
Input/Output

Today

 Principles of I/O hardware & software

 I/O software layers

 Secondary storage

Next

 File systems

EECS 343 Operating Systems

Northwestern University

2

Operating systems and I/O

Two key operating system goals
– Control I/O devices

– Provide a simple, easy-to-use, interface to devices

Problem – large variety
– Data rates – from 10B/sec (keyboard) 125MB/sec (Gigabit

Ethernet)

– Applications – what the device is used for

– Complexity of control – a printer (simple) or a disk

– Units of transfer – streams of bytes or larger blocks

– Data representation – character codes, parity

– Error condition – nature of errors, how they are reported, their
consequences, …

Makes a uniform & consistent approach difficult to get

3

I/O hardware - I/O devices

I/O devices – roughly divided as
– Block devices – stored info in fixed-size, addressable blocks

(e.g. 512 – 32KB), read/write in blocks (e.g. disk, CD-ROMs)

– Character devices – I/O stream of non-addressable
characters (e.g. printers, network interfaces)

– Of course, some devices don’t fit in here (e.g. clocks)

I/O devices components
– Device itself – mechanical component

– Device controller or adapter – electronic component

Device controller
– Maybe more than one device per controller

– Some standard i/f between controller and devices: IDE, ATA,
SATA, SCSI, FireWire, …

– Converts serial bit stream to block of bytes

– Performs error correction as necessary

– Makes data available in main memory

EECS 343 Operating Systems

Northwestern University

EECS 343 Operating Systems

Northwestern University

4

I/O controller & CPU communication

Device controllers have

– A few registers for communication with CPU

• Typically: data-in, data-out, status, control, …

– A data buffer that OS can read/write (e.g. video RAM)

How does the CPU use that?

– Separate I/O and memory space, each control register
assigned an I/O port (a) – IBM 360 (IN REG,PORT)

– Memory-mapped I/O – first in PDP-11 (b)

– Hybrid – Pentium (c) (graphic controller is a good example)

I/O Ports

Memory Two

addresses
One

address

space

Two

addresses

(a) (b) (c)

EECS 343 Operating Systems

Northwestern University

5

Memory-mapped I/O

Pros and cons

– No special instructions or protection mechanism needed

– Driver can be entirely written in C (how to do IN/OUT in C?)

– What do you do with caching? Disable it on a per-page basis

– Only one AS, so all mem modules must check all references

• Easy with single bus (a) but harder with dual-bus (b) arch

• Possible solutions

– Send all references to memory first, if fails try bus

– Snoop in the memory bus

– Filter addresses in the PCI bridge (Pentium config.)

(preloaded with range registers at boot time)

CPU Mem I/O
(a)

CPU Mem I/O

High-bandwidth

memory bus

(b)

6

I/O software – goals & issues

Device independence
– Programs can access any I/O device w/o specifying it in

advance

Uniform naming, closely related
– Name independent of device

Error handling
– As close to the hardware as possible (first the controller

should try, then the device driver, …)

Buffering for better performance
– Check what to do with packets, for example

– Decouple production/consumption

Deal with dedicated (tape) & shared devices (disks)
Dedicated devices bring their own problems – deadlock?

EECS 343 Operating Systems

Northwestern University

7

Ways I/O can be done (OS take)

Programmed I/O

– Simplest – CPU does all the work

– CPU basically polls the device

– … and it is tied up until I/O completes

Interrupt-driven I/O

– Instead of waiting for I/O, context switch to another process &

use interrupts

Direct Memory Access

– Obvious disadvantage of interrupt-driven I/O?

An interrupt for every character

– Solution: DMA - Basically programmed I/O done by somebody

else

EECS 343 Operating Systems

Northwestern University

8

Three techniques for I/O

CPU → Mem

Issue read

command to I/O

module

Read status of

I/O module

Read word from

I/O module

Write word into

memory

Check status

Done?

CPU → I/O

I/O → CPU

Error

I/O → CPU

Yes

No

Not

ready

Ready

Programmed I/O

Issue read

command to I/O

module

Read status of

I/O module

Read word from

I/O module

Write word into

memory

Check status

Done?

Yes

No

CPU → Mem

I/O → CPU

Error

I/O → CPU

CPU → I/O

Ready

Interrupt

Do something

else

Interrupt-driven I/O

Issue read

command to I/O

module

Read status of

I/O module

CPU → DMA

DMA → CPU

Do something

else

Interrupt

Direct Memory Access

EECS 343 Operating Systems

Northwestern University

EECS 343 Operating Systems

Northwestern University

Interrupts revisited

When I/O is done – interrupt by asserting a signal on a

bus line

Interrupt controller puts a # on address lines – index

into interrupt vector (PC to interrupt service procedure)

Interrupt service procedure ACK the controller

Before serving interrupt, save context …

9

CPU

Interrupt

controller
CPU acks

Controller

interrupts

Device

done

(signal)

EECS 343 Operating Systems

Northwestern University

10

Interrupts revisited

Not that simple …

Where do you save the state?

– Internal registers? Hold your ACK (avoid overwriting internal regs.)

– In stack? You can get a page fault … pinned page?

– In kernel stack? Change to kernel mode $$$

Besides: pipelining, superscalar architectures, …

Ideally - a precise interrupt, leaves the machine in a well-

defined state

PC is saved in a known place

All previous instructions have been fully executed

All following ones have not

The execution state of the instruction pointed by PC is known

The tradeoff – complex OS or really complex interrupt

logic within the CPU (design complexity & chip area)

EECS 343 Operating Systems

Northwestern University

Direct Memory Access

Clearly OS can use it only if HW has DMA controller

– Either on the devices (controller) or on the parentboard

DMA has access to system bus, independent of CPU

DMA operation

11

Address

Count

Control

CPU

Main

memory

Disk

controller

Buffer

CPU issues command to

disk – read, to internal

buffer and check

Interrupt when

done

ACK

DMA requests

xfer to mem.

Data xfer

DMA

controller

CPU program

the DMA

controller

EECS 343 Operating Systems

Northwestern University

12

Some details on DMA

One or more transfers at a time

– Need multiple set of registers for the multiple channels

– DMA has to schedule itself over devices served

Buses and DMA can operate on one of two modes

– Cycle stealing – device controller occasionally steals the bus

– Burst mode (block) – DMA tells the device to take the bus for

a while

Two approaches to data transfer

– Fly-by mode – just discussed, direct transfer to memory

– Two steps – transfer via DMA; it requires extra bus cycle, but

now you can do device-to-device transfers

Physical (common) or virtual address for DMA transfer

Why you may not want a DMA?

If the CPU is fast and there’s not much else to do anyway

13

I/O software layers

I/O normally implemented in layers

Interrupt handlers

– Interrupts – an unpleasant fact of life – hide them!

– Best way

• Driver blocks (semaphores?) until I/O completes

• Upon an interrupt, interrupt procedure handles it before

unblocking driver

I/O Subsystem

User-level I/O software

Device-independent OS software

Device driver

Interrupt handlers

Hardware

EECS 343 Operating Systems

Northwestern University

EECS 343 Operating Systems

Northwestern University

14

Layers - Device drivers

Different device controllers – different registers,

commands, etc → each I/O device needs a device

driver

Device driver – device specific code

– Written by device manufacturer

– Better if we have specs

– Clearly, it needs to be reentrant (I/O device may complete

while the driver is running, interrupting the driver and maybe

making it run …)

– Must be included in the kernel (as it needs to access the

device’s hardware) - How do you include it?

• Is there another option?

– Problem with plug & play

EECS 343 Operating Systems

Northwestern University

15

Layers - Device-independent SW

Some part of the I/O SW can be device independent

Uniform interfacing with drivers

– Fewer modifications to the OS with each new device

– Easier naming (/dev/disk0) – major & minor device #s in

UNIX, driver + unit, (kept by the i-node of the device’s file)

– Device driver writers know what’s expected of them

Buffering

– Unbuffered, user space, kernel, …

Error reporting

– Some errors are transient – keep them low

– Actual I/O errors – reporting up when in doubt

Allocating & releasing dedicated devices

Providing a device-independent block size

User-space I/O software

Small portion of I/O software runs in user-space

Libraries that linked together with user programs

– E.g., stdio in C

– Mostly parameter checking and some formatting (printf)

Beyond libraries, e.g. spooling

– Handling dedicated devices (printers) in a multiprogramming

system

– Daemon plus spooling directory

16 EECS 343 Operating Systems

Northwestern University

EECS 343 Operating Systems

Northwestern University

17

Disk – a concrete I/O device

Magnetic disk hardware - organization

– Cylinders – made of vertical tracks

– Tracks – divided into sectors

– Sectors – minimum transfer unit

Simplified model - careful with specs

– Sectors per track are not always the same

– Zoning – zone, a set of tracks with equal sec/track

Hide this with a logical disk w/ constant sec/track

Parameter IBM 360KB floopy WD 18300 HD

Capacity 360KB 18.3GB

Seek time (avg) 77msec 6.9msec

Rotation time 200msec 8.33msec

Motor stop/start 250msec 20msec

Time to transfer 1 sector 22msec 17µsec

20 years
Note different rates

of improvements on

seek time, transfer

rate and capacity

EECS 343 Operating Systems

Northwestern University

18

RAIDs

Disk transfer rates are improving, but slower than

CPU performance

Use multiple disks to improve performance

– Strip content across multiple disks

– Use parallel I/O to improve performance

But striping reduces reliability (n*MTBF)

– Add redundancy for reliability

• Parity – add a bit to get

even number of 1’s

• Any single missing bit can be reconstructed

• More complex schemes can detect multiple bit errors and correct

single bit errors

1 0 1 1 0 1 1 0 1

0 0 1 1 0 1 1 0 0

EECS 343 Operating Systems

Northwestern University

19

RAIDs tradeoffs

Granularity

– Fine-grained – stripe each file over all disks

• High throughput for the file

• Limits transfer to one file at a time

– Course-grained – stripe each file over only a few disks

• Limit throughput for one file

• Allows concurrent access to multiple files

Redundancy

– Uniformly distribute redundancy information on disks

• Avoid load-balancing problems

– Concentrate redundancy information on a small # of disks

• Partition the disk into data disks and redundancy disks

• Simpler

EECS 343 Operating Systems

Northwestern University

20

RAIDs

RAID 0 – non-redundant disk array

– Files are striped across disks, non redundant info

– High read throughput

– Best write throughput (nothing

extra to write)

– Worst reliability than with a single disk

RAID 1 – mirrored disk

– Files are striped across half the disks

– Data is written in two places

– Read from either copy

– On failure, just use the surviving one

– Of course you need 2x space

data disk mirror copies

EECS 343 Operating Systems

Northwestern University

21

RAIDs

RAID 2, 3 and 4 uses ECC or parity disks

– Each byte on the parity disk is a parity function of

the corresponding bytes in all other disks

– Differences are in the EEC

used and whether it is bit- (2 &

3) or block-level

– A read can access all data disks

– A write updates 1+ data disks

and parity disk

RAID 5 – block interleaved distributed paritiy

– Distribute parity info over all disks

– Much better performance (no hot spot)

data disk parity

disk

EECS 343 Operating Systems

Northwestern University

22

Disk formatting

Low-level formatting ~20% capacity goes with it

– Set of concentric tracks of sectors with short gaps in between

– Sectors – [preamble, to recognize the start + data + ecc]

– Spare sectors for replacements

– Sectors and head skews (bet/

tracks) to deal with moving head

– Interleaving to deal with transfer

time (space bet/ consecutive sectors)

After formatting, partitioning – multiple logical disks –

sector 0 holds master boot record (boot code +

partition table)

Last step, high-level formatting

– Boot block, free storage admin, root dir, empty file system

Single interleaving No interleaving

Disk attachment

Host-attached storage

– Accessed through local I/O ports

– Standards interfaces like SATA, SCSI, Fiber Channel

Network-attached storage

– Usually implemented as RAID

– Clients access storage over the network, usually same data

LAN, over NSF or CIFS (Windows)

– Easy to access and share, slower performance

Storage-area network

– Private network connecting clients to storage units using

storage protocols (rather than networking protocols)

• Over FC or iSCSI

– Multiple hosts and storage array can connect to the same

SAN; storage can be dynamically allocated

23 EECS 343 Operating Systems

Northwestern University

EECS 343 Operating Systems

Northwestern University

24

Disk arm scheduling

Time to read/write a disk block determined by

– Seek time – dominates!

– Rotational delay

– Actual transfer time

If request come one at a time, little you can do - FCFS

Starting at 53

Requests: 98,183,37,122,

14,124,65,67

0 14 37 53 65 67 98 122 124 183 199

EECS 343 Operating Systems

Northwestern University

SSTF

Given a queue of request for blocks → scheduling to

reduce head movement

As SJF, possible starvation

25

0 14 37 53 65 67 98 122 124 183 199

Starting at 53

Requests: 98,183,37,122,

14,124,65,67

EECS 343 Operating Systems

Northwestern University

26

SCAN, C-SCAN and C-LOOK

0 14 37 53 65 67 98 122 124 183 199

Nice, but no need to be blind

C-SCAN
SCAN

C-LOOK

Assuming a uniform distribution of
requests, where’s the highest density when
head is on the left?

Starting at 53

Requests: 98,183,37,122,

14,124,65,67

Next time

File systems interface and implementation

27 EECS 343 Operating Systems

Northwestern University

