
FlexSC: Flexible System Call 

Scheduling with Exception-Less 

System Calls

L. Soares and M. Stumm, U. Toronto

OSDI 2010

Research in Operating Systems - FlexSC



Synchronous system call is a (bad) legacy

System calls are the defacto interface to the OS

Basic model

– Write arguments to appropriate registers

– Issue special instruction that raises a synchronous exception

– Yielding user-mode execution to kernel-mode exception 

handler

Key points

– Use processor exception to communicate w/ the kernel

– Enforces synchronous execution model

Expensive!

– Direct costs – mode switch

– Indirect costs – pollution of processor structure

EECS 343 Operating Systems

Northwestern University

2



The costs of (synchronous) syscalls

Mode switch cost (direct cost)

– Time to execute a syscall instruction in user mode

– Resume execution in kernel mode and 

– Return control back to user mode

• Require flushing user-mode pipeline, saving registers, …

– Mode switch cost - to enter and leave 150 cycles (79+71) 

• Compare with 250 cycles for cache-miss memory access

System call footprint (indirect cost)

– Process structure pollution – user-mode state replaced by 

kernel-mode state

– Processor structures: L1 data and instruction cache, TLB, 

branch prediction tables, prefetch buffers, unified caches L2 

and L3 … 

3EECS 343 Operating Systems

Northwestern University



The costs of (synchronous) syscalls

System call footprints measured with a high IPC workload from 

SPEC CPU 2006 benchmark

– Collected using HPC triggering infrequently

For processor structures, numbers represent entries evicted

4

Syscall Instruc Cycles IPC i-cache d-cache L2 L3 d-TLB

Stat 4972 13585 0.37 32 186 660 2559 21

Pwrite 5689 31285 0.18 50 373 985 3160 44

Open+write+

close

9921 32815 0.39 78 481 1462 5105 49

Half to full d-cache!

Much larger than L1 due to L2 

& L3 more aggressive prefteching

EECS 343 Operating Systems

Northwestern University



Synchronous syscall impact on user IPC

At the end, the measure of cost that matters

– Direct cost was measure issuing a null system call; indirect is 

the diff

5

Xalan (SPEC CPU 2006) - pwrite

Apache

MySQL

Cut processor efficiency in half!

EECS 343 Operating Systems

Northwestern University



Synchronous syscall impact on kernel IPC

Lack of locality also impact kernel IPC – trend,of

course, is opposite

– More frequent system calls, more kernel state is maintained

6EECS 343 Operating Systems

Northwestern University



FlexSC contributions

Quantify impact of synchronous syscalls

Propose exception-less syscalls and implementation 

Present a thread library 

to make its use 

transparent

Show performance improvement

– Apache – up to 116%

– MySQL – up to 40%

7

Operating System

FlexSC

Event-

driven 

Apps

Threaded 

Apps

Traditional 

apps

FlexSC-

Threads

EECS 343 Operating Systems

Northwestern University



Exception-less system calls

A new OS mechanism – exception-less system calls

Key idea - remove synchronicity by decoupling 

invocation from execution

8

Sys 

Call

page

Exception Exception

User

Kernel

User

Kernel

EECS 343 Operating Systems

Northwestern University



Benefits of exception-less syscalls

Lower direct costs

– Fewer mode switches

Allows for system call batching

– Reduce indirect costs

Allows for dynamic core specialization

– Scheduling a syscall on a core != than where it was invoked

– Improved spatial locality – lower indirect costs

– Potentially no mode switches necessary – eliminate direct 

costs

9EECS 343 Operating Systems

Northwestern University



Exception-less interface

Interface – a set of memory pages shared bet/ 

user and kernel mode – syscall pages

Syscall entries 

10

Syscall

number

Number of 

arguments

status arg0 arg6 Return 

value

…

write(fd, buf, 4096);

while (entry->status != DONE)

/* do something else */;

return entry->return_code;

EECS 343 Operating Systems

Northwestern University

entry = free_syscall_entry();

entry->syscall = 1;

entry->num_args = 3;

entry->args[0] = fd;

…

entry->status = SUBMIT;



Interface and syscall threads

Two new system calls

– flexsc_register – register process wanting to use 

FlexSC

– flexsc_wait – When user-space thread has nothing else 

to do but wait for at least one return – tell the kernel 

System call executes in the virtual address of the 

invoking process

– flexsc_register creates syscall threads (cloned from the 

registering process) 

To maintain syscall blocking model

– Create multiple syscall threads per process (as many as 

entries in the syscall page)

– Only one is active per app/core

– When thread needs to block, wake up another one

11EECS 343 Operating Systems

Northwestern University



FlexSC thread library

Get the benefits without (the costs) changing the interface

M-on-N thread library

– POSIX compliant, binary compatible with Linux NPTL

– One kernel visible thread per core, many user threads per kernel

Redirects system calls (libc)

– Posts exception-less syscalls to syscall page

– Switches to another user-level thread

– If run out of ready user-mode threads

• Check syscall page for completed entries so that it can get result

• As a last resort – invoke flexsc_wait

12

Sys 

Call

page

z

One kernel-visible 

thread per core

Multiple user-

mode threads

Multiple syscall

threads per core

z z zflexsc_wait()

EECS 343 Operating Systems

Northwestern University



Evaluation

Linux 2.6.33

Nehalem (Core i7) server, 2.3GHz

– 4 cores on a chip

Clients connected on 1Gbps network

Workload

– Sysbench on MySQL (80% user, 20% kernel)

– ApacheBench on Apache (50% user, 50% kernel)

Default Linux native POSIX threaded library, NTPL 

(synch) vs. FlexSC-Threads (flexsc)

Values reported are avg or 5 runs

13EECS 343 Operating Systems

Northwestern University



Overhead

Overhead of execution a exception-less syscall

– Switching to syscall thread and back to user thread

– De-marshaling args and retrieve return from syscall page

– To measure this – microbenchmark using getppid()

• Small user- and kernel- footprint, what’s left is direct cost

14

43% slower for 1

130% faster for 32+

EECS 343 Operating Systems

Northwestern University



Overhead

Large overhead to execute on a remote core

Remote execution requires sending a interprocessor interrupt to 

wake up remote syscall thread

– Worst case – not currently executing syscall thread there

15EECS 343 Operating Systems

Northwestern University



ApacheBench throughput (1 core)

Apache performance with ApacheBench workload

– 1 core – FlexSC uses syscall batching

16

Apache User-IPC Kernel-IPC

Sync 0.48 0.45

Flexsc 0.94 0.94

EECS 343 Operating Systems

Northwestern University



ApacheBench throughput (4 cores)

On multicore, redirect syscalls to maximize core locality

Disparity between throughput and IPC improvement

– Benefit from localized kernel exec – reduced contention for locks

17

Apache User-IPC Kernel-IPC

Sync 0.45 0.43

Flexsc 0.74 0.76

EECS 343 Operating Systems

Northwestern University



Apache latency per client request

18EECS 343 Operating Systems

Northwestern University



Summary

Traditional syscall degrade server performance

– Biggest problem is pollution of processor structures

Exception-less syscalls - flexible and efficient syscall

execution

FlexSC-threads to use them w/o modifying apps

Large improvements on throughput and latency of 

benchmarked apps

Future work

– Scheduling of syscalls (time and space)

– Exception-less syscalls for what they were originally meant –

low-latency comm. between user and kernel space with 

hyper-threaded processors

– …

19EECS 343 Operating Systems

Northwestern University


