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Macroprogramming

 A single macroprogram → Several 
microprograms

 No support for debugging 
 MacroLab
 A macroprogramming framework that offers a 

vector programming abstraction similar to Matlab
for Cyber-Physical Systems (CPSs). 
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MDB

 Like GDB
 “Macrodebugging” on a single machine
 Steps through a macroprogram in a 

sequential order
 Implemented for MacroLab
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Example of MacroLab program

 Lines 1-4
 Initializes 

 The motes vector of node IDs
 The magSensors vector of 

magnetometer sensors
 The magVals macrovector of 

magnetometer readings
 neighborMag, n x n neighbor 

reflection vector
 Line 7

 Reads from all magnetometer 
values 

 Line 8 
 Creates an active vector with 

the IDs of all nodes that have 
at least 3 neighbors with 
values > THRESH

1 motes = RTS.getMotes(’type ’, ’tmote ’)
2 magSensors = 

SensorVector(motes , ’magnetometer ’)
3 magVals = Macrovector(motes)
4 neighborMag = neighborReflection(motes , 

magVals)  
5 THRESH = 500
6 every(1000)
7 magVals = magSensors .sense ()
8 active = find(sum(neighborMag >THRESH , 2) 

> 3)
9 maxNeighbor = max(neighborMag , 2)
10 leaders = find($\ldots$
11 maxNeighbor(active) == magVal(active))
12 focusCameras(leaders);
13 end
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Example of MacroLab program (cont.)

 Line 9
 Creates a maxNeighbor

vector with the highest 
sensor value in 
neighborMag

 Line 10-11
 Creates a leaders vector 

with the IDs of those nodes 
having the highest sensor 
value in an active 
neighborhood

 Line 12
 Focus all available 

cameras on the leader 
nodes

1 motes = RTS.getMotes(’type ’, ’tmote ’)
2 magSensors = 

SensorVector(motes , ’magnetometer ’)
3 magVals = Macrovector(motes)
4 neighborMag = neighborReflection(motes , 

magVals)  
5 THRESH = 500
6 every(1000)
7 magVals = magSensors .sense ()
8 active = find(sum(neighborMag >THRESH , 2) 

> 3)
9 maxNeighbor = max(neighborMag , 2)
10 leaders = find($\ldots$
11 maxNeighbor(active) == magVal(active))
12 focusCameras(leaders);
13 end
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Example of MacroLab program (cont.)

 All nodes will execute the program asynchronously 
and independently Magnetometer values automatically get 

reflected to neighboring nodes and 
populate the caches of neighborMag vector
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Three types of macroprogramming bugs

 Logical Error
 active = find(sum(magVals>THRESH , 2) > 3)

 Configuration Error
 Line 6, 1000ms might be too big

 Synchronization Error
 Message loss, data races, asynchronous 

execution
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MDB UI – Logically synchronous views

 Commands
 lbreak(l)

 Place a breakpoint at line l
 lcont

 Move forward to the next 
breakpoint

 lstep[(l)]
 Increment to the next line 

(or step l lines)
 Limitation 

 Views of distributed state 
may include values that 
correspond to different 
points in time
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MDB UI – Temporally synchronous views

 Commands
 tjump(t)

 Change the state of the system to time t μs

 tstep[(t)]
 Change the state of the system to next logged time (or 

current time + t) 

 Limitation 
 The user must be able to specify the exact times 

of interest
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MDB UI – Historical Search 

 Access the history of a macrovector by adding a new 
dimension to it
 magVals(5, 1000)

 Standard Matlab operators can be applied to macrovectors
 find(numel(leaders(:, :)) > 1)

Time

node ID

Jyh-Shing Roger Jang, Matlab Programming Design, 
http://neural.cs.nthu.edu.tw/jang/books/matlabProgramming4beginner/slide.
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MDB UI – Hypothetical Changes

 Base timeline (bt)
 The original execution trace that was collected 

during program execution 
 Alternative timeline (at)
 Generated by applying hypothetical changes to 

the base timeline
 at = alt(’magVals = 0’, 7, bt)

 Four hypothetical changes
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MDB UI – Hypothetical Barrier 

 Barrier
 A point in the source code that all nodes must reach before 

any node can proceed
 hb = alt(’barrier()’, 12, bt)
 message re-ordering



13

MDB UI – Hypothetical Time Delay

 Produces the distributed state that would have been 
produced if a time delay of Δt were inserted at a 
particular point in the macrocode

 dt = alt(’deltat(10)’,12, bt)
 message re-ordering

MDB first creates a 
logically synchronous 
view on line12
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MDB UI – Hypothetical Cache Coherence

 Shows the hypothetical distributed state if all caches 
were coherent at a give time

 cv = alt(’coherent()’, 12, bt)
 message re-ordering

Sent before but received 
after the line 12
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MDB UI – Hypothetical Cache Expiration

 Shows the hypothetical state that would 
result if cache expiration were used at a 
given line of code, without a particular 
expiration time

 ev = alt(’expire(100000)’, 12, bt)
 ev stores the last values written to each element of the 

macrovector in the time interval
 ev = NaN if an element had no value written to it 

within the time interval
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MDB Execution Traces 

 Post-mortem debugger
 Allow the user to inspect program execution after the logs 

are retrieved
 Data traces

 Log entry
 program counter, variable location, etc.

 RAM → external flash
 Advantage 

 Reduces contention for the CPU
 Disadvantage 

 Log entries in the RAM buffer may be lost if the node crashes
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Distributed Timekeeping

 Causal consistency
 Any event E that cause event E’ must have 

smaller timestamp than E
 Lamport algorithm
 Any events on the sender have an earlier 

timestamp than events they might cause on the 
recevier

 Used off-line after the logs are collected
 One Message every two minutes
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Data vs. Event Logging

 Data logging
 Number of logging 

statement 
 Event logging

 Number of interrupts 
 Testbed

 21 Tmote Sky nodes with 
photoresistor sensors
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RAM overhead

 MDB has modest RAM 
requirements

 MDB needs to store a 
maximum of 304 bytes 
of data
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Flash overhead

 The applications store less than 300 Bps to the flash
 Tmote Sky has 1MB of external flash
 Approximately, 

 9 hour logs for Surge 
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CPU overhead

 Count the logging 
instructions executed 
during a particular run

 Run the applications on 
Cooja simulator
 1 node for Surge
 5 nodes for Accoustic
 10 nodes for OTA

 Logging code executes for 
less than 0.5% of the total 
execution time
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Energy Consumption

 Test application
 OTA

 When Low-power 
listening (LPL) is 
enabled 
 With MDB

 Consumes 30% more 
energy comparing to 
no-MDB

 With MDB-lite
 Consumes 0.9% more 

energy comparing to 
no-MDB
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END

 Q&A


