
Today
l  Computer system overview

Next time
l  OS components & structure

Architectural Support for Operating Systems

Announcements and reminders

" Google group for discussion – go to the course
webpage and register

" Project 1 is to be done on your own, all others
are to be done in teams of 2

" Project 1 is out!
–  TA session on Wed. 6PM in TLab!

" Project competitions and awards

" And now a short quiz

2

3

Computer architecture and OS

" OS is intimately tied to the hardware it runs on
–  The OS design is impacted by it
–  The OS needs result on new architectural features

" Abstract model of a simple computer

CPU Memory Video
controller

Keyboard
controller

Hard Disk
controller MMU

Bus

"   The brain with a basic operation cycle
–  Fetch next instruction
–  Decode it to determine type & operands
–  Execute it

"   … and a specific set of instructions
–  E.g. combine ops (ADD), control flow, data movement
–  Architecture specific - Pentium != SPARC

"   Since memory access is slow … registers
–  General regs to hold variables & temp. results
–  Special regs such as Program Counter, Stack Pointer

4

Processor

"   This model is overly simplistic: pipeline
architectures, superscalar, …

"   Multithreading/Hyperthreading and multicore

5

Processor …

Fetch
unit

Decode
unit

Exec
unit

Holding
buffer

Fetch
unit

Decode
unit

Fetch
unit

Decode
unit

Exec
unit

Exec
unit

Exec
unit

L2 L2

Core
L1

Core
L1

Core
L1

Core
L1

Memory

" Ideally – fast, large, cheap and
persistent

" Reality – storage hierarchy
–  Registers

•  Internal to the CPU & just as fast
•  32x32 in a 32 bit machine

–  Cache
•  Split into cache lines
•  If word needs is in cache, get in ~2 cycles

–  Main memory
–  Hard disk
–  Magnetic tape
–  Coherency?

First core-based memory: IBM 405
Alphabetical Accounting Machine

Architectural trends impact OS design …

" Processing power
–  Doubling every 18 months (100x per decade)
–  but power is a serious issue

7 *http://www.intel.com/pressroom/kits/
core2duo/pdf/epi-trends-final2.pdf

Normalized (to i486) power versus
normalized scalar performance for
multiple generations of Intel
microprocessors

Architectural trends impact OS design …

" Primary memory capacity
–  Same and for the same reason

1980 64KB $405.00 ($6,480/MB)
1990 8MB $851.00 ($106/MB)
2000 64MB $99.89 ($1.56/MB)
2009 4GB $39.99 ($0.010/MB)*

" Disk capacity
–  Double every 12 months (1000x per decade)

8 *http://www.jcmit.com/memoryprice.htm

WD 2TB My Book
Essential ~ $110

1961 IBM 1301
~26MB ~$115,500

Architectural trends impact OS design …

" Gap between CPU and I/O speeds

9 *http://www.cmu.com/~dga

Relative speed of key
components – an
unbalanced system
FAWN project @ CMU

Architectural trends impact OS design

" Solid state storage (SSD)
–  10-100k random IOs per second
–  800 MB/s transfer rates
–  Costly, but quickly riding Moore’s law

2011 Crucial 512GB SSD $750

" Optical bandwidth today
–  Doubling every 9 months (Butter’s law)
–  50% improvement each year for home users (Nielsen’s law)
–  Factor of 10,000 every decade
–  10x as fast as disk capacity!
–  100x as fast as processor performance!

" What are some of the implications of these trends?
–  E.g.: from mainframes to desktops to cloud computing

10

Crucial 512 GB m4
2.5-Inch Solid State
Drive SATA 6Gb/s

… and OS needs shape the architecture

" Architectural support can simplify/complicate OS tasks
–  E.g., early PC operating systems (DOS, MacOS) lacked

support for virtual memory, partly because hardware lacked
necessary hardware support

" Features were built primarily to support OS’s:
–  Protected modes of execution (kernel vs. user)
–  Protected instructions
–  System calls (and software interrupts)
–  Memory protection
–  I/O control operations
–  Timer (clock) operation
–  Interrupts and exceptions
–  Synchronization instructions

11

OS protection

" Multiprogramming & timesharing are useful but
–  How to protect programs from each other & kernel from all?
–  How to handle relocation?

" Some instructions are restricted to the OS
–  e.g. Directly access I/O devices
–  e.g. Manipulate memory state management

" How does the CPU know if a protected instructions
should be executed?
–  Architecture must support 2+ mode of operation
–  Mode is set by status bit in a protected register (PSW)

•  User programs execute in user mode, OS in kernel mode

" Protected instructions can only be executed in kernel
mode

Crossing protection boundaries

" How can apps. do something privileged?
–  e.g. how do you write to disk if you can't do I/O?

" User programs must call an OS procedure
–  OS defines a sequence of system calls
–  How does the user to kernel-mode transition happen?

" There must be a system call instruction, which …
–  Causes an exception which vector to a kernel handler
–  Passes a parameter indicating which syscall is
–  Saves caller's state so it can be restored – Why?
–  OS must verify caller's parameters – Why?
–  Must be a way to go back to user once done

Memory relocation

" OS must protect …
–  user programs from each other
–  itself from user programs

" Simplest model – base + limit
–  Base (start) of program + limit registers
–  Also solves relocation problem
–  Cost 2 registers + cycle time incr

" More sophisticated alternatives
–  2 base and 2 limit registers for text

& data; allow sharing program text
–  Paging, segmentation, virtual memory

Job 1

Job 2

Job 3

Base reg

Limit reg

"   I/O Device
–  Device + Controller (simpler I/F to OS; think SCSI)

•  Read sector x from disk y → (disk, cylinder, sector,
head), …

"   How does the kernel start an I/O?
–  Special I/O instructions
–  Memory-mapped I/O

"   How does it notice when the I/O is done?
–  Polling – are we done yet?
–  Interrupts – let me know when you are done?

"   How does it exchange data with the I/O device?
–  Programmed I/O
–  Direct Memory Access (DMA)

15

I/O

"   OSs are event driven
–  Once booted, all entry to kernel happens as result of

an event (e.g. signal by an interrupt), which
•  Immediately stops current execution
•  Changes to kernel mode, event handler is called

"   Kernel defines handlers for each event type
–  Specific types are defined by the architecture

• e.g. timer event, I/O interrupt, system call trap

16

OS control flow

"   Handling the interrupt
–  Push PC & PSW onto stack and switch to kernel mode
–  Device # is index in interrupt vector - get handler
–  Interrupt handler

• Stores stack data
• Handles interrupt
• Returns to user program after restoring program state

17

OS control flow …

"   Three main types of events: interrupts &
exceptions
–  Exceptions/traps caused by SW executing instructions

•  E.g., a page fault
•  E.g., an attempted write to a read-only page
•  An expected exception is a “trap”, unexpected is a “fault”

–  Interrupts caused by HW devices
•  E.g., device finishes I/O
•  E.g., timer fires

18

Interrupts and exceptions

"   How can the OS retains control when a user
program gets stuck in an infinite loop?
–  Use a hardware timer that generates a periodic

interrupt
–  Before it transfers to a user program, the OS loads

the timer with a time to interrupt (how long?)
–  When time's up, interrupt transfers control back to OS

•  OS decides which program to schedule next (which
one?)

"   Should the timer be privileged?
–  For reading or for writing?

19

Timers

20

Synchronization

" Issues with interrupts
–  May occur any time, causing code to execute that interferes

with the interrupted code
–  OS must be able to synchronize concurrent processes

" Synchronization
–  Guarantee that short instruction sequences (e.g. read-modify-

write) execute atomically
–  Two methods

•  Turn off interrupts, execute sequence, re-enable interrupts
•  Have special, complex atomic instructions – test-and-set

 Management of concurrency & asynchronous events is
the biggest difference bet/ systems-level & traditional
application programming.

21

Summary

" This is far from over – new architectural features are
still being introduced
–  Support for virtual machine monitors
–  Hardware transaction support
–  Support for security
–  …

" Transistors are free so Intel/AMD/… need to find
applications that require new hardware that you would
want to buy …

