
Today 
l  Computer system overview 

Next time 
l  OS components & structure 

Architectural Support for Operating Systems 



Announcements and reminders 

" Google group for discussion – go to the course 
webpage and register 

" Project 1 is to be done on your own, all others 
are to be done in teams of 2 

" Project 1 is out! 
–  TA session on Wed. 6PM in TLab! 

" Project competitions and awards 

" And now a short quiz 
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Computer architecture and OS 

" OS is intimately tied to the hardware it runs on 
–  The OS design is impacted by it 
–  The OS needs result on new architectural features 

" Abstract model of a simple computer 

CPU Memory Video 
controller 

Keyboard 
controller 

Hard Disk 
controller MMU 

Bus 



"   The brain with a basic operation cycle  
–  Fetch next instruction 
–  Decode it to determine type & operands 
–  Execute it 

"   …  and a specific set of instructions 
–  E.g. combine ops (ADD), control flow, data movement 
–  Architecture specific - Pentium != SPARC 

"   Since memory access is slow … registers 
–  General regs to hold variables & temp. results 
–  Special regs such as Program Counter, Stack Pointer 
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Processor 



"   This model is overly simplistic: pipeline 
architectures, superscalar, … 

 
 
"   Multithreading/Hyperthreading and multicore 
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Memory 

" Ideally – fast, large, cheap and  
persistent 

" Reality – storage hierarchy 
–  Registers 

•  Internal to the CPU & just as fast 
•  32x32 in a 32 bit machine 

–  Cache 
•  Split into cache lines 
•  If word needs is in cache, get in ~2 cycles 

–  Main memory 
–  Hard disk 
–  Magnetic tape 
–  Coherency? 

First core-based memory: IBM 405 
Alphabetical Accounting Machine 



Architectural trends impact OS design … 

" Processing power 
–  Doubling every 18 months (100x per decade) 
–  but power is a serious issue 

7 *http://www.intel.com/pressroom/kits/
core2duo/pdf/epi-trends-final2.pdf 

Normalized (to i486) power versus 
normalized scalar performance for 
multiple generations of Intel 
microprocessors 



Architectural trends impact OS design … 

" Primary memory capacity 
–  Same and for the same reason 

1980  64KB  $405.00 ($6,480/MB) 
1990  8MB  $851.00 ($106/MB) 
2000  64MB  $99.89 ($1.56/MB) 
2009  4GB  $39.99 ($0.010/MB)* 

" Disk capacity 
–  Double every 12 months (1000x per decade) 

8 *http://www.jcmit.com/memoryprice.htm 

WD 2TB My Book 
Essential ~ $110 

1961 IBM 1301  
~26MB ~$115,500 



Architectural trends impact OS design … 

" Gap between CPU and I/O speeds 

9 *http://www.cmu.com/~dga 

Relative speed of key 
components – an 
unbalanced system 
FAWN project @ CMU 



Architectural trends impact OS design 

" Solid state storage (SSD) 
–  10-100k random IOs per second 
–  800 MB/s transfer rates 
–  Costly, but quickly riding Moore’s law 

2011 Crucial 512GB SSD $750  

" Optical bandwidth today 
–  Doubling every 9 months (Butter’s law) 
–  50% improvement each year for home users (Nielsen’s law) 
–  Factor of 10,000 every decade 
–  10x as fast as disk capacity! 
–  100x as fast as processor performance! 

" What are some of the implications of these trends? 
–  E.g.: from mainframes to desktops to cloud computing 
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Crucial 512 GB m4 
2.5-Inch Solid State 
Drive SATA 6Gb/s 



… and OS needs shape the architecture 

" Architectural support can simplify/complicate OS tasks 
–  E.g., early PC operating systems (DOS, MacOS) lacked 

support for virtual memory, partly because hardware lacked 
necessary hardware support 

" Features were built primarily to support OS’s: 
–  Protected modes of execution (kernel vs. user) 
–  Protected instructions 
–  System calls (and software interrupts) 
–  Memory protection 
–  I/O control operations 
–  Timer (clock) operation 
–  Interrupts and exceptions 
–  Synchronization instructions 
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OS protection 

" Multiprogramming & timesharing are useful but 
–  How to protect programs from each other & kernel from all? 
–  How to handle relocation? 

" Some instructions are restricted to the OS 
–  e.g. Directly access I/O devices 
–  e.g. Manipulate memory state management 

" How does the CPU know if a protected instructions 
should be executed? 
–  Architecture must support 2+ mode of operation 
–  Mode is set by status bit in a protected register (PSW) 

•  User programs execute in user mode, OS in kernel mode 

" Protected instructions can only be executed in kernel 
mode 



Crossing protection boundaries 

" How can apps. do something privileged? 
–  e.g. how do you write to disk if you can't do I/O? 

" User programs must call an OS procedure 
–  OS defines a sequence of system calls 
–  How does the user to kernel-mode transition happen? 

" There must be a system call instruction, which … 
–  Causes an exception which vector to a kernel handler 
–  Passes a parameter indicating which syscall is 
–  Saves caller's state so it can be restored – Why? 
–  OS must verify caller's parameters – Why? 
–  Must be a way to go back to user once done 



Memory relocation 

" OS must protect … 
–  user programs from each other 
–  itself from user programs 

" Simplest model – base + limit 
–  Base (start) of program + limit registers 
–  Also solves relocation problem 
–  Cost 2 registers + cycle time incr 

" More sophisticated alternatives 
–  2 base and 2 limit registers for text  

& data; allow sharing program text 
–  Paging, segmentation, virtual memory 

Job 1 

Job 2 

Job 3 

Base reg 

Limit reg 



"   I/O Device 
–  Device + Controller (simpler I/F to OS; think SCSI) 

•  Read sector x from disk y → (disk, cylinder, sector, 
head), … 

"   How does the kernel start an I/O? 
–  Special I/O instructions 
–  Memory-mapped I/O 

"   How does it notice when the I/O is done? 
–  Polling – are we done yet? 
–  Interrupts – let me know when you are done? 

"   How does it exchange data with the I/O device? 
–  Programmed I/O 
–  Direct Memory Access (DMA) 
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I/O 



"   OSs are event driven 
–  Once booted, all entry to kernel happens as result of 

an event (e.g. signal by an interrupt), which 
•  Immediately stops current execution 
•  Changes to kernel mode, event handler is called 

"   Kernel defines handlers for each event type 
–  Specific types are defined by the architecture 

• e.g. timer event, I/O interrupt, system call trap 
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OS control flow 



"   Handling the interrupt 
–  Push PC & PSW onto stack and switch to kernel mode 
–  Device # is index in interrupt vector - get handler 
–  Interrupt handler 

• Stores stack data 
• Handles interrupt  
• Returns to user program after restoring program state 
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OS control flow … 



"   Three main types of events: interrupts & 
exceptions 
–  Exceptions/traps caused by SW executing instructions 

•  E.g., a page fault 
•  E.g., an attempted write to a read-only page 
•  An expected exception is a “trap”, unexpected is a “fault” 

–  Interrupts caused by HW devices 
•  E.g., device finishes I/O 
•  E.g., timer fires 
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Interrupts and exceptions 



"   How can the OS retains control when a user 
program gets stuck in an infinite loop? 
–  Use a hardware timer that generates a periodic 

interrupt 
–  Before it transfers to a user program, the OS loads 

the timer with a time to interrupt (how long?) 
–  When time's up, interrupt transfers control back to OS 

•  OS decides which program to schedule next (which 
one?) 

"   Should the timer be privileged? 
–  For reading or for writing? 
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Timers 
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Synchronization 

" Issues with interrupts 
–  May occur any time, causing code to execute that interferes 

with the interrupted code 
–  OS must be able to synchronize concurrent processes 

" Synchronization 
–  Guarantee that short instruction sequences (e.g. read-modify-

write) execute atomically 
–  Two methods 

•  Turn off interrupts, execute sequence, re-enable interrupts 
•  Have  special, complex atomic instructions – test-and-set  

       

     Management of concurrency & asynchronous events is 
the biggest difference bet/ systems-level & traditional 
application programming. 
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Summary 

" This is far from over – new architectural features are 
still being introduced 
–  Support for virtual machine monitors 
–  Hardware transaction support 
–  Support for security 
–  … 

" Transistors are free so Intel/AMD/… need to find 
applications that require new hardware that you would 
want to buy … 


