Architectural Support for Operating Systems

Today

® Computer system overview
Next time

® OS components & structure

Announcements and reminders

» Google group for discussion — go to the course
webpage and register emai: (Subscribe

» Project 1 is to be done on your own, all others
are to be done in teams of 2

» Project 1 is out!
— TA session on Wed. 6PM in TLab!

» Project competitions and awards

» And now a short quiz

Computer architecture and OS

» OS is intimately tied to the hardware it runs on
— The OS design is impacted by it
— The OS needs result on new architectural features

» Abstract model of a simple computer

CPU Memory Video Keyboard Hard Disk
controller controller controller

Bus

Processor

* The brain with a basic operation cycle
— Fetch next instruction
— Decode it to determine type & operands)
— Execute it

* ... and a specific set of instructions

— E.g. combine ops (ADD), control flow, data movement
— Architecture specific - Pentium != SPARC

* Since memory access is slow ... registers
— General regs to hold variables & temp. results
— Special regs such as Program Counter, Stack Pointer

Processor ...

» This model is overly simplistic: pipeline
architectures, superscalar, ...

Fetch
unit

=N

Decode
unit

=N

Exec
unit

Fetch
unit

Fetch
unit

=

Decode
unit

N

Decode
unit

W —F
‘y

Exec
unit

Exec
unit

Exec
unit

» Multithreading/Hyperthreading and multicore

Memory

First core-based memory: IBM 405

» |deally — fast, large, cheap and e o o
persistent A B RRRR B

» Reality — storage hierarchy

— Registers
* Internal to the CPU & just as fast
« 32x32 in a 32 bit machine

— Cache

« Split into cache lines
 If word needs is in cache, get in ~2 cycles

— Main memory
— Hard disk

— Magnetic tape
— Coherency?

|— arm assembly

read-write

rotation

Architectural trends impact OS design ...

» Processing power
— Doubling every 18 months (100x per decade)
— but power is a serious issue

40|

Pentium 4
Normalized (to i486) power versus (Cedarmill

normalized scalar performance for
multiple generations of Intel
microprocessors

power = perf » 1.75

= Pentium 4
o (Willamette
g 20
[
15
Pentium M Core
//’—\\\ Duo
10 /- Dothane \\(Yon%h
\ ®Banias /
5] \\\ ///
O 1 1 I

0 2 4 6 8
Scalar Performance

*http://www.intel.com/pressroom/kits/
core2duo/pdf/epi-trends-final2.pdf

Architectural trends impact OS design ...

» Primary memory capacity
— Same and for the same reason

1980 64KB $405.00 ($6,480/MB)
1990 8MB $851.00 ($106/MB)
2000 64MB $99.89 ($1.56/MB)
2009 4GB $39.99 ($0.010/MB)*

» Disk capacity
— Double every 12 months (1000x per decade)

1961 IBM 1301

~26MB ~$115,500 WD 2TB My Book

Essential ~ $110

*http://www.jcmit.com/memoryprice.htm

Architectural trends impact OS design ...

» Gap between CPU and I/O speeds

1e+08
1e+07
1e+06

Hard disk seek time s
1 00000 CPU cycle time st
1 0000 DRAM cycle time s

1000 ¥
100 7
10

1

0.1

1980 1985 1990 1995 2000 2005

Year

nano seconds

Relative speed of key
components — an
unbalanced system
FAWN project @ CMU

*http://www.cmu.com/~dga

Architectural trends impact OS design

» Solid state storage (SSD)

— 10-100k random 10s per second
— 800 MB/s transfer rates
— Costly, but quickly riding Moore’s law

2011 Crucial 512GB SSD $750 Crucial 512 GB md
_] 2.5-Inch Solid State
» Optical bandwidth today Drive SATA 6Gb/s

— Doubling every 9 months (Butter’s law)

— 50% improvement each year for home users (Nielsen’s law)
— Factor of 10,000 every decade

— 10x as fast as disk capacity!

— 100x as fast as processor performance!

» What are some of the implications of these trends?
— E.g.: from mainframes to desktops to cloud computing

... and OS needs shape the architecture

» Architectural support can simplify/complicate OS tasks
— E.g., early PC operating systems (DOS, MacOS) lacked
support for virtual memory, partly because hardware lacked
necessary hardware support
» Features were built primarily to support OS’s:
— Protected modes of execution (kernel vs. user)
— Protected instructions
— System calls (and software interrupts)
— Memory protection
— |/O control operations
— Timer (clock) operation
— Interrupts and exceptions
— Synchronization instructions

OS protection

» Multiprogramming & timesharing are useful but
— How to protect programs from each other & kernel from all?
— How to handle relocation?

* Some instructions are restricted to the OS
— e.g. Directly access I/O devices
— e.g. Manipulate memory state management

* How does the CPU know if a protected instructions
should be executed?
— Architecture must support 2+ mode of operation
— Mode is set by status bit in a protected register (PSW)
» User programs execute in user mode, OS in kernel mode

» Protected instructions can only be executed in kernel
mode

Crossing protection boundaries

* How can apps. do something privileged?
— e.g. how do you write to disk if you can't do I/O?

» User programs must call an OS procedure

— OS defines a sequence of system calls
— How does the user to kernel-mode transition happen?

* There must be a system call instruction, which ...
— Causes an exception which vector to a kernel handler
— Passes a parameter indicating which syscall is
— Saves caller's state so it can be restored — Why?
— OS must verify caller's parameters — Why?
— Must be a way to go back to user once done

Memory relocation

* OS must protect ...
— user programs from each other
— itself from user programs

» Simplest model — base + limit
— Base (start) of program + limit registers
— Also solves relocation problem
— Cost 2 registers + cycle time incr

* More sophisticated alternatives

— 2 base and 2 limit registers for text
& data; allow sharing program text

— Paging, segmentation, virtual memory

Job 1

Job 2

Base reg

Job 3

Limit reg

I/0

* I/O Device

— Device + Controller (simpler I/F to OS; think SCSI)

e Read sector x from disk y — (disk, cylinder, sector,
head), ...

* How does the kernel start an 1/0?
— Special I/0 instructions
— Memory-mapped I/0
* How does it notice when the I/0 is done?
— Polling — are we done yet?
— Interrupts - let me know when you are done?
* How does it exchange data with the I/O device?

— Programmed I/0
— Direct Memory Access (DMA)

OS control flow

* OSs are event driven

— Once booted, all entry to kernel happens as result of
an event (e.g. signal by an interrupt), which

« Immediately stops current execution
« Changes to kernel mode, event handler is called

» Kernel defines handlers for each event type

— Specific types are defined by the architecture
ec.g. timer event, I/0 interrupt, system call trap

OS control flow ...

* Handling the interrupt
— Push PC & PSW onto stack and switch to kernel mode
— Device # is index in interrupt vector - get handler

— Interrupt handler
eStores stack data
eHandles interrupt
eReturns to user program after restoring program state

Interrupts and exceptions

* Three main types of events: interrupts &
exceptions
— Exceptions/traps caused by SW executing instructions
e E.g., a page fault
e E.g., an attempted write to a read-only page
e An expected exception is a “trap”, unexpected is a “fault”
— Interrupts caused by HW devices
e E.g., device finishes I/0O
e E.g., timer fires

Timers

* How can the OS retains control when a user
program gets stuck in an infinite loop?

— Use a hardware timer that generates a periodic
interrupt

— Before it transfers to a user program, the OS loads
the timer with a time to interrupt (how long?)

— When time's up, interrupt transfers control back to OS

e OS decides which program to schedule next (which
one?)

* Should the timer be privileged?
— For reading or for writing?

Synchronization

» |ssues with interrupts

— May occur any time, causing code to execute that interferes
with the interrupted code

— OS must be able to synchronize concurrent processes

* Synchronization

— Guarantee that short instruction sequences (e.g. read-modify-
write) execute atomically

— Two methods
« Turn off interrupts, execute sequence, re-enable interrupts
 Have special, complex atomic instructions — test-and-set

Management of concurrency & asynchronous events is
the biggest difference bet/ systems-level & traditional

application programming.

Summary

» This is far from over — new architectural features are
still being introduced
— Support for virtual machine monitors
— Hardware transaction support
— Support for security

» Transistors are free so Intel/AMD/... need to find
applications that require new hardware that you would
want to buy ...

