
Macrodebugging: Global Views of
Distributed Program Execution

T. Sookoor, T. Hnat, P. Hooimeijer,
W. Weimer and K. Whitehouse

Dept. Computer Science, U. Virginia

The 7th ACM Conference on Embedded Networked Sensor
Systems (SenSys 2009)

2

Macroprogramming

 A single macroprogram → Several
microprograms

 No support for debugging
 MacroLab
 A macroprogramming framework that offers a

vector programming abstraction similar to Matlab
for Cyber-Physical Systems (CPSs).

3

MDB

 Like GDB
 “Macrodebugging” on a single machine
 Steps through a macroprogram in a

sequential order
 Implemented for MacroLab

4

Example of MacroLab program

 Lines 1-4
 Initializes

 The motes vector of node IDs
 The magSensors vector of

magnetometer sensors
 The magVals macrovector of

magnetometer readings
 neighborMag, n x n neighbor

reflection vector
 Line 7

 Reads from all magnetometer
values

 Line 8
 Creates an active vector with

the IDs of all nodes that have
at least 3 neighbors with
values > THRESH

1 motes = RTS.getMotes(’type ’, ’tmote ’)
2 magSensors =

SensorVector(motes , ’magnetometer ’)
3 magVals = Macrovector(motes)
4 neighborMag = neighborReflection(motes ,

magVals)
5 THRESH = 500
6 every(1000)
7 magVals = magSensors .sense ()
8 active = find(sum(neighborMag >THRESH , 2)

> 3)
9 maxNeighbor = max(neighborMag , 2)
10 leaders = find(\ldots
11 maxNeighbor(active) == magVal(active))
12 focusCameras(leaders);
13 end

5

Example of MacroLab program (cont.)

 Line 9
 Creates a maxNeighbor

vector with the highest
sensor value in
neighborMag

 Line 10-11
 Creates a leaders vector

with the IDs of those nodes
having the highest sensor
value in an active
neighborhood

 Line 12
 Focus all available

cameras on the leader
nodes

1 motes = RTS.getMotes(’type ’, ’tmote ’)
2 magSensors =

SensorVector(motes , ’magnetometer ’)
3 magVals = Macrovector(motes)
4 neighborMag = neighborReflection(motes ,

magVals)
5 THRESH = 500
6 every(1000)
7 magVals = magSensors .sense ()
8 active = find(sum(neighborMag >THRESH , 2)

> 3)
9 maxNeighbor = max(neighborMag , 2)
10 leaders = find(\ldots
11 maxNeighbor(active) == magVal(active))
12 focusCameras(leaders);
13 end

6

Example of MacroLab program (cont.)

 All nodes will execute the program asynchronously
and independently Magnetometer values automatically get

reflected to neighboring nodes and
populate the caches of neighborMag vector

7

Three types of macroprogramming bugs

 Logical Error
 active = find(sum(magVals>THRESH , 2) > 3)

 Configuration Error
 Line 6, 1000ms might be too big

 Synchronization Error
 Message loss, data races, asynchronous

execution

8

MDB UI – Logically synchronous views

 Commands
 lbreak(l)

 Place a breakpoint at line l
 lcont

 Move forward to the next
breakpoint

 lstep[(l)]
 Increment to the next line

(or step l lines)
 Limitation

 Views of distributed state
may include values that
correspond to different
points in time

9

MDB UI – Temporally synchronous views

 Commands
 tjump(t)

 Change the state of the system to time t μs

 tstep[(t)]
 Change the state of the system to next logged time (or

current time + t)

 Limitation
 The user must be able to specify the exact times

of interest

10

MDB UI – Historical Search

 Access the history of a macrovector by adding a new
dimension to it
 magVals(5, 1000)

 Standard Matlab operators can be applied to macrovectors
 find(numel(leaders(:, :)) > 1)

Time

node ID

Jyh-Shing Roger Jang, Matlab Programming Design,
http://neural.cs.nthu.edu.tw/jang/books/matlabProgramming4beginner/slide.

11

MDB UI – Hypothetical Changes

 Base timeline (bt)
 The original execution trace that was collected

during program execution
 Alternative timeline (at)
 Generated by applying hypothetical changes to

the base timeline
 at = alt(’magVals = 0’, 7, bt)

 Four hypothetical changes

12

MDB UI – Hypothetical Barrier

 Barrier
 A point in the source code that all nodes must reach before

any node can proceed
 hb = alt(’barrier()’, 12, bt)
 message re-ordering

13

MDB UI – Hypothetical Time Delay

 Produces the distributed state that would have been
produced if a time delay of Δt were inserted at a
particular point in the macrocode

 dt = alt(’deltat(10)’,12, bt)
 message re-ordering

MDB first creates a
logically synchronous
view on line12

14

MDB UI – Hypothetical Cache Coherence

 Shows the hypothetical distributed state if all caches
were coherent at a give time

 cv = alt(’coherent()’, 12, bt)
 message re-ordering

Sent before but received
after the line 12

15

MDB UI – Hypothetical Cache Expiration

 Shows the hypothetical state that would
result if cache expiration were used at a
given line of code, without a particular
expiration time

 ev = alt(’expire(100000)’, 12, bt)
 ev stores the last values written to each element of the

macrovector in the time interval
 ev = NaN if an element had no value written to it

within the time interval

16

MDB Execution Traces

 Post-mortem debugger
 Allow the user to inspect program execution after the logs

are retrieved
 Data traces

 Log entry
 program counter, variable location, etc.

 RAM → external flash
 Advantage

 Reduces contention for the CPU
 Disadvantage

 Log entries in the RAM buffer may be lost if the node crashes

17

Distributed Timekeeping

 Causal consistency
 Any event E that cause event E’ must have

smaller timestamp than E
 Lamport algorithm
 Any events on the sender have an earlier

timestamp than events they might cause on the
recevier

 Used off-line after the logs are collected
 One Message every two minutes

18

Data vs. Event Logging

 Data logging
 Number of logging

statement
 Event logging

 Number of interrupts
 Testbed

 21 Tmote Sky nodes with
photoresistor sensors

19

RAM overhead

 MDB has modest RAM
requirements

 MDB needs to store a
maximum of 304 bytes
of data

20

Flash overhead

 The applications store less than 300 Bps to the flash
 Tmote Sky has 1MB of external flash
 Approximately,

 9 hour logs for Surge

21

CPU overhead

 Count the logging
instructions executed
during a particular run

 Run the applications on
Cooja simulator
 1 node for Surge
 5 nodes for Accoustic
 10 nodes for OTA

 Logging code executes for
less than 0.5% of the total
execution time

22

Energy Consumption

 Test application
 OTA

 When Low-power
listening (LPL) is
enabled
 With MDB

 Consumes 30% more
energy comparing to
no-MDB

 With MDB-lite
 Consumes 0.9% more

energy comparing to
no-MDB

23

END

 Q&A

