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Considerations with page tables 

Two key issues with page tables 

Mapping must be fast 

– Done on every memory reference, at least 1 per instruction 

– Simplest solutions 

• Page table in registers 

– Fast during execution, potentially $$$ & slow to context 

switch 

• Page table in memory & one register pointing to start (Page 

Table Base Register, PTBR) 

– Fast to context switch & cheap, but slow during execution 

With large address spaces, page tables will be large 

w/ 32 bit & 4KB page → 12 bit offset, 20 bit page # ~ 1million 

w/ 64 bit & 4KB page → 212 (offset) + 252 pages ~ 4.5x1015!!! 
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Speeding things up a bit 

Simple page table 2x cost of memory lookups 

– First into page table, a second to fetch the data 

– Two-level page tables triple the cost! 

 How can we make this more efficient? 

– Goal – make fetching from a virtual address about as efficient 

as fetching from a physical address 

– Observation – large number of references to small number of 

pages 

– Solution – use a hardware cache inside the CPU – 

Translation Lookaside Buffer (TLB) 

• Cache the virtual-to-physical translations in the hardware 

• Traditionally managed by the memory management unit (MMU) 
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TLBs 

TLB – Translates virtual page #s into page frame #s 
– Can be done in single machine cycle 

TLB is implemented in hardware 
– It’s a fully associative cache (parallel search) 

– Cache tags are virtual page numbers 

– Cache values are page frame numbers 

• With this + offset, MMU can  calculate physical address 
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Managing TLBs 

Address translations mostly handled by TLB 

– >99% of translations, but there are TLB misses 

– If a miss, translation is placed into the TLB 

Hardware (memory management unit (MMU)) 

– Knows where page tables are in memory 

• OS maintains them, HW access them directly 

Software loaded TLB (OS) 

– TLB miss faults to OS, OS finds page table entry & loads TLB 

– Must be fast 

• CPU ISA has instructions for TLB manipulation 

• OS gets to pick the page table format 
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Effective access time 

Associative Lookup =  time units 

Hit ratio -  - percentage of times that a page number 

is found in the associative registers (ratio related to 

TLB size) 
 

 Effective Memory Access Time (EAT) 

     

   EAT =  * ( + memory-access) +  

                                                          (1 - ) ( + 2* memory-access) 

       

     = 80%          = 20 nsec           memory-access = 100 nsec 

  

   EAT = 0.8 * (20 + 100) + 0.2 * (20 + 2 * 100) = 140 nsec 

 

TLB hit 

TLB miss 
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Managing TLBs 

OS must ensure TLB and page tables are consistent 

– When OS changes protection bits in an entry, it needs to 

invalidate the line if it is in the TLB 

What happens on a process context switch? 

– Remember, each process typically has its own page tables 

– Need to invalidate all the entries in TLB!  (flush TLB) 

• A big part of why process context switches are costly 

– Can you think of a hardware fix to this? 

When the TLB misses, and a new process table entry 

is loaded, a cached entry must be evicted 

– How to choose a victim is called “TLB replacement policy” 

– Implemented in hardware, usually simple (e.g., LRU) 
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 0000 0000 0100 0000 0011 0000 0000 0100 
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Hierarchical page table 

Handling large address spaces - page the page table! 

Same argument – you don’t need the full page table 

Virtual address (32-bit machine, 4KB page): 
Page # (20 bits) + Offset (12 bits) 

Since page table is paged, page number is divided:  

 Page number (10 bits) + Page offset in 2nd level (10 bits) 
  

 p1| p2 | offset 

 

p1 - index into the outer page table 

p2 - displacement within outer page 

 

Example 

 Virtual address: 0x00403004 
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Three-level page table in Linux 

Designed to accommodate the 64-bit Alpha 

– To adjust for a 32-bit proc. – middle directory of size 1 
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Inverted and hashed page tables 

Another way to save space – inverted page tables 

– Page tables are index by virtual page #, thus their size 

– Inverted page tables – one entry per page frame 

• Problem – too slow mapping!  

– Hash tables may help 

– Also, Translation Lookaside Buffer (TLB) … 

 

EECS 343 Operating Systems 

Northwestern University 

0 

218-1 

Traditional page table 

with an entry per each 

252 pages 

Indexed by 

virtual page 

0 

252-1 

1GB physical memory 

has 218 4KB page 

frames 

0 

218-1 

Hash table 

Indexed by hash 

on virtual page 
Virtual page | page frame 



11 

Page size 

OS can pick a page size (how?) - small or large?  

Small 

– Less internal fragmentation  

– Better fit for various data structures, code sections 

– Less unused program in memory,  

but … 

– More I/O time, getting page from disk … most of the time goes 

into seek and rotational delay! 

– Larger page tables 

 

 Average process size s 

Page size p 

Page entry size e 

overhead = se / p + p/2 

Taking first derivative respect to p 

and equating it to zero 

-se / p2 + 1/2 = 0 

p = √2se 

s = 1MB 

e = 8 bytes 

Optimal p = 4KB 

Page table 

space 
Internal 

fragmentation 
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Separate instruction & data spaces 

One address space – size limit  

Pioneered by PDP-11: 2 address spaces, Instruction 

and Data spaces 

– Double the space 

– Each with its own page table & paging algorithm 
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Shared pages 

In large multiprogramming systems – multiple users 

running same program - share pages? 

Some details 

– Not all is shareable 

– With I-space and D-space, sharing would be easier 

– What do you do if you swap one of the sharing process out? 

• Scan all page tables may not be a good idea 

Sharing data is slightly trickier than sharing code 

– Fork in Unix 

– Sharing both data and program bet/ parent and child; each 

with its own page table but pages marked as READ ONLY 

– Copy On Write 
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Virtual memory interface 

So far, transparent virtual memory 

Some control over the memory map for expert use 

– For shared memory – fast IPC 

 

 

 

 

 

 

– For distributed shared memory 

Going to disk may be slower than going to somebody else’s 

memory! 

 

client server 

IPC: pipe, etc 

client server shared mem. 

user/kernel 
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Implementation issues 

Operating System involvement w/ paging: 

Process creation 

– Determine program size, allocate space for page table, for 

swap, bring stuff into swap, record info into PCB 

Process execution 

– Reset MMU for new process, flush TLB, make new page table 

current, pre-page? 

Page fault time 

– Find out which virtual address cause the fault, find page in 

disk, get page frame, load page, reset PC, … 

Process termination time 

– Release page table, pages, swap space, careful with shared 

pages 

EECS 343 Operating Systems 

Northwestern University 



16 

Page fault handling 

Hardware traps to kernel 

General registers saved by assembler routine, OS 

called 

OS find which virtual page cause the fault 

OS checks address is valid, seeks page frame 

If selected frame is dirty, write it to disk (CS) 

Get new page (CS), update page table 

Back up instruction where interrupted 

Schedule faulting process 

Routine load registers & other state and return to user 

space 
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Instruction backup 

As we’ve seen, when a program causes a page fault, 

the current instruction is stopped part way through … 

Harder than you think! 

– Consider instruction: MOV.L #6(A1), 2(A0) 

 

 

 

– Which one caused the page fault? What’s the PC then? 

– It can even get worse – auto-decrement and auto-increment 

as a side-effect of instruction execution? 

Some CPU designers have included hidden registers 

to store 

– Beginning of instruction 

– Indicate autodecr./autoincr. and amount 
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1002 6 

1004 2 

One instruction, three memory 

references (instruction word 

itself, two offsets for operands 
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Locking pages in memory 

Virtual memory and I/O occasionally interact 

Process issues call for read from device into a buffer 

within its address space 

– While waiting for  I/O, another processes starts up 

– Second process has a page fault 

– Buffer for the first process may be chosen to be paged out! 

– If I/O device is doing a DMA transfer to that page, … 

Solutions: 

– Pinning down pages in memory 

– Do all I/O to kernel buffers and copy later 
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Backing store 

How do we manage swap area? 

– Allocate space to process when started 

– Keep offset to process swap area in PCB 

– Process can be brought entirely when started or as needed 

Some problems 

– Size – process can grow … split text/data/stack segments in 

swap area 

– Do not allocate anything … you may need extra memory to 

keep track of pages in swap! 
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Separation of policy & mechanism 

How to structure the memory management system for 

easy separation? Mach: 
1. Low-level MMU handler – machine dependent 

2. Page-fault handler in kernel – machine independent, most of paging 

mechanism 

3. External pager in user space – user-level process 

Where do you put the page replacement algorithm? 

– In external pager? No access to R and M bits 

• Either pass it to the pager or  

• fault handler informs  

external pager which  

page is the victim 

Pros and cons 

 

User space 

Kernel space 

Fault 

handler 
MMU 

handler 

External 

pager 
User 

process 

1.Page fault 

2.Need 

page 

5.Here! 

6.Map page in 

3-4.Page 

in/out of 

disk 
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Segmentation 

So far - one-dimensional address spaces 

For many problems, having multiple AS is better 

e.g. compiler with various tables that grow dynamically 

Multiple AS → segments 

– A logical entity – programmer knows 

– Different segments of different sizes 

– Each one growing independently 

– Address now includes segment # + offset 

– Protection per segment can be different 

 

 
Symbol 

table 

Source text 

free 

free 

Symbol 

table 

free 

Source text 

Segments 
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Segmentation and paging 

Paging pros and cons 

– Pros 

• Easy to allocate physical memory 

• Naturally leads to virtual memory 

– Cons 

• Address translation time 

• Page tables can be large 

Segmentation pros and cons 

– Pros 

• It’s more logical 

• Facilitates sharing and reuse 

– Cons 

• All the problems of variable partitions 
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Segmentation w/ paging - MULTICS 

Large segment? Page them e.g MULTICS & Pentium 

Process: 218 segments of ~64K words (36-bit) 

Most segments are paged 

Process has a segment table (itself a paged segment) 

– One entry per segment 

Segment descriptor indicates if in memory  

Segment descriptor points to page table 

Address of segment in secondary memory in another table 

 

Segment # (18b) Page # (6b) Offset (10b) 

Virtual Address 

Page entry 

Page entry 

Page entry 

…. 

Page entry 

Page entry 

Page entry 

…. 

Segment desc. 

Segment desc. 

Segment desc. 

…. 

Descriptor 

segment 

Page table 
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Segmentation w/ paging - MULTICS 

With memory references 

Segment # to get segment descriptor 

If segment in memory, segment’s page table is in memory 

Protection violation? 

Look at the page table’s entry -  is page in memory? 

Add offset to page origin to get word location 

… to speed things up - TLB 
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Main memory address  

of the page table 

Segment length 

(in pages) 

18 9 1 1 1 3 3 

Segment 

Descriptor 

Page size 

 0 – 1024 words 

1 = 64 words 

Segment paged? 

Misc bits 

Protection bits 
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Next time 

Principles of I/O, disks and disk arrays 

File and file systems 

… 
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