Research in Operating Systems - FlexSC

FlexSC: Flexible System Call
Scheduling with Exception-Less
System Calls

L. Soares and M. Stumm, U. Toronto
OSDI 2010

Synchronous system call is a (bad) legacy

» System calls are the defacto interface to the OS

* Basic model
— Write arguments to appropriate registers
— Issue special instruction that raises a synchronous exception
— Yielding user-mode execution to kernel-mode exception
handler
* Key points
— Use processor exception to communicate w/ the kernel
— Enforces synchronous execution model

* Expensive!

— Direct costs — mode switch
— Indirect costs — pollution of processor structure

EECS 343 Operating Systems
Northwestern University

The costs of (synchronous) syscalls

* Mode switch cost (direct cost)
— Time to execute a syscall instruction in user mode
— Resume execution in kernel mode and

— Return control back to user mode

» Require flushing user-mode pipeline, saving registers, ...
— Mode switch cost - to enter and leave 150 cycles (79+71)

« Compare with 250 cycles for cache-miss memory access

» System call footprint (indirect cost)

— Process structure pollution — user-mode state replaced by
kernel-mode state

— Processor structures: L1 data and instruction cache, TLB,
branch prediction tables, prefetch buffers, unified caches L2
and L3 ...

EECS 343 Operating Systems
Northwestern University

he costs of (synchronous) syscalls

« System call footprints measured with a high IPC workload from
SPEC CPU 2006 benchmark

— Collected using HPC triggering infrequently
» For processor structures, numbers represent entries evicted

Stat 4972 13585 0.37 2559

Pwrite 5689 31285 0.18 50 373 985 3160 44
Open+write+ 9921 32815 0.39 78 481 1462 5105 49
close

Half to full d-cache! V

Much larger than L1 due to L2
& L3 more aggressive prefteching

EECS 343 Operating Systems
Northwestern University

Synchronous syscall impact on user IPC

» At the end, the measure of cost that matters
— Direct cost was measure issuing a null system call; indirect is

the diff
0o Xalan (SPEC CPU 2006) - pwrite
60% Apache [Indirect
=B 50% [Direct
9w
- - 40%
B2 30%
E E fg_:: Cut processor efficiency in half!
- T ™

1K 2K 5K 10K 20K 50K 100K 500K
instructions between interrupts (log scale)

EECS 343 Operating Systems
Northwestern University

Synchronous syscall impact on kernel IPC

» Lack of locality also impact kernel IPC — trend,of
course, IS opposite
— More frequent system calls, more kernel state is maintained

80%

=]
=
S

Degradation
(lower is faster)

c2a8838
SRS

100 500 1K 2K 5K 10K 20K 50K 100K 500K
instructions between interrupts (log scale)

EECS 343 Operating Systems
Northwestern University

FlexSC contributions

» Quantify impact of synchronous syscalls
* Propose exception-less syscalls and implementation

* Present a thread library

to make Its use
transparent

» Show performance improvement

Event- Threaded Traditional
driven Apps apps
AppS [FIexSC-]

Threads
FlexSC
Operating System

— Apache —up to 116%

— MySQL — up to 40%

EECS 343 Operating Systems
Northwestern University

Exception-less system calls

* A new OS mechanism — exception-less system calls

» Key idea - remove synchronicity by decoupling
Invocation from execution

O P)

—_————e e — e e | YO Y e - Call

Kernel Kernel o
Exceptlon Exceptlon J

EECS 343 Operating Systems
Northwestern University

Benefits of exception-less syscalls

+ Lower direct costs
— Fewer mode switches

» Allows for system call batching
— Reduce indirect costs

» Allows for dynamic core specialization
— Scheduling a syscall on a core !=than where it was invoked
— Improved spatial locality — lower indirect costs

— Potentially no mode switches necessary — eliminate direct
costs

EECS 343 Operating Systems
Northwestern University

Exception-less interface

* Interface — a set of memory pages shared bet/
user and kernel mode — syscall pages

» Syscall entries

Syscall | Number of status arg0| ... |arg6| Return
number | arguments value

entry = free syscall entry();
entry->syscall = 1;
entry->num args = 3;
entry->args[0] = fd;
write (fd, buf, 4090); "
entry->status = SUBMIT;

while (entry->status != DONE)
/* do something else */;
return entry->return code;

—

EECS 343 Operating Systems
Northwestern University

Interface and syscall threads

* Two new system calls

- flexsc register —register process wanting to use
FlexSC

- flexsc wait —When user-space thread has nothing else
to do but wait for at least one return — tell the kernel
» System call executes in the virtual address of the
Invoking process
- flexsc register creates syscall threads (cloned from the
registering process)
» To maintain syscall blocking model

— Create multiple syscall threads per process (as many as
entries in the syscall page)

— Only one is active per app/core
— When thread needs to block, wake up another one

EECS 343 Operating Systems
Northwestern University

FlexSC thread library

» Get the benefits without (the costs) changing the interface

* M-on-N thread library
— POSIX compliant, binary compatible with Linux NPTL
— One kernel visible thread per core, many user threads per kernel

* Redirects system calls (libc)
— Posts exception-less syscalls to syscall page
— Switches to another user-level thread

— If run out of ready user-mode threads

« Check syscall page for completed entries so that it can get result
* As alastresort —invoke flexsc wait

One kernel-visible Multiple user-
thread per core mode threads
flexsc wait () Z¥Z¥Z ¥Z Call

S A —_———— page
Multiple syscall g g g g
threads per core

EECS 343 Operating Systems
Northwestern University

Evaluation

* Linux 2.6.33
* Nehalem (Core i7) server, 2.3GHz
— 4 cores on a chip
» Clients connected on 1Gbps network
» Workload

— Sysbench on MySQL (80% user, 20% kernel)
— ApacheBench on Apache (50% user, 50% kernel)

» Default Linux native POSIX threaded library, NTPL
(synch) vs. FlexSC-Threads (flexsc)

» Values reported are avg or 5 runs

EECS 343 Operating Systems
Northwestern University

Overhead

» Overhead of execution a exception-less syscall
— Switching to syscall thread and back to user thread
— De-marshaling args and retrieve return from syscall page

— To measure this — microbenchmark using getppid()
« Small user- and kernel- footprint, what’s left is direct cost

90
g0
70
60
50
40
30
20
10

0
0 10 20 <0 40 50 &0 70

Number of batched requests

ulil= flexsc
== SYNC

43% slower for 1

1309% faster for 32+

Time (nanoseconds)

EECS 343 Operating Systems
Northwestern University

Overhead

+ Large overhead to execute on a remote core

*» Remote execution requires sending a interprocessor interrupt to
wake up remote syscall thread

— Worst case — not currently executing syscall thread there

700

= flexsc
600 =p=sync (same
500 core)

Time (nanoseconds)

0 10 20 30 40 50 60 70
Number of batched requests

EECS 343 Operating Systems
Northwestern University

ApacheBench throughput (1 core)

» Apache performance with ApacheBench workload
— 1 core — FlexSC uses syscall batching

45,000
40,000 il flexsc

" sync

)

o
o
o
o
o

30,000
25,000
20,000
15,000

0% improvement

Throughput
(requests/sec.

—
a8
==
==
S

0
0 200 400 600 800 1000

Apache User-IPC Kernel-IPC Request Cuncurrency
Sync 0.48 0.45

Flexsc 0.94 0.94

EECS 343 Operating Systems
Northwestern University

ApacheBench throughput (4 cores)

» On multicore, redirect syscalls to maximize core locality

» Disparity between throughput and IPC improvement
— Benefit from localized kernel exec — reduced contention for locks
45,000
40,000
—~ 35,000
30,000
25,000
20,000
15,000
10,000
5,00

115% improvement

Throughput
(requests/sec

ul=s flexsc
W sync

0
0 200 400 600 800 1000

Apache User-IPC Kernel-IPC Request Concurrency
Sync 0.45 0.43

Flexsc 0.74 0.76

EECS 343 Operating Systems
Northwestern University

Apache latency per client request

256 concurrent requests

30 238
[99th
percentile
I B average

sync flexsc sync flexsc sync flexsc
1 core 2 cores 4 cores

== N N
[5 I == T & o

Latency (ms)
=

=2

EECS 343 Operating Systems
Northwestern University

Summary

» Traditional syscall degrade server performance
— Biggest problem is pollution of processor structures

» EXception-less syscalls - flexible and efficient syscall
execution

» FlexSC-threads to use them w/o modifying apps

» Large improvements on throughput and latency of
benchmarked apps

» Future work
— Scheduling of syscalls (time and space)

— Exception-less syscalls for what they were originally meant —
low-latency comm. between user and kernel space with
hyper-threaded processors

EECS 343 Operating Systems
Northwestern University

