
File Systems

Today

 Files and access methods

 Directory structures

 Sharing and protection

 File & directory implementation

Next

 File system management & examples

EECS 343 Operating Systems

Northwestern University

2

Files and file systems

Most computer applications need to:
Store large amounts of data (larger than their address space)

that must survive process termination and

can be access concurrently by multiple processes

→ Usual answer: Files – from user’s perspective, the smallest
allotment of logical secondary storage

File system – part of the OS dealing with files
Supports the file abstraction of storage

Naming – how do users select files?

Protection – users are not all equal

Reliability – information must be safe for long periods of time

Storage mgmt. – efficient use of storage and fast access to files

3

File – attributes, types and operations

Files are collection of data with some attributes

– Names & type, if supported, location, owner, last read/write

times, …

Different OSs support different file types

– Regular, binary, directories, …

– Character special (model terminals [/dev/tty], printers, etc) and

block special files (model disks [/dev/hd1])

– Extensions as hints & the use of magic numbers

• Some typical file extensions

– Pros and cons of strongly typed files

Basic operations
– Create, delete, write, read, file seek, truncate

– Other operations can be built on this basic set (e.g. cp)

EECS 343 Operating Systems

Northwestern University

4

Memory-mapped files

Accessing files & accessing memory

Key idea – file is backing store of mapped memory

Some problems

– Not all files can be mapped

– If file mapped is an output one, what’s the size?

– File mapped by one and open conventionally by another?!?

– File size larger than virtual address space?!?

Memmory mapped

portion of file

offset len

Return value

of mmap

Low memory

High memory

Memory

mapped

portion

of file

fd

void *

mmap(void *start,

 size_t length,

 int prot,

 int flags,

 int fd,

 off_t offset);

EECS 343 Operating Systems

Northwestern University

5

File structures & access methods

Several file structures, three common ways

– Byte sequence - Unix & Windows; user imposes meaning

– Record sequence – think about 80-column punch cards

– Tree – records have keys, tree is sorted by it

Access methods
– Sequential – tape model

• Read/write next; simplest and most common

– Random/direct access – disk model
• Two approaches: read/write x, or position to x and read/write

• Retain sequential access – read/write + update last position

– Other access methods
• On top of direct access, normally using indexing

• Multi-level indexing for big files (e.g. IBM Indexed Sequential
Access Method)

EECS 343 Operating Systems

Northwestern University

6

Directory structure

To manage volume of info.: partitions & directories

Directory: set of nodes with information about all files

– Name, type, address, current & max. length, …

Operations on directories

– Open/close directories, create/delete/rename files from a

directory, readdir, link/unlink, traverse the file system

Directory organizations - goals

– Efficiency – locating a file quickly.

– Naming – convenient to users.

– Grouping – logical grouping of files by properties (e.g. all Java

progs., all games, …)

EECS 343 Operating Systems

Northwestern University

7

File system mounting

A FS must be mounted to be available

– What do you do if you have more than one disk? Put a self

contained FS on each (C:…) or…

Typically, a mount point is an empty dir

– Existing file system (a) & unmounted

partition (b)

– After it was mounted (c)

 # mount /dev/sda1 /users

fstab file in Unix

(c)
EECS 343 Operating Systems

Northwestern University

(10:41am) ~ % more /etc/fstab

This file is edited by fstab-sync - see 'man fstab-sync' for details

LABEL=/ / ext3 defaults 1 1

none /dev/pts devpts gid=5,mode=620 0 0

/dev/sdb1 /export ext3 defaults 1 2

none /proc proc defaults 0 0

none /dev/shm tmpfs defaults 0 0

LABEL=/usr /usr ext3 defaults 1 2

…

8

Single and hierarchical directory systems

A single level directory system

– Early PCs & supercomp. (CDC 6600), embedded systems?

– Fast file searches, but name clashing

Hierarchical

– Avoid name clashing for users

(MULTICS)

– Powerful structuring tool for

organization (decentralization)

Path names

– Now you need a way to specify file names; two approaches:
absolute and relative

– “.” & “..”

EECS 343 Operating Systems

Northwestern University

9

Protection …

FS must implement some kind of protection system

– to control who can access a file (user)

– to control how they can access it (e.g., read, write, or exec)

More generally:

– generalize files to objects (the “what”)

– generalize users to principals (the “who”, user or program)

– generalize read/write to actions (the “how”, or operations)

A protection system dictates whether a given action

performed by a given principal on a given object

should be allowed

– e.g., you can read or write your files, but others cannot

– e.g., your can read /etc/motd but you cannot write to it

EECS 343 Operating Systems

Northwestern University

10

Protection …

Useful to discuss protection mechanisms: domains

– A domain – a set of (object, rights) pairs

– At every instant in time, process runs in some domain

• In Unix, this is defined by (UID, GID); exec a process with

SETUID or SETGID bit on is effectively switching domains

EECS 343 Operating Systems

Northwestern University

File1[R]

Domain 1

File2[RW]

File3[R]

Domain 2

File4[RWX]

File5[RW]

File6[RWX]

Plotter2[W]
Printer1[W]

Domain 3

11

Protection domains

Keeping track of domains

Conceptually, a large protection matrix

A protection matrix with domains as objects
– Now you can control domain switching

A global table – too large & sparse …

EECS 343 Operating Systems

Northwestern University

12

Implementing access matrices

Access control list
– Associating w/ each object a list of domain that may access

it (and how)

– Users, groups and roles

EECS 343 Operating Systems

Northwestern University

13

Implementing access matrices

Capabilities
– Slice the matrix by rows

– Associate w/ process a list of objects & rights

– Need to protect the C-list

• Tagged architectures (IBM AS/400)

• Keep it in the kernel (Hydra)

• Manage them cryptographically (Amoeba)

Capabilities are faster to use but do no support
selective revocation

EECS 343 Operating Systems

Northwestern University

14

Protection

Unix: short version access lists & groups

– Objects – individual files

– Principals – owners/group/world (the domain of a process is

given by its UID and GID)

– Actions: read, write, execute (3 bits per access mode)

– Mask provides a default (creation with 777, mask 022 755)

More general access lists - setfacl & getfacl

% getfacl -a exam.tex

 # file: exam.tex

 # owner: fabianb

 # group: other

 user::rw-

 group::r-- #effective:r--

 mask:r--

 other:r--

% setfacl -r -m u:sbirrer:rw- exam.tex

% getfacl -a exam.tex

 # file: exam.tex

 # owner: fabianb

 # group: other

 user::rw-

 user:sbirrer:rw- #effective:rw-

 group::r-- #effective:r--

 mask:rw-

 other:r--

Intersection of

specified permissions

and mask field.

EECS 343 Operating Systems

Northwestern University

15

File system layout

Disk divided into 1+ partitions – one FS per partition

Sector 0 of disk – MBR (Master Boot Record)

– Used to boot the machine

Followed by Partition Table (one marked as active)

– (start, end) per partition; one of them active

Booting: BIOS → MBR → Active partition’s boot block

→ OS

What else in a partition?

MBR

Boot block Super block Free space mgnt I-nodes Root dir Files and directories

Entire disk

Partition table

Disk partition Disk partition ...

Magic number,

number of

blocks, …

EECS 343 Operating Systems

Northwestern University

16

Implementing files

Keeping track of what blocks go with which file

Contiguous allocation

– Each file is a contiguous run of disk blocks

– e.g. IBM VM/CMS

– Pros:

• Simple to implement

• Excellent read performance

– Cons:

• Fragmentation

 Where would it make sense?

File A File B File F File E File D File C Free Free Free

 File X?

EECS 343 Operating Systems

Northwestern University

17

Implementing files

Linked list

– Files as a linked list of blocks

– Pros:

• Every block gets used

• Simple directory entry per file (address of first block)

– Cons:

• Random access is a pain

• List info in block → block data size not a power of 2

• Reliability (file kept together by pointers scattered throughout the

disk)

Physical

block

File

block

0

File

block

1

File

block

2

File

block

3

File

block

4

7 4 2 10 12

File A

File

block

0

File

block

1

File

block

2

File

block

3

6 3 11 14

File B

EECS 343 Operating Systems

Northwestern University

18

Linked list with a table in memory

– Files as a linked list of blocks

– Pointers kept in FAT (File Allocation Table)

– Pros:

• Whole block free for data

• Random access is easy

– Cons:

• Overhead on seeks or

• Keep the entire table in memory

 20GB disk & 1KB block size →

 20 million entries in table →

 4 bytes per entry ~ 80MB of memory

Implementing files

File

block

0

File

block

1

File

block

2

File

block

3

6 3 11 14

File B

FAT

EECS 343 Operating Systems

Northwestern University

10

11

7

3

2

12

14

-1

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

File A starts here

File B starts here

19

Implementing files

I-nodes - index-nodes

– Files as linked lists of blocks, all

pointers in one location: i-node

– Each file has its own i-node

– Pros:

• Support direct access

• No external fragmentation

• Only a file i-node needed in memory

(proportional to # of open files instead

of to disk size)

– Cons:

• Wasted space (how many entries?)

– More entries – what if you need more

than 7 blocks?

Save entry to point to address of block of

addresses

i-node

example

File Attributes

To block 1

To block 2

To block 3

To block 4

To block 5

To block 6

To block 7

To block 8 To indirect block .

.

.

.

.

EECS 343 Operating Systems

Northwestern University

20

Implementing directories

Directory system function: map ASCII name onto

what’s needed to locate the data

Related: where do we store files’ attributes?

– A simple directory: fixed size entries, attributes in entry (a)

– With i-nodes, use the i-node for attributes as well (b)

As a side note, you find a file based on the path name;

this mixes what your data is with where it is – what’s

wrong with this picture?

MS-DOS UNIX

EECS 343 Operating Systems

Northwestern University

21

Implementing directories

So far we’ve assumed short file names (8 or 14 char)

Handling long file names in directory

– In-line (a)

• Fragmentation

• Entry can span multiple

pages (page fault

reading a file name)

– In a heap (b)

• Easy to +/- files

Searching large

directories

– Hash

– Cash

EECS 343 Operating Systems

Northwestern University

22

Path name translation

To open a file such as “/a/b/c” for editing
fd = open (“/a/b/c”, O_RDWR);

What does it take?
– Open directory “/” (well known)

– Search directory, for “a”, get location of “a”

– Open directory “a”, search directory, for “b”, get location of “b”

– Open directory “b”, search for “c”, get location for “c”

– Open “c”

FS spend a lot of time at this
– This is why we use open first

– OS can then cache prefix lookups to enhance performance

– “/”, “/a”, “/a/b”, …

EECS 343 Operating Systems

Northwestern University

23

Shared files

Links and directories implementation

– Leave file’s list of disk blocks out of directory entry (i-node)

• Each entry in the directory points to the i-node

– Use symbolic links

• Link is a file w/ the path to shared file

• Good for linking files from another machine

Problem with first solution

– Accounting

• C creates file, B links to file, C removes it

• B is the only user of a file owned by C!

Problem with symbolic links

– Performance (extra disk accesses)

EECS 343 Operating Systems

Northwestern University

24

Next Time

Details on file system implementations and some

examples …

EECS 343 Operating Systems

Northwestern University

