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Synchronous system call is a (bad) legacy

» System calls are the defacto interface to the OS

* Basic model
— Write arguments to appropriate registers
— Issue special instruction that raises a synchronous exception
— Yielding user-mode execution to kernel-mode exception
handler
* Key points
— Use processor exception to communicate w/ the kernel
— Enforces synchronous execution model

* Expensive!

— Direct costs — mode switch
— Indirect costs — pollution of processor structure
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The costs of (synchronous) syscalls

* Mode switch cost (direct cost)
— Time to execute a syscall instruction in user mode
— Resume execution in kernel mode and

— Return control back to user mode

» Require flushing user-mode pipeline, saving registers, ...
— Mode switch cost - to enter and leave 150 cycles (79+71)

« Compare with 250 cycles for cache-miss memory access

» System call footprint (indirect cost)

— Process structure pollution — user-mode state replaced by
kernel-mode state

— Processor structures: L1 data and instruction cache, TLB,
branch prediction tables, prefetch buffers, unified caches L2
and L3 ...
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he costs of (synchronous) syscalls

« System call footprints measured with a high IPC workload from
SPEC CPU 2006 benchmark

— Collected using HPC triggering infrequently
» For processor structures, numbers represent entries evicted

Stat 4972 13585 0.37 2559

Pwrite 5689 31285 0.18 50 373 985 3160 44
Open+write+ 9921 32815 0.39 78 481 1462 5105 49
close

Half to full d-cache! V

Much larger than L1 due to L2
& L3 more aggressive prefteching
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Synchronous syscall impact on user IPC

» At the end, the measure of cost that matters
— Direct cost was measure issuing a null system call; indirect is
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Synchronous syscall impact on kernel IPC

» Lack of locality also impact kernel IPC — trend,of
course, IS opposite
— More frequent system calls, more kernel state is maintained
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FlexSC contributions

» Quantify impact of synchronous syscalls
* Propose exception-less syscalls and implementation

* Present a thread library

to make Its use
transparent

» Show performance improvement

Event- Threaded Traditional
driven Apps apps
AppS [FIexSC- ]

Threads
FlexSC
Operating System

— Apache —up to 116%

— MySQL — up to 40%
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Exception-less system calls

* A new OS mechanism — exception-less system calls

» Key idea - remove synchronicity by decoupling
Invocation from execution
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Benefits of exception-less syscalls

+ Lower direct costs
— Fewer mode switches

» Allows for system call batching
— Reduce indirect costs

» Allows for dynamic core specialization
— Scheduling a syscall on a core !=than where it was invoked
— Improved spatial locality — lower indirect costs

— Potentially no mode switches necessary — eliminate direct
costs
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Exception-less interface

* Interface — a set of memory pages shared bet/
user and kernel mode — syscall pages

» Syscall entries

Syscall | Number of status arg0| ... |arg6| Return
number | arguments value

entry = free syscall entry();
entry->syscall = 1;
entry->num args = 3;
entry->args[0] = fd;
write (fd, buf, 4090); "
entry->status = SUBMIT;

while (entry->status != DONE)
/* do something else */;
return entry->return code;

—

EECS 343 Operating Systems
Northwestern University



Interface and syscall threads

* Two new system calls

- flexsc register —register process wanting to use
FlexSC

- flexsc wait —When user-space thread has nothing else
to do but wait for at least one return — tell the kernel
» System call executes in the virtual address of the
Invoking process
- flexsc register creates syscall threads (cloned from the
registering process)
» To maintain syscall blocking model

— Create multiple syscall threads per process (as many as
entries in the syscall page)

— Only one is active per app/core
— When thread needs to block, wake up another one
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FlexSC thread library

» Get the benefits without (the costs) changing the interface

* M-on-N thread library
— POSIX compliant, binary compatible with Linux NPTL
— One kernel visible thread per core, many user threads per kernel

* Redirects system calls (libc)
— Posts exception-less syscalls to syscall page
— Switches to another user-level thread

— If run out of ready user-mode threads

« Check syscall page for completed entries so that it can get result
* As alastresort —invoke flexsc wait

One kernel-visible Multiple user-
thread per core mode threads
flexsc wait () Z¥Z¥Z ¥Z Call

S A —_———— page
Multiple syscall g g g g
threads per core
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Evaluation

* Linux 2.6.33
* Nehalem (Core i7) server, 2.3GHz
— 4 cores on a chip
» Clients connected on 1Gbps network
» Workload

— Sysbench on MySQL (80% user, 20% kernel)
— ApacheBench on Apache (50% user, 50% kernel)

» Default Linux native POSIX threaded library, NTPL
(synch) vs. FlexSC-Threads (flexsc)

» Values reported are avg or 5 runs
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Overhead

» Overhead of execution a exception-less syscall
— Switching to syscall thread and back to user thread
— De-marshaling args and retrieve return from syscall page

— To measure this — microbenchmark using getppid()
« Small user- and kernel- footprint, what’s left is direct cost
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Overhead

+ Large overhead to execute on a remote core

*» Remote execution requires sending a interprocessor interrupt to
wake up remote syscall thread

— Worst case — not currently executing syscall thread there
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ApacheBench throughput (1 core)

» Apache performance with ApacheBench workload
— 1 core — FlexSC uses syscall batching
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ApacheBench throughput (4 cores)

» On multicore, redirect syscalls to maximize core locality

» Disparity between throughput and IPC improvement
— Benefit from localized kernel exec — reduced contention for locks
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Apache latency per client request
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Summary

» Traditional syscall degrade server performance
— Biggest problem is pollution of processor structures

» EXception-less syscalls - flexible and efficient syscall
execution

» FlexSC-threads to use them w/o modifying apps

» Large improvements on throughput and latency of
benchmarked apps

» Future work
— Scheduling of syscalls (time and space)

— Exception-less syscalls for what they were originally meant —
low-latency comm. between user and kernel space with
hyper-threaded processors
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