# On the Constancy of Internet Path Properties, Opportunistic Measurement: Extracting Insight form Spurious Traffic

Madhav Suresh

Northwestern University, Department of Computer Science

January 18, 2013

• "Measurements are most valuable when they are a useful guide to the future."

- "Measurements are most valuable when they are a useful guide to the future."
  - This happens when there is constancy

- "Measurements are most valuable when they are a useful guide to the future."
  - This happens when there is constancy
- Three types of Constancy

- "Measurements are most valuable when they are a useful guide to the future."
  - This happens when there is constancy
- Three types of Constancy
  - Mathematical

- "Measurements are most valuable when they are a useful guide to the future."
  - This happens when there is constancy
- Three types of Constancy
  - Mathematical
  - Operational

- "Measurements are most valuable when they are a useful guide to the future."
  - This happens when there is constancy
- Three types of Constancy
  - Mathematical
  - Operational
  - Predictive

 Can be described with a single time-invariant mathematical model

- Can be described with a single time-invariant mathematical model
- Finding appropriate model is the challenge and key

- Can be described with a single time-invariant mathematical model
- Finding appropriate model is the challenge and key
- However, lack of mathematical constancy does not imply that applications care

- Can be described with a single time-invariant mathematical model
- Finding appropriate model is the challenge and key
- However, lack of mathematical constancy does not imply that applications care

# Operational Constancy!!!!!!!!

 Whether or not applications care about the changes in the dataset

## Operational Constancy!!!!!!!!

- Whether or not applications care about the changes in the dataset
- "Quantities of interest remain within bounds considered operationally equivalent"

## Operational Constancy!!!!!!!!

- Whether or not applications care about the changes in the dataset
- "Quantities of interest remain within bounds considered operationally equivalent"
- The degree to which the network remains in a particular operating regime

# **Predictive Constancy**

 Past measurements allow one to reasonably predict future characteristics

## Predictive Constancy

- Past measurements allow one to reasonably predict future characteristics
- Reflects the degree to which changes in path properties can be tracked

NIMI measurement infrastructure

- NIMI measurement infrastructure
- ullet Two sets of Data,  $\mathcal{W}_1,\mathcal{W}_2$

- NIMI measurement infrastructure
- ullet Two sets of Data,  $\mathcal{W}_1, \mathcal{W}_2$ 
  - $\bullet~\mathcal{W}_1$  Winter 1999-2000, 31 Hosts 80

- NIMI measurement infrastructure
- ullet Two sets of Data,  $\mathcal{W}_1, \mathcal{W}_2$ 
  - $\bullet~\mathcal{W}_1$  Winter 1999-2000, 31 Hosts 80
  - $\mathcal{W}_2$  Winter 2000-2001, 49 Hosts 73

- NIMI measurement infrastructure
- ullet Two sets of Data,  $\mathcal{W}_1, \mathcal{W}_2$ 
  - ullet  $\mathcal{W}_1$  Winter 1999-2000, 31 Hosts 80
  - $m{\cdot}$   $\mathcal{W}_2$  Winter 2000-2001, 49 Hosts 73
- University and research networks

- NIMI measurement infrastructure
- ullet Two sets of Data,  $\mathcal{W}_1, \mathcal{W}_2$ 
  - ullet  $\mathcal{W}_1$  Winter 1999-2000, 31 Hosts 80
  - $m{\cdot}$   $\mathcal{W}_2$  Winter 2000-2001, 49 Hosts 73
- University and research networks
- "we might plausibly argue that our observations could apply fairly well to the better connected commercial Internet of the not-too-distant future, if not today"

- NIMI measurement infrastructure
- ullet Two sets of Data,  $\mathcal{W}_1, \mathcal{W}_2$ 
  - ullet  $\mathcal{W}_1$  Winter 1999-2000, 31 Hosts 80
  - ullet  $\mathcal{W}_2$  Winter 2000-2001, 49 Hosts 73
- University and research networks
- "we might plausibly argue that our observations could apply fairly well to the better connected commercial Internet of the not-too-distant future, if not today"
  - lol

- NIMI measurement infrastructure
- ullet Two sets of Data,  $\mathcal{W}_1, \mathcal{W}_2$ 
  - ullet  $\mathcal{W}_1$  Winter 1999-2000, 31 Hosts 80
  - $\mathcal{W}_2$  Winter 2000-2001, 49 Hosts 73
- University and research networks
- "we might plausibly argue that our observations could apply fairly well to the better connected commercial Internet of the not-too-distant future, if not today"
  - lol
- The point of the paper was not to provide definitive results, but to provide a framework that could be used in the future

"Loss process are better thought of as spikes"

- "Loss process are better thought of as spikes"
- Loss episode rates are mathematically non-constant

- "Loss process are better thought of as spikes"
- Loss episode rates are mathematically non-constant
- Operational constancy coicides with mathematical constancy

- "Loss process are better thought of as spikes"
- Loss episode rates are mathematically non-constant
- Operational constancy coicides with mathematical constancy
- Predictive Constancy performs well indepedent of other constancy

- "Loss process are better thought of as spikes"
- Loss episode rates are mathematically non-constant
- Operational constancy coicides with mathematical constancy
- Predictive Constancy performs well indepedent of other constancy
- All the fancy schmancy math is introduced here.

• Zing poisson packet streams on NIMI hosts

- Zing poisson packet streams on NIMI hosts
- Spikes vs. non spikes

- Zing poisson packet streams on NIMI hosts
- Spikes vs. non spikes
- Mathematically less steady than loss

- Zing poisson packet streams on NIMI hosts
- Spikes vs. non spikes
- Mathematically less steady than loss
- Operationally not steady

- Zing poisson packet streams on NIMI hosts
- Spikes vs. non spikes
- Mathematically less steady than loss
- Operationally not steady
- Predictively steady

- Zing poisson packet streams on NIMI hosts
- Spikes vs. non spikes
- Mathematically less steady than loss
- Operationally not steady
- Predictively steady
- Is this surprising?

# Throughput Constancy

• Throughput constancy didn't change minute to minute, only over long time period

- Throughput constancy didn't change minute to minute, only over long time period
  - Much different these days for commercial broadband users (speedboost, fios, andy)

- Throughput constancy didn't change minute to minute, only over long time period
  - Much different these days for commercial broadband users (speedboost, fios, andy)
  - Also these measurements were taken on well provisioned networks

- Throughput constancy didn't change minute to minute, only over long time period
  - Much different these days for commercial broadband users (speedboost, fios, andy)
  - Also these measurements were taken on well provisioned networks
- No simple relationship between operational and mathematical constancy

- Throughput constancy didn't change minute to minute, only over long time period
  - Much different these days for commercial broadband users (speedboost, fios, andy)
  - Also these measurements were taken on well provisioned networks
- No simple relationship between operational and mathematical constancy
- Given parameters, predictive constancy is good.

- Throughput constancy didn't change minute to minute, only over long time period
  - Much different these days for commercial broadband users (speedboost, fios, andy)
  - Also these measurements were taken on well provisioned networks
- No simple relationship between operational and mathematical constancy
- Given parameters, predictive constancy is good.
  - This makes sense if bandwidth is generally continuous, is this the case?

• They introduced notions of constancy.

- They introduced notions of constancy.
- helps to interpret and contextualize measurement dataset

- They introduced notions of constancy.
- helps to interpret and contextualize measurement dataset
- paper cited 432 times, seemingly relevant

- They introduced notions of constancy.
- helps to interpret and contextualize measurement dataset
- paper cited 432 times, seemingly relevant
- Their dataset was weak, but their methods for interpreting are what's important

Measuring on the edge is really hard

- Measuring on the edge is really hard
- Why not leverage existing traffic sources?

- Measuring on the edge is really hard
- Why not leverage existing traffic sources?
  - worm probes

- Measuring on the edge is really hard
- Why not leverage existing traffic sources?
  - worm probes
  - DDoS backscatter

- Measuring on the edge is really hard
- Why not leverage existing traffic sources?
  - worm probes
  - DDoS backscatter
  - botnet scans

- Measuring on the edge is really hard
- Why not leverage existing traffic sources?
  - worm probes
  - DDoS backscatter
  - botnet scans
  - spam floods

• Things they were able to infer:

- Things they were able to infer:
  - Access Link bandwidth

- Things they were able to infer:
  - Access Link bandwidth
  - number of attached disks

- Things they were able to infer:
  - Access Link bandwidth
  - number of attached disks
  - uptime