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Abstract—Many large-scale distributed systems can benefit
from a service that allows them to select among alternative nodes
based on their relative network positions. A variety of approaches
propose new measurement infrastructures that attempt to scale
this service to large numbers of nodes by reducing the amount
of direct measurements to end hosts. In this paper, we introduce
a new approach to relative network positioning that eliminates
direct probing by leveraging pre-existing infrastructure. Specif-
ically, we exploit the dynamic association of nodes with replica
servers from large content distribution networks (CDNs) to deter-
mine relative position information – we call this approach CDN-
based Relative network Positioning (CRP). We demonstrate how
CRP can support two common examples of location information
used by distributed applications: server selection and dynamic
node clustering. After describing CRP in detail, we present results
from an extensive wide-area evaluation that demonstrates its
effectiveness.

Keywords: Network positioning systems, content distribution
networks, measurement reuse.

I. I NTRODUCTION

Most wide-area networked systems, such as data sharing
services [9], [37], overlay-based multicast [2], [7], [32], dis-
tributed games [3], [22] and content distribution networks[5],
[44] could benefit from information regarding the relative
proximity of participating hosts. For example, data sharing
systems could select among replica servers based on their
distance from a requesting client. Streaming multicast systems
could optimize their overlays by structuring them based on
relative distances between machines. Finally, distributed online
games could balance server load while satisfying real-time
delay constraints by organizing participants in clusters of
nearby players.

Various methods have been proposed to support such a
service in a scalable manner, without requiring the overhead
of all-to-all measurements. These include using proxies [15],
landmark binning [36], direct measurement [46] and decen-
tralized network embedding (such as [12], [30], [31], [33],
[41], [43]). With network embedding, for instance, synthetic
coordinates in a geometric space are employed to characterize
node locations, and network distances between nodes are
estimated based on their corresponding vector distances.

Although the different proposed methods have attractive
properties, recent studies have shown that they leave much
room for improvement in terms of practicality and predic-
tion accuracy, particularly in systems with high degree of
churn [21], [26], [46], [47]. For example, while network em-
bedding ensures scalability by avoiding direct measurements,
the embedding process itself can introduce significant errors
(e.g. in the selection of landmarks). Although an structured
approach to direct measurement can avoid some of these issues

by no relying on an absolute coordinate space, it achieves this
by re-introducing direct measurement and its accuracy strongly
depends on the time available for on-demand probing [46].

Many distributed applications, however, do not require exact
topological information and could instead build on sufficiently
precise hints about the relative position of networked hosts.
Server selection in an on-line gaming system and binning of
peers for overlay construction are clear examples. For these
applications, relative order is more important than absolute
distances [36]. In this paper, we introduce a new, practical
approach to relative network positioning thateliminatesdi-
rect probing by leveraging the dynamic association of hosts
with replica servers from large content distribution networks
(CDNs). We call this approachCDN-based Relative network
Positioning (CRP).

CDNs cache copies of web objects on thousands of replica
servers worldwide [1] and redirect web clients to relatively
small sets of different replica servers over time. In [42], we
demonstrated that suchredirections are primarily driven by
network conditions and updated frequently enough as to be
useful for control.CRP is based on the hypothesis that if
two hosts see the same (or similar) set of nearby replica
servers over time, they are likely to be relatively close to
each other. Thus, CRP can estimate relative distances between
hosts by comparing the set of replica servers to which they
are redirected.

CRP provides a lightweight and highly scalable approach
to relative network positioning. By relying on the network
views collected by large-scale CDNs, CRP offers accuracy
comparable to that of alternative approaches while avoiding
additionaldirect measurements either to landmarks or to other
peers in an overlay. Further, because it uses a well-known
interface to existing DNS infrastructure, CRP is immediately
available and easy to integrate in existing applications. We
show that maintaining CRP redirection information at each
node is highly scalable, requiring only infrequent requests
independent of the number of nodes using the system(O(1)).

We argue that a CRP-based service can be commensalistic
with CDNs (i.e. not harm the CDNs it relies on) and posit
that it can even form the basis of a new, mutualistic service.
Still, CRP isnot intended as a general solution to the network
positioning problem – if two hosts are never redirected to
common replica servers, CRP is of no use in estimating their
relative positions and can only indicate that the two nodes are
not near one another. Nevertheless, in many location problems
in distributed systems, the most useful information is precisely
that which CRP can provide.

In this paper, we make the following contributions:
• We introduce CDN-based Relative network Positioning



2

(CRP), a lightweight, scalable and accurate approach to
relative network positioning.

• We describe the benefits of CRP in the context of two
common uses of location information by distributed ap-
plications: server selection and dynamic node clustering.

• We present results from an extensive evaluation of the
effectiveness of the CRP approach based on large-scale
measurements with over 1,000 hosts distributed world-
wide.

• We explore the potential impact of a CRP-based service
on CDNs, and discuss viable models of interaction be-
tween such a service and CDNs.

The remainder of this paper is organized as follows. We
review related work in Section II. Section III briefly describes
how CDNs work before introducing our CDN-based approach
to relative network positioning. We discuss the use of CRP
to support two common uses of location information in Sec-
tion IV and report results from our wide-area evaluation in
Section V. We discuss additional issues related to our CDN-
based approach, including its potential costs, in Section VI
and conclude in Section VII.

II. RELATED WORK

CRP is the first approach to network positioning based
on strategic reuse of CDNs’ network measurements. The
following paragraphs set the context for our work by briefly
reviewing past CDN-related studies and surveying approaches
to scalable network distance estimation and, more generally,
“information plane” services for globally-distributed systems.

CRP leverages the dynamic association of Internet hosts
with CDNs’ replica servers. Previous work has analyzed the
effectiveness and impact of CDNs [13], [18], [20], [39]. In [19]
the authors examine how content distribution servers improve
latency when compared to throughput from the origin servers.
Based on a study of CDN redirection from two different CDN
providers, Johnson et al. [16] argue that these CDNs com-
monly avoid bad recommendations rather than select optimal
servers. More recently, through a detailed measurement of the
Akamai CDN, we show that CDN redirections are primarily
driven by network conditions, specifically network latencies
on the paths between clients and the Akamai servers, and are
updated frequently enough as to be useful for control [42].
Our early study illustrated the potential benefits of employing
CDN redirections for identifying good detouring paths and
demonstrated that in approximately 50% of scenarios, the best
measured one-hop path through an Akamai server outperforms
the direct path in term of latency.

There has been a variety of proposed approaches for sup-
porting accurate network distance estimation. IDMaps [12]is
an early service that estimates latency between arbitrary pairs
of nodes using a small set of strategically placed tracer nodes.
These tracer nodes proactively measure distances among them-
selves and representative nodes from each address prefix, then
use these distances to generate a virtual distance map of the
Internet. IDMaps depends on the deployment of a system-wide
infrastructure and incurs errors based on the distances between
clients and their closest tracers. Chen et al. [6] propose an

approach that avoids the need for topology knowledge by
clustering nodes based on latency and selecting node leaders
to carry inter- and intra-cluster measurements and to respond
to latency queries. The accuracy of their approach depends on
how amenable the network is to clustering and its overhead is
proportional to the number and size of the resulting clusters.

More recent approaches use synthetic coordinates in a
geometric space to characterize node locations and compute
distance estimates. Ng and Zhang [30] show that Internet dis-
tances can be embedded in a low-dimensional Euclidean space,
and the network latency between two nodes can be estimated
based on their network coordinates. These network coordinates
are computed from distances to a set of landmarks or via a
simulation-based approach, where coordinates are modeledas
entities in a physical system (e.g., massless bodies in a spring
relaxation problem). ICS [24] and Virtual Landmarks [43] first
assign coordinates based on the distances to landmarks before
applying principal component analysis to reduce the dimen-
sionality of the coordinates. In [10], [23] landmarks are used
only for bootstrapping and node coordinates are then computed
based on the coordinates of peers. In systems with high degrees
of churn, this could result in compounded embedding errors
over time. Based on GNP [30], NPS [31] builds a hierarchical
architecture to ensure convergence. Lighthouse [33] avoids
fixed landmarks and relies instead on nodes already in the
system to obtain a coordinate relative to them, which are then
converted into a global coordinate by solving a system of
linear equations. Rather than relying on landmarks, simulation-
based systems compute coordinates based on the modeling of
physical systems. Vivaldi [11] uses spring relaxation while
Shavitt et al. [41] models a potential force field instead.

The above approaches require extensive latency measure-
ments to estimate absolute network positions. Our focus is
instead on supporting a relative network positioning system as
that proposed by Ratnasamy et al. [36], but without requiring
landmark selection oradditional measurements. Gummadi et
al. [15] proposes to leverage the existing DNS infrastructure
and estimate the latency between two nodes as the measured
latency between their DNS servers. Like King [15], CRP is
easy to deploy and use as it leverages existing CDN infras-
tructures and provides a well-known interface that simplifies
application integration.

CRP is not intended as the basis of a general latency
estimation system, but as a lightweight approach to solve
relative network positioning problems commonly found in
distributed systems. Meridian [46] also solves spatial queries,
without relying on a virtual coordinate system, building instead
on direct measurements and a loosely structured overlay
network. A Meridian node keeps track of a small fixed
number of other nodes in the system organized into a set
of concentric, non-overlapping rings. To promote geographic
diversity in ring members, Meridian nodes periodically re-
asses ring-membership decisions with the goal of maximizing
the hypervolume of the polytope formed by the selected nodes.
For node discovery and dissemination Meridian relies on a
simple gossiping mechanism based on an anti-entropy push
protocol. While Meridian’s direct-measurement approach can
avoid some of the issues with coordinate-based systems, it
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does this by re-introducing direct probing and its accuracy
strongly depends on the time available for on-demand mea-
surement [46].

More generally, a number of research efforts have begun
to address some of the challenges in supporting Clark et
al.’s [8] grand vision of a knowledge plane for large-scale,self-
managing distributed systems. Examples projects that address
the scalable monitoring of end-hosts and network paths, and
the efficient support of query processing in the information
plane include Sofia [45], IrisNet [14], PIER [35], Under-
lays [29] and iPlane [27]. A CRP-based service complements
these efforts providing a practical, easy-to-use, highly scalable
approach to relative network positioning.

III. CDN-BASED RELATIVE NETWORK POSITIONING

We begin this section with a short background on CDN
operations before describing our CRP approach to network
positioning in more detail.

A. Content Distribution Networks

CDNs attempt to improve web performance by delivering
content to end users from multiple, geographically dispersed
servers located at the edge of the network [1], [25], [28].
Content providers contract with CDNs to host and distribute
their content. Since most CDNs have servers in ISP points of
presence, clients’ requests can be dynamically forwarded to
topologically proximate replicas. DNS redirection and URL
rewriting are two of the commonly used techniques for direct-
ing client requests to a particular server [17], [40].

Beyond static information, such as geographic location and
network connectivity, most CDNs rely on network measure-
ment subsystems to incorporate dynamic network information
in replica selection and determine high-speed Internet paths
over which to transfer content within the network [4]. Among
CDNs, Akamai’s is perhaps the most extensive distribution
system in the world with over 25,000 servers, operating in
approximately 1,000 networks.

B. CDN-Based Relative Network Positioning

CDN-based relative network positioning (CRP) is based
on the hypothesis that one can estimate relative distances
among hosts by comparing their respective sets of CDN replica
servers with which these hosts are associated over time.

Each host keeps track of the servers to which a CDN redi-
rects it over time. Each set of redirections can be compactly
represented as a map of ratios, where each ratio represents
the frequency with which the host has been directed toward
the corresponding replica server during the past time window.
Specifically, if nodeA is redirected toward replica serverr1

30% of the time and toward replica serverr2 70% of the time,
then the corresponding ratio map is:

νA = 〈r1 ⇒ 0.3, r2 ⇒ 0.7〉

More generally, the ratio map for a nodeN is a set of
(replica-server, ratio)tuples represented as

νN = 〈(rk, fk), (rl, fl), ..., (rm, fm)〉

For brevity, we useνN,i to represent the ratio of timefi that
nodeN is redirected to replica serverri. Note that each node’s
ratio map contains only as many entries as replica servers seen
by that node and that the sum of thefi’s in any given ratio
map equals one. Despite the large number of replica servers
world-wide, in our study we have found that hosts see a small
set of replica servers (< 20) very frequently and see others
much less so.
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Fig. 1: Hosts are associated with different CDN replica servers over time.
Each host keeps track of its redirection frequencies.

Based on our formulation of ratio maps, each node in our
overlay can be represented as a vertex in a general graph
connected by edges labeled with the degree of overlap in their
redirection frequency maps. Following from the premise that
CDN redirections are primarily driven by network conditions,
the structure of this graph can be used to determine the relative
position of hosts based on thecosine similarityof their ratio
maps.

Cosine similarity [38] is a mathematical measure, with
values on a scale of[0, 1], of how similar two vectors are.
Given two hostsA and B and treating a redirection map as
a vector, the cosine similarity between hostsA andB can be
formally defined as:

cos sim(A,B) =

∑

i∈IA
(νA,i × νB,i)

√

∑

i∈IA
ν2

A,i ×
∑

i∈IB
ν2

B,i

WhereIA represents the set of replica servers to which node
A has been redirected over the time window. Intuitively, the
cosine similarity metric is analogous to taking the dot product
of two vectors and normalizing the result. When the maps
are identical, their resulting cosine similarity value is 1; when
they are orthogonal (i.e., the hosts have no replica serversin
common), the value is 0.

Thus, to determine the relative position of two hostsA and
B with respect to a third hostC, we can simply compute
the cosine similarity of their respective redirection maps. In
particular, if cos sim(A,C) < cos sim(B,C), then hostA
is the closer toC of A,B.

Note that CRP is not, nor is intended as, a general solution
to the network positioning problem – if two hosts are never
redirected to common replica servers (e.g. a host located in
Buenos Aires and one placed in Delhi), CRP is of no use
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in estimating their relative network positions. Stated more
formally, CRP cannot determine proximity between two nodes
if the dot product of their redirection maps is zero. In such
a case, CRP can only indicate that the two nodes are not
likely to be near one another, assuming that the CDN used
for positioning has sufficiently broad coverage. CRP is not a
complete service, but an approach that can serve as the basis
for a lightweight and highly scalable service that supports
common uses of location information in distributed systems.

In this paper, we focus on thefeasibility of reusing CDN
information to determine relative position information among
nodes and leave the implementation of this approach as future
work. We note, however, that a CRP-based service could
be easily built as a stand-alone service, shared by multiple
applications, or as part of an application library that takes
advantage of application-specific communication to distribute
redirection maps [34].

IV. U SES OFCDN-BASED RELATIVE NETWORK

POSITIONING

CRP provides a general approach to solve some common
relative positioning problems found in distributed systems. In
the following sections, we describe two of its potential uses:
closest node selection and node clustering.

A. Closest Node Selection

One of the most common uses of location information in a
distributed system is for identifying nodes near a target host.
In particular, it is often desirable to select the closest (i.e.,
lowest-latency) server host to a particular client host in the
system. For example, interactive massively multi-player online
games could use location information to improve latencies
by assigning clients to nearby hosts in their mirrored server
architectures. Similarly, peer-to-peer data sharing networks
could optimize response time by downloading from nearby
servers.

d
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Fig. 2: CRP can support closest node selection, allowing client node A to
select between serversB andC by comparing its cosine similarities for each
of the potential servers.

CRP supports closest node selection based on the compar-
ison of cosine similarities between the client host and each
of the potential servers. Figure 2 illustrates CRP-based closest
node selection with a small example of three nodes, where
nodeA is the client host selecting between serversB andC.
All three nodes are dynamically redirected to CDN replica
serversx andy with varying frequency. For example, assume
the nodes generate the following ratio maps:

νA = 〈rx ⇒ 0.2, ry ⇒ 0.8〉

νB = 〈rx ⇒ 0.6, ry ⇒ 0.4〉

νC = 〈rx ⇒ 0.1, ry ⇒ 0.9〉

As the following simple calculations show, the cosine sim-
ilarity between the pair(A,C) is higher than that of(A,B),
so nodeA selects serverC.

cos sim(A,B) =
0.2 × 0.6 + 0.8 × 0.4

√

(0.22 + 0.82) × (0.62 + 0.42)
= 0.740

cos sim(A,C) =
0.2 × 0.1 + 0.8 × 0.9

√

(0.22 + 0.82) × (0.12 + 0.92)
= 0.991

B. Clustering

Another application of CDN-based network positioning is
node clustering, where the objective is to divide a set of peers
into disjoint groups (i.e., clusters) according to the specified
constraints, such as cluster diameter or the average distance
from the “center” of the cluster. In our clustering technique,
we define the cluster distance to be in terms of round-trip time
(RTT) latency and our objective is to find clusters such that
each node in each cluster is closer to the center of its cluster
than to any other cluster center.

In general, a clustering service should be able to address
the following queries:

• Given a node identifier, find the other nodes that belong to
the same cluster.This is useful, for example, in swarming
peer-to-peer systems (such as BitTorrent) where a node
wishes to peer with nodes on low RTT paths so as to
minimize latency and potentially increase bandwidth.

• Given a set of nodes, map each node to a cluster.In
an overlay network, a quality overlay path may become
unavailable due to churn. When a node along a path goes
down, one can use knowledge of clusters to quickly repair
the path and maintain its quality by using another node
in the same cluster.

• Given a set ofm nodes, findn (≤ m) nodes in different
clusters.Nodes in different clusters are often in different
regions of the Internet. The answer to the preceding
question allows one to find a group of peers for which
network faults are not correlated (with high probability),
an essential service for systems providing high reliability.

Figure 3 provides a high-level illustration of how our CRP-
based clustering service works. As usual, nodes monitor their
redirections toward replica servers. In the figure, nodesA, B

and C are all directed to replica serverv and nodesD, E

andF are all directed toward replica serverx. Because these
two sets of nodes do not otherwise have replica servers in
common, we form clusters{A,B,C} and{D,E, F}.

More generally, we use the cosine similarity between two
nodes’ redirection behavior as the distance metric for our
clustering algorithm. Recall that the main hypothesis driving
our CDN-based positioning approach is that if nodes see the
same redirection behavior over time, then those two nodes are
likely to be near one another in the network sense. Thus, CRP
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Fig. 3: CRP-based clustering. The objective is to divide a set of peers into
disjoint groups (i.e., clusters) according to cluster diameter or the average
distance (in terms of RTT) from the center of the cluster.

assigns two nodes to the same cluster if the cosine similarity of
their ratio maps is sufficiently high. Similarly, CRP determines
that two nodes are likely to be relatively far from one another
if their corresponding cosine similarity is near zero.

V. EVALUATION

In this section, we present experimental results showing
CRP’s performance in closest-node selection and clustering. It
is important to note that the goal of CRP is to provide scalable
relative network positions by avoidingany path probing and
relying on pre-existing infrastructure. Thus, our evaluation is
intended to show that such an approach is feasible and its
performancecomparableto more precise and correspondingly,
more more costly, alternatives. We discuss the limitations
and possible costs of CRP in the context of our discussion
(Section VI).

To demonstrate the potential for the CRP approach, we use
a set of consistently active PlanetLab nodes and a collection
of DNS servers selected from the King data set [15]. We
filtered the original set of DNS servers to include only those
responding to ICMP pings and currently supporting recursive
queries. To drive CRP, we employ the Akamai CDN [1] and
gather CDN redirections using Yahoo1 and Fox News2. As
reported in [42], lookups to these names result in redirections
that reflect dynamic network conditions. During each evalu-
ation period, we determine CDN-based relative positions by
issuing recursive DNS queries to reveal the mapping of hosts
to replica servers. In parallel, we used the King measurement
technique [15] to estimate “ground-truth” round-trip times
(RTTs) between all pairs of hosts in the experiment. We use
these RTTs to evaluate the effectiveness of CRP-based clus-
tering. Additionally, for closest-node selection, we compare
CRP performance to that of a Meridian-based service.3 This
service enjoys a large PlanetLab deployment including, at the
time of our experiments, over 413 PlanetLab nodes of which
240 were consistently active. In addition, Meridian’s direct-
measurement approach has been shown to fare well in terms
of accuracy when compared with well-known systems such as
Vivaldi [11] and GNP [30]. The data presented in this section

1The Yahoo image serverus.i1.yimg.com
2www.foxnews.com
3http://www.closestnode.com
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Fig. 4: CRP’s closest node selection yields accuracy comparable, interms of
latency, to Meridian’s.

was collected between November 12-25, 2006 and January
17-23, 2007.

A. Closest Node Selection

We first evaluate CRP-based closest node selection and
compare responses with those provided by the Meridian-based
service, For Meridian, we use the measuring PlanetLab node
as the entry point to the Meridian overlay.

For this experiment, we selected 1,000 DNS servers from
the King [15] data set as participants in our service. We filtered
the original set to include only those servers responding
to ICMP pings and currently supporting recursive queries,
leaving us with a total of 4,000 hosts from which we randomly
selected our 1,000 DNS servers. The 1,000 DNS servers
representclientsrequesting the identity of their closest server.
We use the 240 active PlanetLab nodes running Meridian
as candidateservers for selection. To derive a baseline for
comparison, we directly measured the RTT between these
PlanetLab nodes (our candidate servers) and the 1,000 differ-
ent DNS servers (acting as clients in our evaluation). Finally,
we used Meridian and our CRP-based approach to select the
closest server (from among the PlanetLab candidates) for every
client, and compared their recommendations based on the
complete, RTT-based ordering of servers.

While CRP aims at supporting node selection based on
relative network proximity, rather than highly accurate latency
estimates, it is useful to compare the different recommenda-
tions in terms of average RTT between the client and the
selected servers. Figure 4 shows this comparison for Meridian
and CRP. For the latter, we plot the Top 1 and the average
rank of the Top 5 recommendations. As it can be seen from
the figure, about 65% of the time CRP Top 5 recommendation
differs from Meridian by less than 7 ms (or about 12%) and
improves over it in over 25% of the responses. For example, in
about 10% of the cases, the RTT to the Meridian recommended
server is more than twice that to the CRP Top 5 selected node.

The right-hand side of this graph is particularly interesting;
here the latency of both recommendations differ significantly
from the optimal selection based on direct measurement. To
determine the unique causes of poor performance for the
two approaches, we removed servers that caused poor results
(relative RTTs larger than 80 ms) for both Meridian and CRP.
We found that less than 20% of the servers appeared in both
datasets.
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After removing errors common to both approaches, we
investigated their root causes. We found that Meridian
errors can be mostly attributed to the instability of the
overlay network, its broad coverage, and the known
connectivity problems with some PlanetLab nodes. During
its bootstrapping phase, a newly joined Meridian node
will simply recommend itself as the “closest” node,
effectively ignoring the request parameters. For example,
the node planetlab1.cis.upenn.edu restarted
soon after November 13, 2006, took 10 hours before
responding to any requests and then, for the following
7 hours, provided itself as the closest node to all our
requests. Similarly, nodessjtu1.6planetlab.edu.cn,
csplanetlab3.kaist.ac.kr and
planetlab2.eee.hku.hk never successfully joined the
Meridian overlay during our 5-day experiment, while hosts in
the pairsplanetlab[1,2].iii.u-tokyo.ac.jp and
planetlab[1,2].atcorp.com only connected to the
other host in their site. These hosts either return themselves or
their collocated nodes as their closest-node recommendation
to all of our requests. There were also some hops through
the Meridian overlay that we have been unable to explain
(e.g., going fromplanetlab-01.bu.edu in Boston, MA
to the DNS serverns1.uskonet.com in South Africa via
plnode02.cs.mu.oz.au in Australia).

Because CRP leverages the network view gathered by CDN
infrastructures, its accuracy naturally depends on the CDN’s
coverage in the area of interest. CRP’s poor performance in
the tails of the above graphs corresponds to clients locatedin
regions of the world that are currently poorly served by the
Akamai CDN. As an example, a DNS server in New Zealand
(ns1.iconz.co.nz) that appears in the tail of the CRP
curves is redirected to 27 different replica servers including
ones in Massachusetts, Tennessee and Japan.

The remaining cases for poor performance are common to
both CRP and Meridian. This is simply due to the limited
coverage of the selected PlanetLab nodes used in our experi-
ments, such that some of the client nodes (i.e., DNS servers)
are not near any of the used PlanetLab servers (e.g., the
DNS servers in Iceland,chopin.samskip.is and Russia,
ns.spb.ru).
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Fig. 5: Relative errors for CRP and Meridian. CRP errors do not lead to
significant relative RTT differences.

Figure 5 shows the relative errors for for CRP Top 1, Top 5
and Meridian. In the case of CRP, we compute the difference
between the average of the RTTs to the Top 5 recommended
servers, and subtract this from the RTT to the closest node.

For Meridian, we plot the difference between the RTT to
the recommended server and the measured closest host. The
small fraction of negative values are the result of network
dynamics throughout the experiment. The figure clearly shows
that most of these errors do not lead to significant relative RTT
differences.

The above results for server selection illustrate the effective-
ness of the CRP-based approach to relative network position.
Note that, as previously stated, although our results show that
both CRP and Meridian incur comparable errors, we are not
advocating a CRP-based service as a replacement for more
general positioning systems.

B. Clustering

We now present an evaluation of CRP-based clustering. We
begin by describing our clustering technique, then provide
an evaluation using a data set that contains 177 broadly
distributed DNS servers as candidate nodes for clustering.
For this evaluation, we assigned a set of DNS servers to
each PlanetLab server, then issued recursive DNS lookups to
determine CRP positions as previously described. Finally,we
estimated the “ground-truth” distances among servers by using
King to measure RTTs between each DNS server and the other
N − 1 DNS servers.

To place our results in the context of another low-cost tech-
nique, we compare the results of CRP-based clustering with
that of ASN-based clustering. ASN-based clustering relieson
the hypothesis that nodes located in the same autonomous
system are nearby in a networking sense.We determine the
membership of nodes to ASes according to AS numbers
(ASNs) by using data from the RouteViews project; any
node belonging to the same ASN is grouped into the same
cluster. We acknowledge that ASN-based clustering is not
optimal; however, because ASNs explicitly encode information
about network structure, we believe they provide a meaningful
baseline for evaluating the effectiveness of our approach.

There is a number of clustering algorithms in the literature,
many of which we found inappropriate for CRP. For example,
k-means and fuzzyc-means clustering require, as input, the
number of clusters to form – knowledge that is not generally
available to our system. Other clustering algorithms, (e.g., hi-
erarchical) assume a node-distribution model that is unsuitable
for CRP clustering of Internet hosts.

In our approach, the input to the algorithm is the set of
all nodes,N , their mapping to replica server clusters and a
minimum cosine similarity threshold,t. We compared various
approaches to selecting initial cluster centers (e.g., random
or structured based on redirection information) and assigning
unclustered nodes to clusters. Ultimately, we found that a
hybrid approach that we callStrongest Mappings First (SMF),
works best.

In this algorithm, we initially define the cluster centers as
those with the strongest mappings to replica servers. Once
the cluster centers have been set, the algorithm picks an
unclustered node and finds its cosine similarity to each cluster
center. The node is assigned to the cluster whose center
produces the largest cosine similarity, if that value is greater
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than a thresholdt. Otherwise, the node is assigned to its own
cluster.

This algorithm can result in a significant number of clusters
of size one, i.e., unclustered nodes. Thus, in an optional second
pass of the algorithm, we select unclustered nodes at randomto
be cluster centers and determine if any of the other unclustered
nodes belong to the cluster based on the cosine- similarity
metric.

While we do not claim that SMF is the optimal CRP-
based clustering algorithm, it is a simple, easily deployable
approach that serves to demonstrate the feasibility of CRP-
based clustering.

We begin our evaluation by examining high-level charac-
teristics of clusters produced by our technique and by ASN-
based clustering. Table I provides a summary of the results.
As described above, our CRP clustering algorithm assigns a
node to a cluster only if the cosine similarity between the node
and a cluster center is greater thant. The first three rows in
Table I demonstrate howt impacts the clustering algorithm.

A lower value for t assigns a greater fraction of nodes
to clusters and also leads to a larger average cluster size.
This occurs because nodes with relatively weak similarity in
CDN redirection behavior are grouped into the same cluster.
With a relatively larget, we see that the average cluster size
is significantly lower, but the fraction of nodes assigned to
clusters is also significantly smaller. The reason is that a
larger t provides clusters containing only nodes with nearly
identical redirection behavior and thus excludes many nodes
that may have significantly similar behavior. Based on these
observations, we elected to use a value fort that straddles
these two extremes. Thus, for the remainder of this section we
uset = 0.1 for CRP clustering. We chose this value because
it leads to satisfactory results; however, determination of the
“optimal” threshold is left as future work.

Next, we compare CRP clustering characteristics to those of
ASN-based clustering. It is immediately clear that CRP finds
clusters for a larger fraction of nodes (over 300% more) than
ASN-based clustering. Correspondingly, it also finds more
than twice the number of total clusters. This is because CRP
can cluster together nearby nodes that are located in different
ASes, a case that is quite common when considering a large
number of nodes.

We now determine the quality of CRP clustering. A useful
metric for gauging the quality of clustering in this contextis
to compare the average intracluster distance for nodes in a
cluster to their average intercluster distance, i.e., the average
distance from the center of a cluster to the center of all other
clusters. If the average intercluster distance is high relative to
an intracluster distance, then we are reasonably certain that
our algorithm has found a good cluster.

For the remainder of this section, we limit our results to
clusters with diameters smaller than 75 ms. Larger clustersare
few in number and are unlikely to be useful to applications.

Figure 6 presents a CDF ofintracluster distances for
clusters formed by CRP-based clustering. The solid curve
represents intracluster distances and the circular pointsrep-
resent thecorrespondingintercluster distances. The clustering
algorithm is most effective if most of the circular points fall

to the bottom right of the solid curve (the shaded region in
the figure), indicating that the clustered nodes are closer to
their cluster center than to the center of any other cluster.The
graph shows that most of the clusters exhibit a diameter of
less than 40 ms, and members of those clusters are in fact far
from other cluster centers. Thus, CRP provides the ability to
form high-quality node clusters without directly probing each
node.

Fig. 6: CDF of intra- and inter-cluster distances. Good clusters are located in
the shaded region.

Finally, we evaluate whether the quality of clusters gen-
erated by CRP is on par with those generated by ASN-
based clustering. Intuitively, ASes should provide high-quality
clusters when the AS does not span multiple geographic
regions, a case that is common in our dataset. As we noted
above, CRP produces a larger number of clusters and includes
a larger portion of candidate nodes; in this evaluation we
determine whether CRP results on lower-quality clusters as
a result of this broad coverage.

For this analysis, we group clusters into buckets of diameter
0–25 ms and 25-75 ms, then count the number of “good”
clusters (i.e., those in the shaded region in Fig. 6) in each
bucket for each algorithm. Figure 7 demonstrates that CRP
clustering finds over 50% more high-quailty clusters in the
first bucket and more than double the number of clusters in
the second bucket. As already pointed out, this is due to CRP
ability to find clusters with nodes in multiple ASes.
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Fig. 7: Number of good clusters with intracluster distance within each bucket
range.

VI. D ISCUSSION

The designer of a relative network positioning service is
faced with clear tradeoffs between accuracy and measure-
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Technique # nodes clustered % nodes clustered # of clusters [mean, median, max] cluster size
CRP (t=0.01) 131 74% 35 [3.74, 3, 21]
CRP (t=0.1) 128 72% 36 [3.56, 3, 12]
CRP (t=0.5) 114 64% 38 [3.00, 2, 9]
ASN 41 23% 16 [2.56, 2, 5]

TABLE I: Summary statistics for clusters formed by CRP (using various cluster-membership thresholds,t) and ASN-based clustering.
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Fig. 8: Average rank for different probe frequencies (lower rank isbetter).
An effective service can be based on a request interval as lowas 100 minutes
– a virtually insignificant overhead.

ment overhead, deployment cost, ease of use and turnaround
time [34]. For example, although increasing the number of
direct measurements will certainly improve the accuracy of
an estimate [46], [47], it may also render the service non-
scalable. Similarly, while estimate accuracy could be improved
via longer turnaround times [46], many applications require
quick responses to make their decisions.

CRP offers a new point in this space – a lightweight and
highly scalable approach to perform node selection based on
relative network positioning with accuracy comparable to that
of alternative approaches. CRP’s achieves these properties by
avoiding additional direct measurements to either landmarks
or other peers in an overlay. Instead, it strategically reuses
the network views gathered by large-scale CDNs. In addition,
CRP is easy to deploy and use, as it leverages existing CDN
infrastructures without imposing an unduly large load on them,
and provides a well-known interface that simplifies application
integration.

CRP can form the basis of service that is commensalis-
tic with symbiotic CDNs, where client applications benefit
by reusing CDNs’ network monitoring information without
negatively impacting CDN services. Early results indicate
that is indeed possible. Based on our closest node selection
experiment (Sec. V), we explored the potential of different
intervals between redirection requests and the effect of window
sizes on CRP’s relative positioning estimations.

Figure 8 shows the average ranks resulting from request
intervals of 20 min, 100 min, 500 min and 2000 min. Rank
is set to the index of the recommended server in the RTT-
based ordered list. For example, if the node selected by a given
approach is the first one in the list, the result is assigned a rank
of 0. If the recommended “closest” node is the fifth one in the
list, the rank value of the result is4.

Note that, as a side effect of extending the probe interval,
some DNS servers may not be able to find PlanetLab nodes
with common replica servers during the duration of our
experiments. This explains the smaller number of DNS servers
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Fig. 9: Average rank for different probe window sizes, i.e., the number of
observations needed to make a useful estimation. A small, 10-probe, window
size is sufficient for effective CRP-based server selection.

for which average rank is plotted. Clearly, an effective service
can be based on request intervals as low as 100 minutes.
When considering that the Akamai CDN sets its DNS entry’s
TTL to 20 seconds, a probing interval of almost two hours
means that a CRP client will generate an additional load
significantly lower than what is expected from an ordinary
web client. Furthermore, even this minor overhead may not be
necessary if the service can passively monitor user-generated
DNS translations (e.g., from Web browsing) instead of actively
requesting CDN redirections.

Once a probing interval is set, a related question is the
number of redirections necessary to make a useful estimation
of relative network positioning. This would help determine
the overhead of a CRP-based service and the bootstrapping
time of a CRP node, i.e., the time before an effective CRP-
based decision can be made from the first observed redirection.
Again based on the closest node selection experiment, we
illustrate the potential impact of probe window sizes, i.e., the
number of recent redirections considered in a recommendation.
Figure 9 shows this with a probe interval fixed at 10 minutes.
There are a few clear points to draw from the figure. While
a 30-probe window size offers some small improvement, a
window size of 10 probes seem to be sufficient for effective
CRP-based closest node selection. Also, given a 10-probe
window size and a probe interval of 10 minutes, a CRP client
will need a bootstrapping time of∼100 minutes. Finally, as
it can be seen from the graph, the “all probes” curve shows
better average rank for two-thirds of the DNS servers than
what is possible with more limited window sizes. However,
for the remainder of the DNS servers, using all probes yields
worse average rank than looking at the last 10-30 probes. This
is primarily due to variable network dynamics: in more stable
environments, maintaining longer histories helps to refineour
results, while longer histories in an environment with more
dynamic conditions can actually harm overall performance by
incorporating stale information.

In this paper, we hand-picked the CDN names to use
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based on historical empirical data; however, in practice, it is
preferable to use an approach that selects CDN names based on
the quality of relative position information that they provide.
One way to do this is to ping the replica servers returned
for each CDN name during the bootstrapping phase and use
only those names corresponding to low-latency servers. While
this approach requires a small amount of active probing,
the overhead is a small and independent of the number of
nodes in the system. If one requires an adaptive solution that
does not perform any active probing, one can eliminate those
CDN names that return replica servers that do not provide
positioning information. For example, our experiments have
shown that when the Akamai CDN returns replica servers with
IP addresses owned by the Akamai domain, those servers are
often far away from the node performing the DNS lookup.
Based on this observation, one can use simple filtering rules
to select only CDN names that do not return such servers.

VII. C ONCLUSIONS

In this paper, we introduced a new approach to relative
network positioning that avoids direct probing by leveraging
the dynamic association of nodes with replica servers from
a large content distribution network. We call this approach
CRP for CDN-based Relative network Positioning.We de-
scribed a CRP-based positioning service that is lightweight,
highly scalable and easy to deploy and use. We apply CRP
to two common location problems in distributed systems:
closest node selection and clustering. Results from a wide-
area evaluation with over 1,200 hosts show that CRP offers
accuracy comparable to that of alternative approaches with
virtually no overhead on the CDNs it relies on, thus indicating
that the technique can be implemented as a commensalistic
service with CDNs. An open problem that directly follows
from this work is to understand how a CRP-based service can
be combined with previously proposed latency-prediction ap-
proaches into a service that offers relative network positioning
between arbitrary hosts with little-to-no overhead.
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