i—i
i s e
) (s 1 o —

EECS 343 Operating Systems
Northwestern University



KMA — Simple power-of-two free list

» Allocating(size)
— allocating (size + header) rounded up to next power of two
— Return pointer to first byte after header

» Freeing doesn’t require size as argument
— Move pointer back header-size to access header
— Put buffer in list

 |nitialize allocator by preallocating buffers or get pages
on demand; if it needs a buffer from an empty list ...
— Block request until a buffer is released
— Satisfy request with a bigger buffer if available
— Get a new page from page allocator




Power-of-two free lists

* Pros
— Simple and pretty fast (avoids linear search)
— Familiar programming interface (malloc, free)
— Free does not require size; easier to program with

+ Cons
— Rounding means internal fragmentation

— As many requests are power of two and we loose header; a
lot of waste

— No way to coalesce free buffers to get a bigger one
— Rounding up may be a costly operation

EECS 343 Operating Systems
Northwestern University




Coming up ...

» The nitty-gritty details of virtual memory ...

EECS 343 Operating Systems
Northwestern University



