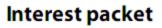
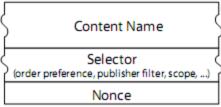
Networking Named Content: Content-Centric Networking

John Rula

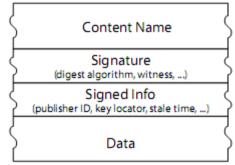
Overview

- Replacing traditional host based routing with named content routing
 - "Consumers" request a data's name instead of a host (ip address)
 - Breaking packets into content allows packets to be cached more easily
 - Each CCN router acts as a cache of internet traffic
 - Theoretically content providers will only have to send their data once, it will be cached from there on out
 - Specifying content over a destination allows each packet to be individually authenticated


Problems with TCP/IP


- Original model was designed for resource sharing
 - Operated under host to host routing connecting two machines
 - IP Addresses represent a single machine

The CCN Model

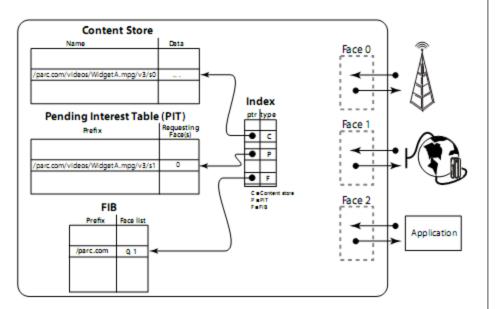

Interest

- A request for Data
 - Consists of Content Name, Selector, and Nonce
- Data
 - Self explanitory
 - Consists of Content Name, Signature, Signed Ingo, Data

Data packet

CCN Node

FIB (Forwarding Information Base)

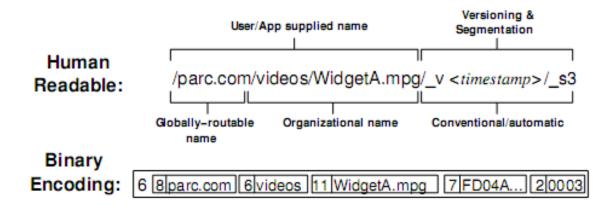

- Forwards Interest packets towards potential sources of matching data
- Allows for a list of outgoing interfaces instead of a single one, allowing parallel querying
- Content Store (Buffer Memory)
 - Similar to the buffer memory of an IP router
 - Except that an IP transaction is a point to point transaction, but a CCN transaction is for named content, and are idempotent, self-identifying and self-authenticating
 - They are stored since they may also be useful to other consumers

CCN Node cont...

- PID (Pending Interest Table)
 - Keeps track of Interests forwarded upstream toward content sources
 - Acts as "bread crumbs" for data packets to be sent back downstream
 - Are only used once and are erased after successfully forwarding a matching data packet

CCN Node Interest Process

- Interest Packet arrives and longest-match lookup is done on ContentName
- Order of lookup:
 - 1. Content Store Data returned
 - 2. PIT Interest arrival face added to PIT entry
 - 3. FIB Interest sent upstream
- If there is no match, the Interest is discarded


CCN Node Data Process

- Data simple follows chain of PIT entries (bread crumbs) back to original requester
 - A longest-match lookup of the ContentName is done
 - A Content Store match means data is duplicate so it is discarded
 - A FIB match means there are not matching PIT entries, so data is unsolicited and discarded
 - A PIT match means data was requested by Interest(s) and sent out to the correct face(s).

CCN Transport

- Designed to run on top of unreliable packet delivery services
 - CCN Senders are responsible for re-requesting unsatisfied Interests
 - Looping is controlled through the 'Nonce' value on the Interest packet
 - While there is not data looping, there can be Interest looping
 - Flow balance is achieved in each hop, since each router is involved in the interest/data transaction

CCN Transport - Sequencing

- A TCP conversation is identified by sequence numbers
 - CCN names are presented like URIs
 - End with a version number "_v" and a segment number "_s" which uniquely identify each data packet

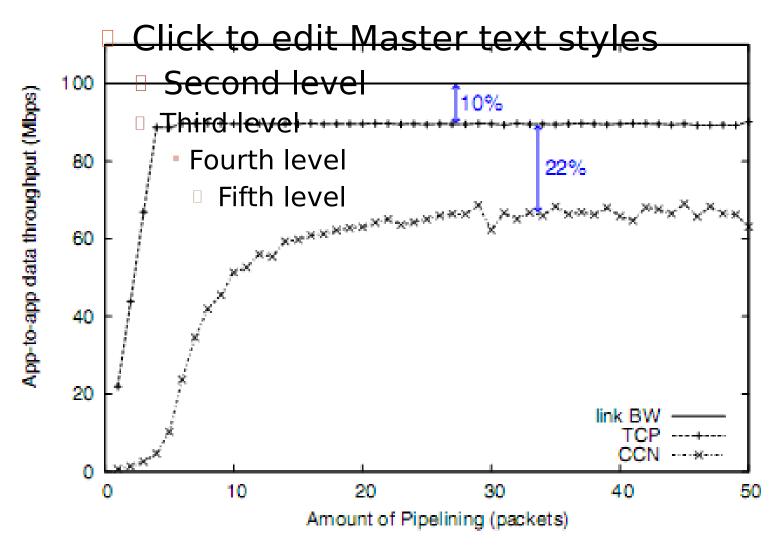
CCN Transport Sequencing cont... Click to edit Master text styles Second level Third level Fourth level Fifth level WidgetA.mpg) _v2 v1 _s0 \$1 _s2

Strategy Layer

- Consists of a set of attributes, actions and triggers
 - Attributes are BroadcastCapable, isContentRouter, UsageBasedCharging, PeakUseLimited
 - The "program" in an FIB entry is the "strategy" for obtaining data associated with an FIB prefix
 - One example is to send an Interest on all BroadcastCapable faces first, then if no response try all other faces in sequence.

CCN Routing

Any IP routing scheme should work well for CCN

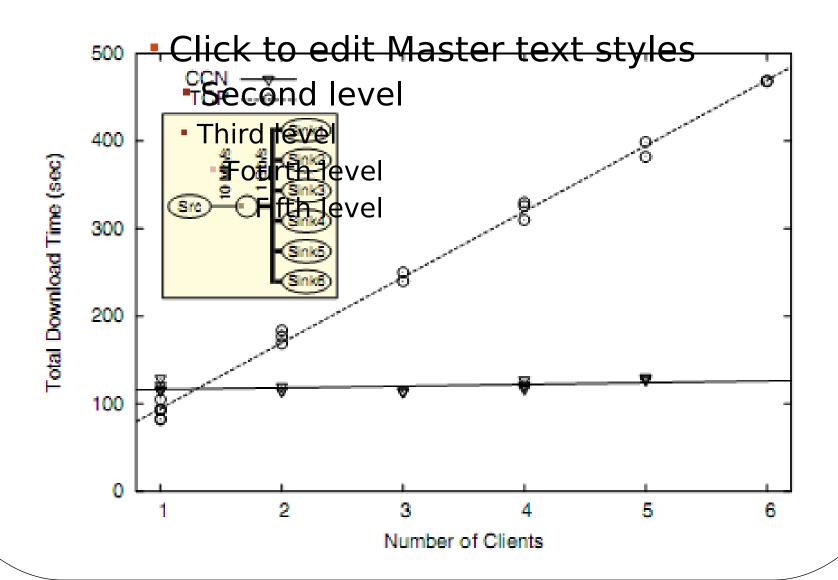

- It is a super set of IP routing since it has no restrictions to control looping
- Both use prefix based longest-matching lookups
- Content routers can be attached to existing routers by using TLV (type label values) to describe connected content
- CCN constructs topolgies that are close to optimal
 - Data goes only where there is interest
 - At most one copy of the data is sent

CCN Routing cont... /parc.com/media/art /parc.com/media/art /parc.com/media A B C D F **E**) Client В /parc.com/media /parc.com/media/art A,B

Security

- Content Based Security
 - Protection and trust travel within the content itself
 - Not a property of the connections it travels
 - All content is authenticated with digital signatures
 - Private content can be encrypted
 - Nearly eliminates the need for a trusted network

CCN Evaluation



CCN Evaluation cont...

	Bytes (packets)		Overheads	
	Sent	Received	Encap	Transact
Web page (6429 bytes)				
HTTP	723 (9)	7364 (9)	15%	11%
CCN/ETH	811 (8)	8101 (6)	26%	13%
CCN/UDP	325 (3)	6873 (5)	7%	5%
Secured Web page (16944 bytes)				
HTTPS	1548 (16)	21232 (22)	25%	9%
CCN/ETH	1791 (16)	20910 (14)	23%	11%
CCN/UDP	629 (5)	18253 (14)	8%	4%

- CCN matches performance of traditional TCP over normal HTTP
- Since all CCN traffic is encrypted, CCN improves performance over TCP in HTTPS

CCN Evaluation cont...

Any Questions???