M^cCormick

Northwestern Engineering

Department of Electrical Engineering and Computer Science

Greening the Internet with Nano Data Centers

V. Valancius, N. Laoutaris, L. Massoulié, C. Diot and P. Rodriguez

Presented by: Mario Sanchez Instructor: Fabian Bustamante Date: 02/21/2011

Data Center Limitations

- Over-Provisioning
 - Match peak demand
 - Redundancy requirements
- High-cost heat dissipation
 - Heat dissipation accounts for at least 20% to 50% of total power consumption
- Increased distance to end-users
 - Increases bandwidth-mileage requirements
 - Adds to the energy consumption of networking equipment
- Expensive to build/deploy

Data Centers Today

Nano Data Center Model (NaDa)

- Distributed service platform based on tiny managed "servers" located at the edges of the network
- Follows P2P philosophy, with one main difference:
 coordinated & managed by a single entity (ISP)
- Contributions:
 - Develop model to evaluate energy consumption of Data Centers vs NaDa
 - Apply model in the context of video-on-demand services
 - Use trace-driven simulation to quantify energy savings

Nano Data Center Model (NaDa)

(owned and managed by the ISP)

Advantages - NaDa

- Heat dissipation
 - Power Usage Efficiency (PUE): ratio between total power consumed by a data center and the power actually delivered to it IT equipment
- Service proximity
 - Information travels shorter distances
 - Reduced energy in powering networking equipment that carries traffic

Self-scalability

- Growth organically with the network
- Energy efficiency
 - No baseline powering is paid

Energy Use in Servers

DSL Gateways, discount baseline

- If we dedicate home gateways for NaDa service
 - 50-80% of power is consumed when idle (baseline power)
 - Less efficient than server
- If we use gateways only when they are active
 - Power consumption is proportional to load
 - More efficient than dedicated server!

Energy Savings Model

Power consumption = b + ax

- b: base line consumption
- a: slope of load-dependent consumption
- x: traffic (Mbps)
- Carrier grade IPTV streaming server
 - Server energy use ~211Joules/Gbit
- Thomson residential DSL gateways
 - Gateway energy use: ~100Joules/Gbit
- Cisco router chasis
 - Network energy use: ~150Joules/Gbit

Estimated Energy use

- Data center power use estimation:
 - Data center PUE = 1.2
- NaDa home gateway power use estimation
 - Residential GW PUE = 1.07
- Upper bound on energy savings:

$$100\% - \frac{100 \cdot 1.07 \cdot x}{211 \cdot 1.2 \cdot x} \approx 55\%$$

Traces/Simulation - Dataset

- a) Netflix movie database: number of rental, 90 minutes duration
- b) Youtube traces: view count and length
- c) IPTV access statistics: random sample 2k users, program duration

VoD & Simulation

- Three key components
 - Gateways: provide storage, bandwidth resources
 - The tracker: coordinates all VoD activities in NaDa
 - Content servers: provide content to gateways an clients (if needed)
- Large metropolitan area:
 - Each user assumed to have identical network distance to every other user in the network
 - Every user has the same distance to the content servers

Content placement strategy

- Split content in smaller chunks
- Replicate content across random gateways
- Optimization problem: determine replication number for each movie

Hot-warm-cold placement method

(Movies are partitioned into three groups):

- Popular movies => replicated on all gateways.
- Subsequent most popular movies => replicated minimally
- Less popular movies => not stored within NaDa

Traces/Simulation

Effect of Storage

Effect of Video Rates

Page 16

Effect of Network

Page 17

Discussion