Moving Beyond End-to-End Path Information to Optimize CDN Performance, Krishnan et al.

Chris Moran

Motivation

- CDNs try to improve client experience by redirecting clients to the node with least latency
 - Done via prefix matching on client's DNS resolver
- But, clients still suffer from inflated latencies in this prefix block
 - Previous solution, add nodes or reposition nodes
 - What else can we do????
 - ~~~~ WhyHigh ~~~~

WhyHigh Goals/Questions

- Understand how well the latency based redirection is currently working
 - How well is current system performing? What is the best RTT we should see?
- Identify broad categories of causes for poor RTTs
 - Why are clients underperforming? Can we group clients together into categories?
- Detect poor RTTs and diagnose root causes
 - What can be done to alleviate the problems? What causes are we able to diagnose? Fix?

Non-goals

- Restrict the problem to end-to-end latencies
- Ignore cases where base assumptions of CDN are violated
 - DNS server co-location
 - Prefix block with wide-geographic distribution
- Focus where CDNs should be performing well, but are not.

Data Set and Pre-Processing

- Collect data from 13 Google CDNs, serve 170k prefixes
 - Log time between SYN-ACK and SYN-ACK-ACK, small packet size
 - Ignore cases where packet loss occurred
- Pre-processing
 - Min RTT < Geo-RTT
 - Wrong geo-location? Removes 21k
 - Inaccuracies in location based on confidence
 - Removes 42k
 - Geographically-wide prefixes
 - ~5k

Current RTT Distribution

What is the source of latency?

- Node serving not geographically closest?
 - Nope, 80% are directed to the closest node, 92% within 10ms of closest
- Routing Inefficiencies
 - Seen when minimum RTT for a block is significantly higher than region
- Queueing delays
 - Large variances in RTTs from clients

How to ID latency inflation?

- Look for inflated prefixes
 - (Min-RTT prefix) (Min RTT region) > 50ms
- Figure out the cause
 - Forward path? CDN → client
 - Use traceroute to see routed path
 - Reverse path? CDN ← client
 - Traceroute, significant increase in single hop delay, circuitous path
 - Pings, drop in TTL in successive implies asymmetry
 - Flow records at Google network edge

Grouping Prefixes & Ranking Problems

- Techniques
 - Same PoP-level path
 - Same AS path, entry/exit point to Google network
 - Same AS path
 - Belong to same AS
- Limit number of cases
- Rank
 - Fraction of nearby prefixes w/ inflated latency
 - Fraction of nearby prefixes served elsewhere
 - Typically newer nodes have more issues

Causes of Inflation

- Lack of peering
 - AS paths are long
- Limited bandwidth capacity
 - Limited bandwidth between Google and AS
- Routing Misconfiguration
 - Reverse path is circuitous
- Traffic Engineering
 - Alternate shorter paths exist

WhyHigh in action, identifying

PhillSP1

 Southeast Asia ISP, neighbor AS(s) peering connecting to Google in US

IndISP1

 Lack of capacity between neighbor IndISP2, used longer route via ISP in Japan

PhillSP2

Splitting address space, bad ISP policies

JapanISP

 Reverse path asymmetries due to legacy configuration of Google location

Example of inflated reverse path

```
1.
1.1.1.3
0.339 ms

2.
1.1.1.4
0.523 ms

3.
1.1.1.5
0.670 ms

4.
japan2.nrt.google.com
0.888 ms

5.
exchangepoint.jp
1.538 ms

6.
router.japanisp.jp
117.391 ms
```

(a)

```
PING exchangepoint.jp
```

64 bytes from address2: ttl=252 time=1.814 msec Estimated reverse path length = 4 hops

PING router.japanisp.jp

64 bytes from address3: ttl=248 time=102.234 msec Estimated reverse path length = 8 hops

WhyHigh Fixes

- Resolve Japan ISP's large latencies through a routing announcement
- PhilISP2 advertises a less specific prefix and utilizes Google's peering link
- Still in process of fixes
 - 22% of ISPs w/ inflated paths use direct peering with Google

Performance gains, South America

Limitations of System

- Only partial view of the internet
 - Add measurement node
 - Reverse traceroute?
- Only see IP layer and above with traceroute
 - MPLS tunnel
- Can't pinpoint queueing delays

Overall Impressions

- Very solid paper
- System tries to optimize the current configuration of a CDN while fixing possible problems with the network