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Operating systems and I/O 

Two key operating system goals 
– Control I/O devices 

– Provide a simple, easy-to-use, interface to devices 

Problem – large variety 
– Data rates – from 10B/sec (keyboard) 125MB/sec (Gigabit 

Ethernet) 

– Applications – what the device is used for 

– Complexity of control – a printer (simple) or a disk 

– Units of transfer – streams of bytes or larger blocks 

– Data representation – character codes, parity 

– Error condition – nature of errors, how they are reported, their 
consequences, … 

Makes a uniform & consistent approach difficult to get 
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I/O hardware - I/O devices 

I/O devices – roughly divided as 
– Block devices – stored info in fixed-size, addressable blocks 

(e.g. 512 – 32KB), read/write in blocks (e.g. disk, CD-ROMs) 

– Character devices – I/O stream of non-addressable 
characters (e.g. printers, network interfaces) 

– Of course, some devices don’t fit in here (e.g. clocks) 

I/O devices components 
– Device itself – mechanical component 

– Device controller or adapter – electronic component 

Device controller 
– Maybe more than one device per controller 

– Some standard i/f between controller and devices: IDE, ATA, 
SATA, SCSI, FireWire, … 

– Converts serial bit stream to block of bytes 

– Performs error correction as necessary 

– Makes data available in main memory 
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I/O controller & CPU communication 

Device controllers have 

– A few registers for communication with CPU 

• Typically: data-in, data-out, status, control, … 

– A data buffer that OS can read/write (e.g. video RAM) 

How does the CPU use that? 

– Separate I/O and memory space, each control register 
assigned an I/O port (a) – IBM 360 (IN REG,PORT) 

– Memory-mapped I/O – first in PDP-11 (b) 

– Hybrid – Pentium (c) (graphic controller is a good example) 

I/O Ports 

Memory Two 

addresses 
One 

address 

space 

Two 

addresses 

(a) (b) (c) 
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Memory-mapped I/O 

Pros and cons 

– No special instructions or protection mechanism needed 

– Driver can be entirely written in C (how to do IN/OUT in C?) 

– What do you do with caching? Disable it on a per-page basis 

– Only one AS, so all mem modules must check all references 

• Easy with single bus (a) but harder with dual-bus (b) arch 

• Possible solutions 

– Send all references to memory first, if fails try bus 

– Snoop in the memory bus 

– Filter addresses in the PCI bridge (Pentium config.) 

(preloaded with range registers at boot time) 

CPU Mem I/O 
(a) 

CPU Mem I/O 

High-bandwidth 

memory bus 

(b) 
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I/O software – goals & issues 

Device independence 
– Programs can access any I/O device w/o specifying it in 

advance 

Uniform naming, closely related 
– Name independent of device 

Error handling 
– As close to the hardware as possible (first the controller 

should try, then the device driver, …) 

Buffering for better performance 
– Check what to do with packets, for example 

– Decouple production/consumption 

Deal with dedicated (tape) & shared devices (disks) 
Dedicated devices bring their own problems – deadlock? 
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Ways I/O can be done (OS take)  

Programmed I/O 

– Simplest – CPU does all the work 

– CPU basically polls the device 

– … and it is tied up until I/O completes 

Interrupt-driven I/O 

– Instead of waiting for I/O, context switch to another process & 

use interrupts 

Direct Memory Access 

– Obvious disadvantage of interrupt-driven I/O? 

An interrupt for every character  

– Solution: DMA - Basically programmed I/O done by somebody 

else 
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Three techniques for I/O 

CPU → Mem 

Issue read 

command to I/O 

module 

Read status of  

I/O module 

Read word from 

I/O module 

Write word into 

memory 

Check status 

Done? 

CPU → I/O 

I/O → CPU 

Error 

I/O → CPU 

Yes 

No 

Not 

ready 

Ready 

Programmed I/O 

Issue read 

command to I/O 

module 

Read status of  

I/O module 

Read word from 

I/O module 

Write word into 

memory 

Check status 

Done? 

Yes 

No 

CPU → Mem 

I/O → CPU 

Error 

I/O → CPU 

CPU → I/O 

Ready 

Interrupt 

Do something 

else 

Interrupt-driven I/O 

Issue read 

command to I/O 

module 

Read status of  

I/O module 

CPU → DMA 

DMA → CPU 

Do something 

else 

Interrupt 

Direct Memory Access 
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Interrupts revisited 

When I/O is done – interrupt by asserting a signal on a 

bus line 

Interrupt controller puts a # on address lines – index 

into interrupt vector (PC to interrupt service procedure) 

Interrupt service procedure ACK the controller 

Before serving interrupt, save context … 
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CPU 

Interrupt 

controller 
CPU acks 

Controller 

interrupts 

Device 

done 

(signal) 
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Interrupts revisited 

Not that simple … 

Where do you save the state? 

– Internal registers? Hold your ACK (avoid overwriting internal regs.) 

– In stack? You can get a page fault … pinned page? 

– In kernel stack? Change to kernel mode $$$ 

Besides: pipelining, superscalar architectures, … 

Ideally - a precise interrupt, leaves the machine in a well-

defined state 

PC is saved in a known place 

All previous instructions have been fully executed 

All following ones have not 

The execution state of the instruction pointed by PC is known 

The tradeoff – complex OS or really complex interrupt 

logic within the CPU (design complexity & chip area) 
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Direct Memory Access 

Clearly OS can use it only if HW has DMA controller 

– Either on the devices (controller) or on the parentboard 

DMA has access to system bus, independent of CPU 

DMA operation 
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Address 

Count 

Control 

CPU 

Main 

memory 

Disk 

controller 

Buffer 

CPU issues command to 

disk – read, to internal 

buffer and check 

Interrupt when 

done 

ACK 

DMA requests 

xfer to mem. 

Data xfer 

DMA 

controller 

CPU program 

the DMA 

controller 
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Some details on DMA 

One or more transfers at a time 

– Need multiple set of registers for the multiple channels 

– DMA has to schedule itself over devices served 

Buses and DMA can operate on one of two modes 

– Cycle stealing – device controller occasionally steals the bus 

– Burst mode (block) – DMA tells the device to take the bus for 

a while 

Two approaches to data transfer 

– Fly-by mode – just discussed, direct transfer to memory 

– Two steps – transfer via DMA; it requires extra bus cycle, but 

now you can do device-to-device transfers 

Physical (common) or virtual address for DMA transfer 

Why you may not want a DMA? 

If the CPU is fast and there’s not much else to do anyway 
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I/O software layers 

I/O normally implemented in layers 

 

 

 

 

Interrupt handlers 

– Interrupts – an unpleasant fact of life – hide them! 

– Best way  

• Driver blocks (semaphores?) until I/O completes 

• Upon an interrupt, interrupt procedure handles it before 

unblocking driver 

I/O Subsystem 

User-level I/O software 

Device-independent OS software 

Device driver 

Interrupt handlers 

Hardware 
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Layers - Device drivers 

Different device controllers – different registers, 

commands, etc → each I/O device needs a device 

driver 

Device driver – device specific code 

– Written by device manufacturer 

– Better if we have specs 

– Clearly, it needs to be reentrant (I/O device may complete 

while the driver is running, interrupting the driver and maybe 

making it run …) 

– Must be included in the kernel (as it needs to access the 

device’s hardware) - How do you include it? 

• Is there another option? 

– Problem with plug & play 
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Layers - Device-independent SW 

Some part of the I/O SW can be device independent 

Uniform interfacing with drivers 

– Fewer modifications to the OS with each new device 

– Easier naming (/dev/disk0) – major & minor device #s in 

UNIX, driver + unit, (kept by the i-node of the device’s file) 

– Device driver writers know what’s expected of them 

Buffering 

– Unbuffered, user space, kernel, … 

Error reporting 

– Some errors are transient – keep them low 

– Actual I/O errors – reporting up when in doubt 

Allocating & releasing dedicated devices 

Providing a device-independent block size 



User-space I/O software 

Small portion of I/O software runs in user-space 

Libraries that linked together with user programs 

– E.g., stdio in C 

– Mostly parameter checking and some formatting (printf) 

Beyond libraries, e.g. spooling 

– Handling dedicated devices (printers) in a multiprogramming 

system 

– Daemon plus spooling directory 
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Disk – a concrete I/O device 

Magnetic disk hardware - organization 

– Cylinders – made of vertical tracks 

– Tracks – divided into sectors 

– Sectors – minimum transfer unit 

 

 

 

 

 

Simplified model - careful with specs 

– Sectors per track are not always the same 

– Zoning – zone, a set of tracks with equal sec/track 

Hide this with a logical disk w/ constant sec/track 

Parameter IBM 360KB floopy WD 18300 HD 

Capacity 360KB 18.3GB 

Seek time (avg) 77msec 6.9msec 

Rotation time 200msec 8.33msec 

Motor stop/start 250msec 20msec 

Time to transfer 1 sector 22msec 17µsec 

20 years 
Note different rates 

of improvements on 

seek time, transfer 

rate and capacity 
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RAIDs 

Disk transfer rates are improving, but slower than  

CPU performance 

Use multiple disks to improve performance 

– Strip content across multiple disks 

– Use parallel I/O to improve performance 

But striping reduces reliability (n*MTBF) 

– Add redundancy for reliability 

• Parity – add a bit to get  

even number of 1’s 

 

• Any single missing bit can be reconstructed 

• More complex schemes can detect multiple bit errors and correct 

single bit errors 

1 0 1 1 0 1 1 0 1 

0 0 1 1 0 1 1 0 0 
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RAIDs tradeoffs 

Granularity 

– Fine-grained – stripe each file over all disks 

• High throughput for the file 

• Limits transfer to one file at a time 

– Course-grained – stripe each file over only a few disks 

• Limit throughput for one file 

• Allows concurrent access to multiple files 

Redundancy 

– Uniformly distribute redundancy information on disks 

• Avoid load-balancing problems 

– Concentrate redundancy information on a small # of disks 

• Partition the disk into data disks and redundancy disks 

• Simpler 
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RAIDs 

RAID 0 – non-redundant disk array 

– Files are striped across disks, non redundant info 

– High read throughput 

– Best write throughput (nothing  

extra to write) 

– Worst reliability than with a single disk 

 

RAID 1 – mirrored disk 

– Files are striped across half the disks 

– Data is written in two places 

– Read from either copy 

– On failure, just use the surviving one 

– Of course you need 2x space 

data disk mirror copies 
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RAIDs 

RAID 2, 3 and 4 uses ECC or parity disks 

– Each byte on the parity disk is a parity function of 

the corresponding bytes in all other disks 

– Differences are in the EEC  

used and whether it is bit- (2 &  

3) or block-level 

– A read can access all data disks 

– A write updates 1+ data disks  

and parity disk 

RAID 5 – block interleaved distributed paritiy 

– Distribute parity info over all disks 

– Much better performance (no hot spot) 

data disk parity  

disk 
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Disk formatting 

Low-level formatting ~20% capacity goes with it 

– Set of concentric tracks of sectors with short gaps in between 

– Sectors – [preamble, to recognize the start + data + ecc] 

– Spare sectors for replacements 

– Sectors and head skews (bet/  

tracks) to deal with moving head 

– Interleaving to deal with transfer  

time (space bet/ consecutive sectors) 

After formatting, partitioning – multiple logical disks – 

sector 0 holds master boot record (boot code + 

partition table) 

Last step, high-level formatting 

– Boot block, free storage admin, root dir, empty file system 

 

Single interleaving No interleaving 



Disk attachment 

Host-attached storage 

– Accessed through local I/O ports 

– Standards interfaces like SATA, SCSI, Fiber Channel 

Network-attached storage 

– Usually implemented as RAID 

– Clients access storage over the network, usually same data 

LAN, over NSF or CIFS (Windows) 

– Easy to access and share, slower performance  

Storage-area network 

– Private network connecting clients to storage units using 

storage protocols (rather than networking protocols) 

• Over FC or iSCSI 

– Multiple hosts and storage array can connect to the same 

SAN; storage can be dynamically allocated 
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Disk arm scheduling 

Time to read/write a disk block determined by 

– Seek time – dominates! 

– Rotational delay 

– Actual transfer time 

If request come one at a time, little you can do - FCFS 

 

 

Starting at 53 

Requests: 98,183,37,122, 

14,124,65,67 

0  14       37    53 65 67      98   122 124                 183 199 
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SSTF 

Given a queue of request for blocks → scheduling to 

reduce head movement 

 

 

 

 

 

 

 

 

 

As SJF, possible starvation 
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0  14       37    53 65 67      98   122 124                 183 199 

Starting at 53 

Requests: 98,183,37,122, 

14,124,65,67 
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SCAN, C-SCAN and C-LOOK 

 

 

 

 

 

 

 

 

 

 

0  14       37    53 65 67      98   122 124                 183 199 

Nice, but no need to be blind 

C-SCAN 
SCAN 

C-LOOK 

Assuming a uniform distribution of 
requests, where’s the highest density when 
head is on the left? 

Starting at 53 

Requests: 98,183,37,122, 

14,124,65,67 



Next time 

File systems interface and implementation 
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