
Macrodebugging: Global Views of
Distributed Program Execution

T. Sookoor, T. Hnat, P. Hooimeijer,
W. Weimer and K. Whitehouse

Dept. Computer Science, U. Virginia

The 7th ACM Conference on Embedded Networked Sensor
Systems (SenSys 2009)

2

Macroprogramming

 A single macroprogram → Several
microprograms

 No support for debugging
 MacroLab
 A macroprogramming framework that offers a

vector programming abstraction similar to Matlab
for Cyber-Physical Systems (CPSs).

3

MDB

 Like GDB
 “Macrodebugging” on a single machine
 Steps through a macroprogram in a

sequential order
 Implemented for MacroLab

4

Example of MacroLab program

 Lines 1-4
 Initializes

 The motes vector of node IDs
 The magSensors vector of

magnetometer sensors
 The magVals macrovector of

magnetometer readings
 neighborMag, n x n neighbor

reflection vector
 Line 7

 Reads from all magnetometer
values

 Line 8
 Creates an active vector with

the IDs of all nodes that have
at least 3 neighbors with
values > THRESH

1 motes = RTS.getMotes(’type ’, ’tmote ’)
2 magSensors =

SensorVector(motes , ’magnetometer ’)
3 magVals = Macrovector(motes)
4 neighborMag = neighborReflection(motes ,

magVals)
5 THRESH = 500
6 every(1000)
7 magVals = magSensors .sense ()
8 active = find(sum(neighborMag >THRESH , 2)

> 3)
9 maxNeighbor = max(neighborMag , 2)
10 leaders = find(\ldots
11 maxNeighbor(active) == magVal(active))
12 focusCameras(leaders);
13 end

5

Example of MacroLab program (cont.)

 Line 9
 Creates a maxNeighbor

vector with the highest
sensor value in
neighborMag

 Line 10-11
 Creates a leaders vector

with the IDs of those nodes
having the highest sensor
value in an active
neighborhood

 Line 12
 Focus all available

cameras on the leader
nodes

1 motes = RTS.getMotes(’type ’, ’tmote ’)
2 magSensors =

SensorVector(motes , ’magnetometer ’)
3 magVals = Macrovector(motes)
4 neighborMag = neighborReflection(motes ,

magVals)
5 THRESH = 500
6 every(1000)
7 magVals = magSensors .sense ()
8 active = find(sum(neighborMag >THRESH , 2)

> 3)
9 maxNeighbor = max(neighborMag , 2)
10 leaders = find(\ldots
11 maxNeighbor(active) == magVal(active))
12 focusCameras(leaders);
13 end

6

Example of MacroLab program (cont.)

 All nodes will execute the program asynchronously
and independently Magnetometer values automatically get

reflected to neighboring nodes and
populate the caches of neighborMag vector

7

Three types of macroprogramming bugs

 Logical Error
 active = find(sum(magVals>THRESH , 2) > 3)

 Configuration Error
 Line 6, 1000ms might be too big

 Synchronization Error
 Message loss, data races, asynchronous

execution

8

MDB UI – Logically synchronous views

 Commands
 lbreak(l)

 Place a breakpoint at line l
 lcont

 Move forward to the next
breakpoint

 lstep[(l)]
 Increment to the next line

(or step l lines)
 Limitation

 Views of distributed state
may include values that
correspond to different
points in time

9

MDB UI – Temporally synchronous views

 Commands
 tjump(t)

 Change the state of the system to time t μs

 tstep[(t)]
 Change the state of the system to next logged time (or

current time + t)

 Limitation
 The user must be able to specify the exact times

of interest

10

MDB UI – Historical Search

 Access the history of a macrovector by adding a new
dimension to it
 magVals(5, 1000)

 Standard Matlab operators can be applied to macrovectors
 find(numel(leaders(:, :)) > 1)

Time

node ID

Jyh-Shing Roger Jang, Matlab Programming Design,
http://neural.cs.nthu.edu.tw/jang/books/matlabProgramming4beginner/slide.

11

MDB UI – Hypothetical Changes

 Base timeline (bt)
 The original execution trace that was collected

during program execution
 Alternative timeline (at)
 Generated by applying hypothetical changes to

the base timeline
 at = alt(’magVals = 0’, 7, bt)

 Four hypothetical changes

12

MDB UI – Hypothetical Barrier

 Barrier
 A point in the source code that all nodes must reach before

any node can proceed
 hb = alt(’barrier()’, 12, bt)
 message re-ordering

13

MDB UI – Hypothetical Time Delay

 Produces the distributed state that would have been
produced if a time delay of Δt were inserted at a
particular point in the macrocode

 dt = alt(’deltat(10)’,12, bt)
 message re-ordering

MDB first creates a
logically synchronous
view on line12

14

MDB UI – Hypothetical Cache Coherence

 Shows the hypothetical distributed state if all caches
were coherent at a give time

 cv = alt(’coherent()’, 12, bt)
 message re-ordering

Sent before but received
after the line 12

15

MDB UI – Hypothetical Cache Expiration

 Shows the hypothetical state that would
result if cache expiration were used at a
given line of code, without a particular
expiration time

 ev = alt(’expire(100000)’, 12, bt)
 ev stores the last values written to each element of the

macrovector in the time interval
 ev = NaN if an element had no value written to it

within the time interval

16

MDB Execution Traces

 Post-mortem debugger
 Allow the user to inspect program execution after the logs

are retrieved
 Data traces

 Log entry
 program counter, variable location, etc.

 RAM → external flash
 Advantage

 Reduces contention for the CPU
 Disadvantage

 Log entries in the RAM buffer may be lost if the node crashes

17

Distributed Timekeeping

 Causal consistency
 Any event E that cause event E’ must have

smaller timestamp than E
 Lamport algorithm
 Any events on the sender have an earlier

timestamp than events they might cause on the
recevier

 Used off-line after the logs are collected
 One Message every two minutes

18

Data vs. Event Logging

 Data logging
 Number of logging

statement
 Event logging

 Number of interrupts
 Testbed

 21 Tmote Sky nodes with
photoresistor sensors

19

RAM overhead

 MDB has modest RAM
requirements

 MDB needs to store a
maximum of 304 bytes
of data

20

Flash overhead

 The applications store less than 300 Bps to the flash
 Tmote Sky has 1MB of external flash
 Approximately,

 9 hour logs for Surge

21

CPU overhead

 Count the logging
instructions executed
during a particular run

 Run the applications on
Cooja simulator
 1 node for Surge
 5 nodes for Accoustic
 10 nodes for OTA

 Logging code executes for
less than 0.5% of the total
execution time

22

Energy Consumption

 Test application
 OTA

 When Low-power
listening (LPL) is
enabled
 With MDB

 Consumes 30% more
energy comparing to
no-MDB

 With MDB-lite
 Consumes 0.9% more

energy comparing to
no-MDB

23

END

 Q&A

