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Today 
 Virtual memory  

 Page replacement algorithms 

 Modeling page replacement algorithms 
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Reminder: virtual memory with paging 

Hide the complexity – let the OS do the job 

Virtual address space split into pages 

Physical memory split into page frames 

Page & page frames = size (512B … 64KB) 

Map pages into page frames  

– Doing the translation – OS + MMU 
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Address translation with paging 

Virtual to physical address 

– Two parts – virtual page number and offset 

– Virtual page number – index into a page table 

– Page table maps virtual pages to page frames 

• Managed by the OS 

• One entry per page in virtual address space 

– Physical address – page number and offset 

 

EECS 343 Operating Systems 

Northwestern University 

Page frame # 

Page table 

Page frame 0 

Page frame i 

Page frame N 

Physical memory Virtual page # offset 

Virtual address 

Page frame # offset 

Physical address 

Each process has 

its own page table 



4 

Details of the MMU work 

MMU with 16 4KB pages 

Page # (first 4 bits) index into page table 

If not there 

– Page fault 

Else 

– Output register + 

– 12 bit offset → 

– 15 bit physical address 

Page 

number 
Offset 
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Page table entry 

An opportunity – there’s a PTE lookup per memory 

reference, what else can we do with it? 

Looking at the details 

 

 

– Page frame number – the most important field 

– Protection – 1 bit for R&W or R or 3 bits for RWX 

– Present/absent bit 

• Says whether or not the virtual address is used 

– Modified (M): dirty bit 

• Set when a write to the page has occurred 

– Referenced (R): Has it being used? 

– To ensure we are not reading from cache (D) 

• Key for pages that map onto device registers rather than memory 

 

 

… Page frame number Prot. 

Present/absent 

R M D 

Caching disable 
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Page replacement algorithms 

OS uses main memory as (page) cache 

– If only load when reference – demand paging 

Page fault – cache miss 

– Need room for new page? Page replacement algorithm 

– What’s your best candidate for removal? 

• The one you will never touch again – duh! 

What do you do with victim page? 

– A modified page must first be saved 

– An unmodified one just overwritten 

– Better not to choose an often used page 

• It will probably need to be brought back in soon 
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How can any of this work?!?! 

Locality 

– Temporal locality – location recently referenced tend to be 

referenced again soon 

– Spatial locality – locations near recently referenced are more 

likely to be referenced soon 

Locality means paging could be infrequent 

– Once you brought a page in, you’ll use it many times 

– Some issues that may play against you 

• Degree of locality of application 

• Page replacement policy and application reference pattern 

• Amount of physical memory and application footprint 
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Optimal algorithm (Belady’s algorithm) 

For now, assume a process pages against itself, using 

a fixed number of page frames 

Best page to replace – the one you’ll never need again 

– Replace page needed at the farthest point in future 

– Optimal but unrealizable 

Estimate by … 

– Logging page use on previous runs of  process 

– Although impractical, useful for comparison 
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Not recently used (NRU) algorithm 

Each page has Reference and Modified bits 

– Set when page is referenced, modified 

– R bit set means recently referenced, so you must clear it 

every now and then 

Pages are classified 

 

 

 

 

NRU removes page at random 

– from lowest numbered, non-empty class 

Easy to understand, relatively efficient to implement 

and sort-of OK performance 

R M Class 

0 0 Not referenced, not modified (0,0 → 0) 

0 1 Not referenced, modified (0,1 → 1) 

1 0 Referenced, but not modified (1,0 → 2) 

1 1 Referenced and modified (1,1 → 3) 
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FIFO algorithm 

Maintain a linked list of all pages – in order of arrival 

Victim is first page of list 

– Maybe the oldest page will not be used again … 

Disadvantage 

– But maybe it will – the fact is, you have no idea! 

– Increasing physical memory might increase page faults 

(Belady’s anomaly) 
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Second chance algorithm 

Simple modification of FIFO 

– Avoid throwing out a heavily used page – look at the R bit 

Operation of second chance 

– Pages sorted in FIFO order 

– If page has been used, give it another chance – move it to the 

end of the list of pages, clear R and update its timestamp 

– Page list if fault occurs at time 20, A has R bit set 

(time is loading time) 

Page Time R 

H 18 X 

G 15 X 

F 14 X 

E 12 X 

D 8 X 

C 7 X 

B 3 0 

A 0 1 

Page Time R 

A 20 0 

H 18 X 

G 15 X 

F 14 X 

E 12 X 

D 8 X 

C 7 X 

B 3 0 

Most recently loaded 

Oldest page 
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Clock algorithm 

Second chance is reasonable but inefficient 

– Quit moving pages around – move a pointer? 

Same as Second chance but for implementation 

– Keep all pages in a circular list, as a clock, with the hand 

pointing to the oldest page 

– When page fault 

• Look at page pointed at by hand 

– If R = 0, evict page 

– If R = 1. clear R & move hand 
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Least recently used (LRU) algorithm 

Pages used recently will used again soon 

– Throw out page unused for longest time 

– Idea: past experience is a decent predictor of future behavior 

• LRU looks at the past, Belady’s wants to look at the future 

• How is LRU different from FIFO? 

Must keep a linked list of pages 

– Most recently used at front, least at rear 

– Update this list every memory reference!! 

• Too expensive in memory bandwidth, algorithm execution time, etc 

Alternatively keep counter in page table entry 

– Equipped hardware with a counter, incremented after each 

instruction 

– After each reference, update PTE for the referenced page 

with value of the counter 

– Choose page with lowest value counter 
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A second HW LRU implementation 

Use a matrix – n page frames – n x n matrix 

Page k is reference 

– Set all bits of row k to 1 

– Set all bits of column k to 0 

Page of lowest row is LRU 
 

0,1,2,3,2,1,0,3,2 
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Simulating LRU in software 

Not Frequently Used  

– Software counter associated with each page 

– At clock interrupt – add R to counter for each page 

– Problem - it never forgets! 

Better – Aging 

– Push R from the left, drop bit on the right  

– How is this not LRU? One bit per tick & a finite number of bits 

per counter 
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Working set 

Most programs show locality of reference 

– Over a short time, just a few common pages 

Working set 

– Models the dynamic locality of a process’ memory usage 

– i.e. the set of pages currently needed by a process 

Intuitively, working set must be in memory, otherwise 

you’ll experience heavy faulting (thrashing) 

– What does it mean ‘how much memory does program x 

need?” – what is program x average/worst-case working set 

size? 
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Working set 

Demand paging  

– Simplest strategy, load page when needed 

Can you do better knowing a process WS? 

– How could you use this to reduce turnaround time? Prepaging 

Working set definition 

– ws(k,t) = {pages p such that p was referenced in the k most 

recent memory references} (k is WS window size) 

 

 

 

 

 

– A more operational definition – instead of k reference pages, t 

msec of execution time 
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Clearly ws(ki,t) ≤ ws(kj,t) for i < j  What bounds ws(k, t) 

as you increase k? 
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Working set algorithm 

Working set and page replacement 

– Victim – a page not in the working set 

At each clock interrupt – scan the page table 

– R = 1? Write Current Virtual Time (CVT) into Time of Last Use 

– R = 0? CVT – Time of Last Use > Threshold ? out! else see if 

there’s some other page and evict oldest (w/ R=0)  

– If all are in the working set (all R = 1), random, preferably 

clean 
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2204 

Current virtual time 

2204 1 

2204 1 
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1620 0 
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WSClock algorithm 

Problem with WS algorithm – Scans the whole table 

Instead, scan only what you need to find a victim 

Combine clock & working set 
– If R = 1, unset it 

– If R = 0, if age > T and page clean, out 

– If dirty, schedule write and  

check next one 

– If loop around,  

There’s 1+ write scheduled –  

you’ll have a clean page soon 

There’s none, pick any one 

R = 0 & 2204 – 1213 > T 
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Cleaning policy 

To avoid having to write pages out when needed – 

paging daemon 

– Periodically inspects state of memory 

– Keep enough pages free 

– If we need the page before it’s overwritten – reclaim it! 

Two hands for better performance (BSD) 

– First one clears R, second checks it 

– If hands are kept close, only heavily used pages have a 

chance 

– If back is just ahead of front hand (359 degrees), original clock 

– Two key parameters, adjusted at runtime 

• Scanrate – rate at which hands move through the list 

• Handspread – gap between them 
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Design issues – global vs. local policy 

When you need a page frame, pick a victim from 

– Among your own resident pages – Local 

– Among all pages – Global 

Local algorithms 

– Basically every process gets a fixed % of memory 

Global algorithms  

– Dynamically allocate frames among processes 

– Better, especially if working set size changes at runtime 

– How many page frames per process? 

• Start with basic set & react to Page Fault Frequency (PFF) 

Most replacement algorithms can work both ways 

except for those based on working set 

Why not working set based algorithms? 
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Load control 

Despite good designs, system may still thrash 

– Sum of working sets > physical memory 

Page Fault Frequency (PFF) indicates that 

– Some processes need more memory  

– but no process needs less 

Way out: Swapping  

– So yes, even with paging you still need swapping 

– Reduce number of processes competing for memory 

– ~ two-level scheduling – careful with which process to swap 

out (there’s more than just paging to worry about!) 

What would you like of the remaining processes? 
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Next time … 

We’ll now consider design & implementation issues for 

paging systems 

– Things you want/need to pay attention for good performance 
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