
Deadlocks 

Today 
!  Resources & deadlocks  
!  Dealing with deadlocks 
!  Other issues 

Next Time 
!  Memory management 



2 

Introduction to deadlocks 
A set of threads is deadlocked if each thread in the set is waiting 

for an event that only another thread in the set can cause 
 

! None of the threads can … 
–  run 
–  release resources 
–  be awakened 

! Assumptions 
–  Threads or single-threaded processes 
–  There are no interrupts possible to wake up a blocked thread 

! Another “cute” example 
“When two trains approach each other at a crossing, both shall 

come to a full stop and neither shall start up until the other has 
gone.” An actual law passed by the Kansas legislature … 



3 

Conditions for deadlock 

1.  Mutual exclusion - Each resource assigned to 1 
thread or available 

2.  Hold and wait - A thread holding resources can 
request others 

3.  No preemption - Previously granted resources 
cannot forcibly be taken away 

4.  Circular wait – A circular chain of 2+ threads, each 
waiting for resource held by next one 

All conditions must hold for a deadlock to occur. 
Each of the 1-3 conditions is associated with a policy the 

system can or not have; break one condition → no 
deadlock 



4 

System model 

! System – a collection of resources to be shared 
! Resources partitioned in types, each with multiple 

instances (printers, files, memory,…) 
–  A request for resource type R can be satisfied by any instance 

of the type 

! Resources can be 
–  Preemptable - can be taken away from process w/o ill effects 

e.g. memory 
–  Nonpreemptable - process will fail if resource were taken 

away e.g. CD recorder 
! A thread must request a resource before using it & 

release it once done (open/close, malloc/free, …) 
–  Sequence of events to use a resource: request/use/release 



5 

Deadlock modeling 

! Modeled with directed graphs 
–  Process B is requesting/waiting for resource S 
–  Resource R assigned to process A 
–  Process C & D in deadlock over resources T & U 

! You can generalize it to multiple resource instances 
per class 

T U 

C 

D 

A R 

A 

R 

Assignment 

B 

S 

Request 



6 

Deadlock modeling 

       A 

Request R 
Request S 
Release R 
Release S 

       B 

Request S 
Request T 
Release S 
Release T 

       C 

Request T 
Request R 
Release T 
Release R 

1.A requests R 
2.B requests S 
3.C requests T 
4.A requests S 
5.B requests T 
6.C requests R 
….        
deadlock 

1.A requests R 
2.C requests T 
3.A requests S 
4.C requests R 
5.A releases R 
6.A releases S 
.... 
no deadlock 

A 

R S 

B C 

T 

Clearly, the ordering of operations plays a role 
Requests and releases  
of each process 

… and one particular 
ordering 

But with an  
alternative 



7 

Dealing with deadlocks 

Possible strategies 
! Ignore the problem altogether – ostrich “algorithm” 
! Detection and recovery – do not stop it; let it happen, 

detect it and recover from it 
! Dynamic avoidance – careful resource allocation 
! Prevention – negating one of the four necessary 

conditions 



8 

The ostrich algorithm 

! Pretend there is no problem 
! Reasonable if  

–  deadlocks occur very rarely  
–  cost of prevention is high 

! UNIX’s & Windows’ approach 
! A clear trade off between  

–  convenience 
–  correctness 



9 

Basic facts 

! If graph contains no cycles ⇒ no deadlock. 
! If graph contains a cycle ⇒ 

–  if only one instance per resource type, then deadlock. 
–  if several instances per resource type, maybe a deadlock. 

C B A 

R1 R2 

R2 
R4 

A 

B 

C 

D 

R1 

R2 

No deadlock here 
Deadlock here 



10 

Deadlock detection – single instance 

! How, when & what 
! Simplest case 

1.L ← empty 
  all arcs set as unmarked 

2.For each node N 

   /* depth-first search */ 

 2.1.Add N to L & check  

       if N in L twice there’s a  

       deadlock; exit 

 2.2.Pick one arc at random,  

       mark it & follow it to next  

       current node 

3.At end, if no arc no deadlock 

 
Arcs: 

A→S, A←R, B→T, C→S 
D→S, D←T, E→V, E←T 
F→S, F←W, G→V, G←V 
 

L:[R], L:[R,A], L:[R,A,S] 
L:[B], L:[B,T], L:[B,T,E], …  

 

A

F

D

G

E

BR

S

W

U

T

V

C



11 

Detection - multiple instances 
 
n processes, m classes of 

resources 
E – vector of existing resources 
A – vector of available resources 
C – matrix of currently allocated 

resources 
R – request matrix 
Cij – Pi holds Cij instances of 

resource class j 
Rij – Pi wants Cij instances of 

resource class j 
 
Invariant –  Σi Cij + Aj = Ej 
(Currently allocated + available = existing) 
i.e. all resources are either 

allocated or available 

Algorithm: 
 
All processes unmarked 
1.Look for unmarked process 

Pi for which    Ri ≤ A  
2.If found, add Ci. to A, 

mark the process and go 
to 1 

3.If not, exit 
All unmarked processes, if 

any, are deadlock 
 
Idea: See if there’s any process that 

can be run to completion with 
available resources, mark it and 
free its resources … 

 



12 

Detection 

(existing)              (available) 
E = ( 4 2 3 1)        A = ( 2 1 0 0 ) 
          
C =                        R = 
 
 
 
Three processes and 4 resource 

types 
 
After running process 3  
                            A = (2 2 2 0) 
Now you can run process 2 
                            A = (4 2 2 1) 

2 0 0 1

1 0 1 0

2 1 0 0

0 0 1 0

2 0 0 1

0 1 2 0

Algorithm: 
 
All processes unmarked 
1.Look for unmarked 

process Pi for which    
Ri ≤ A  

2.If found, add Ci. to A, 
mark the process and go 
to 1 

3.If not, exit 
All unmarked processes, if 

any, are deadlock 
 
Idea: See if there’s any process that 

can be run to completion with 
available resources, mark it and 
free its resources … 

 

What process 1 has 

What process 1 needs 



13 

When to check & what to do 

! When to try 
–  Every time a resource is requested 
–  Every fixed period of times or when CPU utilization drops 

! What to do then - recovery  
–  Through preemption 

•  depends on nature of the resource 
–  Through rollback 

•  Need to checkpoint processes periodically 
–  By killing a process 

•  Crudest but simplest way to break a deadlock 
•  Kill one in or not in the deadlock cycle 



14 

Deadlock avoidance 

! Dynamically make sure not to get into a deadlock 
! Two process resource trajectories 
! Every point in the graph, a joint state of the processes 

* u (Both 
processes done) 

plotter 

printer 

I1 I2 I3 I4 q p 

I5 

I6 

I7 

I8 

B 

A 

printer plotter 

s
r 

t 

impossible 

deadlock 

Your only option here 
 is to run A up to I4 

impossible 

unsafe 



15 

Safe and unsafe states 

! Safe if 
–  There is no deadlock 
–  There is some scheduling order by which all processes can 

run to completion 

! Un-safe is not deadlock – just no guarantee 
Example with one resource (10 instances of it) 

A 3 9 

B 2 4 

C 2 7 

Free: 3 

A 3 9 

B 2 4 

C 2 7 

Free: 3 

A requests and is granted 
another instance 

Safe 

Unsafe 

Has Needs 

Has Needs 

In retrospect, A’s request should 
not have been granted 

A 3 9 

B 4 4 

C 2 7 

Free: 1 

Has Needs 

A 3 9 

B 0 - 

C 2 7 

Free: 5 

Has Needs 

A 3 9 

B 0 - 

C 7 7 

Free: 0 

Has Needs 

A 3 9 

B 0 - 

C 0 - 

Free: 7 

Has Needs 

A 4 9 

B 2 4 

C 2 7 

Free: 2 

Has Needs 

A 4 9 

B 4 4 

C 2 7 

Free: 0 

Has Needs 

A 4 9 

B 0 - 

C 2 7 

Free: 4 

Has Needs 



16 

Banker's algorithm 

! Considers 
–  Each request as it occurs 
–  Sees if granting it leads to a safe state i.e. there are enough 

resources to satisfy one customer 

! With multiple resources 
1.Look for a row Ri. ≤ A, if none the system will  

eventually deadlock  

2.If found, mark Pi and add Ci. to A 

3.Repeat until processes are terminated or a deadlock 
occurs 

! Very cute, but mostly useless 
–  Most processes don’t know in advance what they need 
–  The lists of processes and resources are not static 
–  Processes may depend on each other 



17 

Deadlock prevention 

! Avoidance is pretty hard or impossible 
! Can we break one of the condition? 

–  Mutual exclusion 
–  Hold & wait 
–  No preemption 

•  Not a viable option 
•  How can you preempt a printer? 

–  Circular wait 



18 

Attacking mutual exclusion 

! Some devices can be spooled (printer) 
–  Only the printer daemon uses printer resource 
–  Thus deadlock for printer eliminated 

! But not all devices can be spooled – process table? 
! Principle: 

–  Assigning resource only when absolutely necessary 
–  Reduce number of processes that may claim the resource 



19 

Attacking hold & wait 

! Processes request all resources at start (wait) 
–  Process never has to wait for what it needs 

! But 
–  May not know required resources at start 
–  It ties up resources others could be using 

! Variation (hold) 
–  Process must release all resources to request a new one 



20 

! Impose total order on resources 
! Processes request resources in order 
! If all processes follow order, no circular wait occurs 

  
     Deadlock if i → A → j & j → B → i 

 If i < j then A → j … 

 
! Process cannot request resource lower than what it’s 

holding 
! Advantage - Simple 
! Disadvantage - Arbitrary ordering 
 

Attacking  circular wait 

A 

i j 

B 



21 

Next time 

! We have discussed sharing CPU to improve utilization 
and turnaround time 

! For that to happen we also need to share memory 
! We’ll start with memory organization and basic 

management techniques (e.g. paging) 
! Before moving to memory virtualization … 



22 

Related issues 

! Two-phase locking – gather all locks, work & free all 
–  If you cannot get all, drop all you have and start again 

! Non-resource deadlocks 
–  Each is waiting for the other to do some task 
–  E.g. communication deadlocks:  

•  A sends a request and blocks until B replies, message gets lost! 
•  Timeout! 

! Starvation 
–  Algorithm to allocate a resource  
–  SJF – consider allocation of a printer 

•  Great for multiple short jobs in a system 
•  May cause long job to be postponed indefinitely 

–  even though not blocked 

–  Solution: FIFO 


