
FlexSC: Flexible System Call 

Scheduling with Exception-Less 

System Calls

L. Soares and M. Stumm, U. Toronto

OSDI 2010

Research in Operating Systems - FlexSC



Synchronous system call is a (bad) legacy

System calls are the defacto interface to the OS

Basic model

– Write arguments to appropriate registers

– Issue special instruction that raises a synchronous exception

– Yielding user-mode execution to kernel-mode exception 

handler

Key points

– Use processor exception to communicate w/ the kernel

– Enforces synchronous execution model

Expensive!

– Direct costs – mode switch

– Indirect costs – pollution of processor structure
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The costs of (synchronous) syscalls

Mode switch cost (direct cost)

– Time to execute a syscall instruction in user mode

– Resume execution in kernel mode and 

– Return control back to user mode

• Require flushing user-mode pipeline, saving registers, …

– Mode switch cost - to enter and leave 150 cycles (79+71) 

• Compare with 250 cycles for cache-miss memory access

System call footprint (indirect cost)

– Process structure pollution – user-mode state replaced by 

kernel-mode state

– Processor structures: L1 data and instruction cache, TLB, 

branch prediction tables, prefetch buffers, unified caches L2 

and L3 … 
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The costs of (synchronous) syscalls

System call footprints measured with a high IPC workload from 

SPEC CPU 2006 benchmark

– Collected using HPC triggering infrequently

For processor structures, numbers represent entries evicted
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Syscall Instruc Cycles IPC i-cache d-cache L2 L3 d-TLB

Stat 4972 13585 0.37 32 186 660 2559 21

Pwrite 5689 31285 0.18 50 373 985 3160 44

Open+write+

close

9921 32815 0.39 78 481 1462 5105 49

Half to full d-cache!

Much larger than L1 due to L2 

& L3 more aggressive prefteching
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Synchronous syscall impact on user IPC

At the end, the measure of cost that matters

– Direct cost was measure issuing a null system call; indirect is 

the diff
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Xalan (SPEC CPU 2006) - pwrite

Apache

MySQL

Cut processor efficiency in half!
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Synchronous syscall impact on kernel IPC

Lack of locality also impact kernel IPC – trend,of

course, is opposite

– More frequent system calls, more kernel state is maintained
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FlexSC contributions

Quantify impact of synchronous syscalls

Propose exception-less syscalls and implementation 

Present a thread library 

to make its use 

transparent

Show performance improvement

– Apache – up to 116%

– MySQL – up to 40%
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Exception-less system calls

A new OS mechanism – exception-less system calls

Key idea - remove synchronicity by decoupling 

invocation from execution
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Benefits of exception-less syscalls

Lower direct costs

– Fewer mode switches

Allows for system call batching

– Reduce indirect costs

Allows for dynamic core specialization

– Scheduling a syscall on a core != than where it was invoked

– Improved spatial locality – lower indirect costs

– Potentially no mode switches necessary – eliminate direct 

costs
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Exception-less interface

Interface – a set of memory pages shared bet/ 

user and kernel mode – syscall pages

Syscall entries 
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Syscall

number

Number of 

arguments

status arg0 arg6 Return 

value

…

write(fd, buf, 4096);

while (entry->status != DONE)

/* do something else */;

return entry->return_code;
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entry = free_syscall_entry();

entry->syscall = 1;

entry->num_args = 3;

entry->args[0] = fd;

…

entry->status = SUBMIT;



Interface and syscall threads

Two new system calls

– flexsc_register – register process wanting to use 

FlexSC

– flexsc_wait – When user-space thread has nothing else 

to do but wait for at least one return – tell the kernel 

System call executes in the virtual address of the 

invoking process

– flexsc_register creates syscall threads (cloned from the 

registering process) 

To maintain syscall blocking model

– Create multiple syscall threads per process (as many as 

entries in the syscall page)

– Only one is active per app/core

– When thread needs to block, wake up another one
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FlexSC thread library

Get the benefits without (the costs) changing the interface

M-on-N thread library

– POSIX compliant, binary compatible with Linux NPTL

– One kernel visible thread per core, many user threads per kernel

Redirects system calls (libc)

– Posts exception-less syscalls to syscall page

– Switches to another user-level thread

– If run out of ready user-mode threads

• Check syscall page for completed entries so that it can get result

• As a last resort – invoke flexsc_wait
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z z zflexsc_wait()
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Evaluation

Linux 2.6.33

Nehalem (Core i7) server, 2.3GHz

– 4 cores on a chip

Clients connected on 1Gbps network

Workload

– Sysbench on MySQL (80% user, 20% kernel)

– ApacheBench on Apache (50% user, 50% kernel)

Default Linux native POSIX threaded library, NTPL 

(synch) vs. FlexSC-Threads (flexsc)

Values reported are avg or 5 runs
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Overhead

Overhead of execution a exception-less syscall

– Switching to syscall thread and back to user thread

– De-marshaling args and retrieve return from syscall page

– To measure this – microbenchmark using getppid()

• Small user- and kernel- footprint, what’s left is direct cost
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43% slower for 1

130% faster for 32+

EECS 343 Operating Systems

Northwestern University



Overhead

Large overhead to execute on a remote core

Remote execution requires sending a interprocessor interrupt to 

wake up remote syscall thread

– Worst case – not currently executing syscall thread there
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ApacheBench throughput (1 core)

Apache performance with ApacheBench workload

– 1 core – FlexSC uses syscall batching
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Apache User-IPC Kernel-IPC

Sync 0.48 0.45

Flexsc 0.94 0.94
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ApacheBench throughput (4 cores)

On multicore, redirect syscalls to maximize core locality

Disparity between throughput and IPC improvement

– Benefit from localized kernel exec – reduced contention for locks
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Apache User-IPC Kernel-IPC

Sync 0.45 0.43

Flexsc 0.74 0.76
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Apache latency per client request
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Summary

Traditional syscall degrade server performance

– Biggest problem is pollution of processor structures

Exception-less syscalls - flexible and efficient syscall

execution

FlexSC-threads to use them w/o modifying apps

Large improvements on throughput and latency of 

benchmarked apps

Future work

– Scheduling of syscalls (time and space)

– Exception-less syscalls for what they were originally meant –

low-latency comm. between user and kernel space with 

hyper-threaded processors

– …
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