
Virtual Memory

Today
 Virtual memory

 Page replacement algorithms

 Modeling page replacement algorithms

2

Reminder: virtual memory with paging

Hide the complexity – let the OS do the job

Virtual address space split into pages

Physical memory split into page frames

Page & page frames = size (512B … 64KB)

Map pages into page frames

– Doing the translation – OS + MMU

EECS 343 Operating Systems

Northwestern University

Disk

controller

Memory

CPU

package

CPU

The CPU sends virtual

addresses to the MMU

Memory

management

unit

Bus
The MMU sends physical

addresses to the memory

3

Address translation with paging

Virtual to physical address

– Two parts – virtual page number and offset

– Virtual page number – index into a page table

– Page table maps virtual pages to page frames

• Managed by the OS

• One entry per page in virtual address space

– Physical address – page number and offset

EECS 343 Operating Systems

Northwestern University

Page frame #

Page table

Page frame 0

Page frame i

Page frame N

Physical memory Virtual page # offset

Virtual address

Page frame # offset

Physical address

Each process has

its own page table

4

Details of the MMU work

MMU with 16 4KB pages

Page # (first 4 bits) index into page table

If not there

– Page fault

Else

– Output register +

– 12 bit offset →

– 15 bit physical address

Page

number
Offset

EECS 343 Operating Systems

Northwestern University

5

Page table entry

An opportunity – there’s a PTE lookup per memory

reference, what else can we do with it?

Looking at the details

– Page frame number – the most important field

– Protection – 1 bit for R&W or R or 3 bits for RWX

– Present/absent bit

• Says whether or not the virtual address is used

– Modified (M): dirty bit

• Set when a write to the page has occurred

– Referenced (R): Has it being used?

– To ensure we are not reading from cache (D)

• Key for pages that map onto device registers rather than memory

… Page frame number Prot.

Present/absent

R M D

Caching disable

EECS 343 Operating Systems

Northwestern University

6

Page replacement algorithms

OS uses main memory as (page) cache

– If only load when reference – demand paging

Page fault – cache miss

– Need room for new page? Page replacement algorithm

– What’s your best candidate for removal?

• The one you will never touch again – duh!

What do you do with victim page?

– A modified page must first be saved

– An unmodified one just overwritten

– Better not to choose an often used page

• It will probably need to be brought back in soon

EECS 343 Operating Systems

Northwestern University

7

How can any of this work?!?!

Locality

– Temporal locality – location recently referenced tend to be

referenced again soon

– Spatial locality – locations near recently referenced are more

likely to be referenced soon

Locality means paging could be infrequent

– Once you brought a page in, you’ll use it many times

– Some issues that may play against you

• Degree of locality of application

• Page replacement policy and application reference pattern

• Amount of physical memory and application footprint

EECS 343 Operating Systems

Northwestern University

1

8

Optimal algorithm (Belady’s algorithm)

For now, assume a process pages against itself, using

a fixed number of page frames

Best page to replace – the one you’ll never need again

– Replace page needed at the farthest point in future

– Optimal but unrealizable

Estimate by …

– Logging page use on previous runs of process

– Although impractical, useful for comparison

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1

2

1

2

3

1

2

3

4

1

2

3

5

1

2

3

5

1

2

3

4

1

2

3

4

Need room

for this one

Your ideal

victim!

EECS 343 Operating Systems

Northwestern University

9

Not recently used (NRU) algorithm

Each page has Reference and Modified bits

– Set when page is referenced, modified

– R bit set means recently referenced, so you must clear it

every now and then

Pages are classified

NRU removes page at random

– from lowest numbered, non-empty class

Easy to understand, relatively efficient to implement

and sort-of OK performance

R M Class

0 0 Not referenced, not modified (0,0 → 0)

0 1 Not referenced, modified (0,1 → 1)

1 0 Referenced, but not modified (1,0 → 2)

1 1 Referenced and modified (1,1 → 3)

EECS 343 Operating Systems

Northwestern University

How can this occur?

10

FIFO algorithm

Maintain a linked list of all pages – in order of arrival

Victim is first page of list

– Maybe the oldest page will not be used again …

Disadvantage

– But maybe it will – the fact is, you have no idea!

– Increasing physical memory might increase page faults

(Belady’s anomaly)

A, B, C, D, A, B, E, A, B, C, D, E

E
B

A

A B
A

C
B

A B

D
C D

A

C

B
A

D

E
B

A

E
B

A

C
E

B

D
C

E

D
C

E

EECS 343 Operating Systems

Northwestern University

11

Second chance algorithm

Simple modification of FIFO

– Avoid throwing out a heavily used page – look at the R bit

Operation of second chance

– Pages sorted in FIFO order

– If page has been used, give it another chance – move it to the

end of the list of pages, clear R and update its timestamp

– Page list if fault occurs at time 20, A has R bit set

(time is loading time)

Page Time R

H 18 X

G 15 X

F 14 X

E 12 X

D 8 X

C 7 X

B 3 0

A 0 1

Page Time R

A 20 0

H 18 X

G 15 X

F 14 X

E 12 X

D 8 X

C 7 X

B 3 0

Most recently loaded

Oldest page

EECS 343 Operating Systems

Northwestern University

12

Clock algorithm

Second chance is reasonable but inefficient

– Quit moving pages around – move a pointer?

Same as Second chance but for implementation

– Keep all pages in a circular list, as a clock, with the hand

pointing to the oldest page

– When page fault

• Look at page pointed at by hand

– If R = 0, evict page

– If R = 1. clear R & move hand

EECS 343 Operating Systems

Northwestern University

R: 0

A
R: 0

B

R: 1

C

R: 1

D

R: 0

E

R: 0

F

R: 0

G
R: 0

G
R: 1

I

R: 1

J

R: 0

K

R: 0

L

R: 0

R: 0

Evict this one!

13

Least recently used (LRU) algorithm

Pages used recently will used again soon

– Throw out page unused for longest time

– Idea: past experience is a decent predictor of future behavior

• LRU looks at the past, Belady’s wants to look at the future

• How is LRU different from FIFO?

Must keep a linked list of pages

– Most recently used at front, least at rear

– Update this list every memory reference!!

• Too expensive in memory bandwidth, algorithm execution time, etc

Alternatively keep counter in page table entry

– Equipped hardware with a counter, incremented after each

instruction

– After each reference, update PTE for the referenced page

with value of the counter

– Choose page with lowest value counter

 EECS 343 Operating Systems

Northwestern University

14

A second HW LRU implementation

Use a matrix – n page frames – n x n matrix

Page k is reference

– Set all bits of row k to 1

– Set all bits of column k to 0

Page of lowest row is LRU

0,1,2,3,2,1,0,3,2

EECS 343 Operating Systems

Northwestern University

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 2 3

0

1

2

3

0 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 1 2 3

0

1

2

3

0 0 1 1

1 0 1 1

0 0 0 0

0 0 0 0

0 1 2 3

0

1

2

3

0 0 0 1

1 0 0 1

1 1 0 1

0 0 0 0

0 1 2 3

0

1

2

3

0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

0 1 2 3

0

1

2

3

0 0 0 0

1 0 0 0

1 1 0 1

1 1 0 0

0 1 2 3

0

1

2

3

0 0 0 0

1 0 1 1

1 0 0 1

1 0 0 0

0 1 2 3

0

1

2

3

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

0 1 2 3

0

1

2

3

0 1 1 0

0 0 1 0

0 0 0 0

1 1 1 0

0 1 2 3

0

1

2

3

0 0 1 0

0 0 1 0

1 0 1 1

1 0 1 0

0 1 2 3

0

1

2

3

… 1,0,3,2

15

Simulating LRU in software

Not Frequently Used

– Software counter associated with each page

– At clock interrupt – add R to counter for each page

– Problem - it never forgets!

Better – Aging

– Push R from the left, drop bit on the right

– How is this not LRU? One bit per tick & a finite number of bits

per counter

EECS 343 Operating Systems

Northwestern University

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1

0

1

0

1

1

0

1

2

3

4

5

0 0 0 0 0 0 0 0
0

1

2

3

4

5

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1

1

0

0

1

0

0

1

2

3

4

5

R R

16

Working set

Most programs show locality of reference

– Over a short time, just a few common pages

Working set

– Models the dynamic locality of a process’ memory usage

– i.e. the set of pages currently needed by a process

Intuitively, working set must be in memory, otherwise

you’ll experience heavy faulting (thrashing)

– What does it mean ‘how much memory does program x

need?” – what is program x average/worst-case working set

size?

EECS 343 Operating Systems

Northwestern University

ws(k,t)

k

17

Working set

Demand paging

– Simplest strategy, load page when needed

Can you do better knowing a process WS?

– How could you use this to reduce turnaround time? Prepaging

Working set definition

– ws(k,t) = {pages p such that p was referenced in the k most

recent memory references} (k is WS window size)

– A more operational definition – instead of k reference pages, t

msec of execution time

EECS 343 Operating Systems

Northwestern University

Clearly ws(ki,t) ≤ ws(kj,t) for i < j What bounds ws(k, t)

as you increase k?

18

Working set algorithm

Working set and page replacement

– Victim – a page not in the working set

At each clock interrupt – scan the page table

– R = 1? Write Current Virtual Time (CVT) into Time of Last Use

– R = 0? CVT – Time of Last Use > Threshold ? out! else see if

there’s some other page and evict oldest (w/ R=0)

– If all are in the working set (all R = 1), random, preferably

clean

EECS 343 Operating Systems

Northwestern University

2204

Current virtual time

2204 1

2204 1

2204 1

1620 0

1213 0

…

2014 1

2020 1

2032 1

1620 0

1213 0

…
Information

about a page

Time of last use

Threshold = 700

R bit

Page to

remove

19

WSClock algorithm

Problem with WS algorithm – Scans the whole table

Instead, scan only what you need to find a victim

Combine clock & working set
– If R = 1, unset it

– If R = 0, if age > T and page clean, out

– If dirty, schedule write and

check next one

– If loop around,

There’s 1+ write scheduled –

you’ll have a clean page soon

There’s none, pick any one

R = 0 & 2204 – 1213 > T

EECS 343 Operating Systems

Northwestern University

1620 0

1213 0

2003 1 2020 1

1980 1

2084 1 2032 1

2014 1

2204

Current virtual time

2204 1

2204 1

0

20

Cleaning policy

To avoid having to write pages out when needed –

paging daemon

– Periodically inspects state of memory

– Keep enough pages free

– If we need the page before it’s overwritten – reclaim it!

Two hands for better performance (BSD)

– First one clears R, second checks it

– If hands are kept close, only heavily used pages have a

chance

– If back is just ahead of front hand (359 degrees), original clock

– Two key parameters, adjusted at runtime

• Scanrate – rate at which hands move through the list

• Handspread – gap between them

EECS 343 Operating Systems

Northwestern University

21

Design issues – global vs. local policy

When you need a page frame, pick a victim from

– Among your own resident pages – Local

– Among all pages – Global

Local algorithms

– Basically every process gets a fixed % of memory

Global algorithms

– Dynamically allocate frames among processes

– Better, especially if working set size changes at runtime

– How many page frames per process?

• Start with basic set & react to Page Fault Frequency (PFF)

Most replacement algorithms can work both ways

except for those based on working set

Why not working set based algorithms?

EECS 343 Operating Systems

Northwestern University

22

Load control

Despite good designs, system may still thrash

– Sum of working sets > physical memory

Page Fault Frequency (PFF) indicates that

– Some processes need more memory

– but no process needs less

Way out: Swapping

– So yes, even with paging you still need swapping

– Reduce number of processes competing for memory

– ~ two-level scheduling – careful with which process to swap

out (there’s more than just paging to worry about!)

What would you like of the remaining processes?

EECS 343 Operating Systems

Northwestern University

23

Next time …

We’ll now consider design & implementation issues for

paging systems

– Things you want/need to pay attention for good performance

EECS 343 Operating Systems

Northwestern University

