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Abstract—Many large-scale distributed systems can benefit by no relying on an absolute coordinate space, it achievss th
from a service that _c’:l”OWS them to select among alternative nodes by re-introducing direct measurement and its accuracygtyo
based on their relative network positions. A variety of approachs depends on the time available for on-demand probing [46].

propose new measurement infrastructures that attempt to sda Manv distributed licati h d ¢ irece
this service to large numbers of nodes by reducing the amount any distributed applications, however, do not requirecexa

of direct measurements to end hosts. In this paper, we introduce topological information and could instead build on suffintly
a new approach to relative network positioning thateliminates precise hints about the relative position of networked $ost

direct probing by leveraging pre-existing infrastructure. Specif-  Server selection in an on-line gaming system and binning of
ically, we exploit the dynamic association of nodes with replica peers for overlay construction are clear examples. Forethes

servers from large content distribution networks (CDNSs) to dete- lications. relativ der i . tant th Hsol
mine relative position information — we call this approach CDN- applications, reiative oraer IS more importan an a u

based Relative network Positioning (CRP). We demonstrate how distances [36]. In this paper, we introduce a new, practical
CRP can support two common examples of location information approach to relative network positioning thaliminatesdi-

used by distributed applications: server selection and dynamic rect probing by leveraging the dynamic association of hosts
node clustering. After describing CRP in detail, we present results yith replica servers from large content distribution netieo

from an extensive wide-area evaluation t i . .
effectivene)s(s ve wi valuation that demonstrates its (CDNs). We call this approacBDN-based Relative network

Keywords: Network positioning systems, content distribution Positioning (CRP)
networks, measurement reuse. CDNs cache copies of web objects on thousands of replica

servers worldwide [1] and redirect web clients to relagvel
small sets of different replica servers over time. In [42E w
demonstrated that sudiedirections are primarily driven by
Most wide-area networked systems, such as data sharirgwork conditions and updated frequently enough as to be
services [9], [37], overlay-based multicast [2], [7], [32[is- useful for control. CRP is based on the hypothesis that if
tributed games [3], [22] and content distribution netwojs two hosts see the same (or similar) set of nearby replica
[44] could benefit from information regarding the relativeservers over time, they are likely to be relatively close to
proximity of participating hosts. For example, data shgrireach other. Thus, CRP can estimate relative distances @&etwe
systems could select among replica servers based on tlists by comparing the set of replica servers to which they
distance from a requesting client. Streaming multicastesys are redirected.
could optimize their overlays by structuring them based on CRP provides a lightweight and highly scalable approach
relative distances between machines. Finally, distribotdine to relative network positioning. By relying on the network
games could balance server load while satisfying real-timéews collected by large-scale CDNs, CRP offers accuracy
delay constraints by organizing participants in clustefs eomparable to that of alternative approaches while avgidin
nearby players. additional direct measurements either to landmarks or to other
Various methods have been proposed to support suchpeers in an overlay. Further, because it uses a well-known
service in a scalable manner, without requiring the oveathebnterface to existing DNS infrastructure, CRP is immediate
of all-to-all measurements. These include using proxi&§, [1 available and easy to integrate in existing applications. W
landmark binning [36], direct measurement [46] and deceshow that maintaining CRP redirection information at each
tralized network embedding (such as [12], [30], [31], [33]pode is highly scalable, requiring only infrequent regsiest
[41], [43]). With network embedding, for instance, syntbet independent of the number of nodes using the sy&tg)).
coordinates in a geometric space are employed to chazeteri We argue that a CRP-based service can be commensalistic
node locations, and network distances between nodes with CDNs (i.e. not harm the CDNs it relies on) and posit
estimated based on their corresponding vector distances. that it can even form the basis of a new, mutualistic service.
Although the different proposed methods have attractiv#ill, CRP isnotintended as a general solution to the network
properties, recent studies have shown that they leave muasisitioning problem — if two hosts are never redirected to
room for improvement in terms of practicality and prediccommon replica servers, CRP is of no use in estimating their
tion accuracy, particularly in systems with high degree delative positions and can only indicate that the two nodes a
churn [21], [26], [46], [47]. For example, while network em-otnear one another. Nevertheless, in many location problems
bedding ensures scalability by avoiding direct measurésperin distributed systems, the most useful information is jsely
the embedding process itself can introduce significantrgrrdhat which CRP can provide.
(e.g. in the selection of landmarks). Although an struature In this paper, we make the following contributions:
approach to direct measurement can avoid some of thesaissue We introduce CDN-based Relative network Positioning
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(CRP), a lightweight, scalable and accurate approachdpproach that avoids the need for topology knowledge by
relative network positioning. clustering nodes based on latency and selecting node &ader
« We describe the benefits of CRP in the context of twm carry inter- and intra-cluster measurements and to respo
common uses of location information by distributed ape latency queries. The accuracy of their approach depemds o
plications: server selection and dynamic node clusteringow amenable the network is to clustering and its overhead is
« We present results from an extensive evaluation of thoportional to the number and size of the resulting clsster
effectiveness of the CRP approach based on large-scal®ore recent approaches use synthetic coordinates in a
measurements with over 1,000 hosts distributed worldeometric space to characterize node locations and compute
wide. distance estimates. Ng and Zhang [30] show that Internet dis
« We explore the potential impact of a CRP-based servitances can be embedded in a low-dimensional Euclidean space
on CDNs, and discuss viable models of interaction band the network latency between two nodes can be estimated
tween such a service and CDNs. based on their network coordinates. These network codetina
The remainder of this paper is organized as follows. Wee computed from distances to a set of landmarks or via a
review related work in Section II. Section IIl briefly dedmes Simulation-based approach, where coordinates are modsled
how CDNs work before introducing our CDN-based approadltities in a physical system (e.g., massless bodies iniagspr
to relative network positioning. We discuss the use of CRiglaxation problem). ICS [24] and Virtual Landmarks [435fir
to support two common uses of location information in Se@ssign coordinates based on the distances to landmark®befo
tion IV and report results from our wide-area evaluation iAPPlying principal component analysis to reduce the dimen-
Section V. We discuss additional issues related to our CDROnality of the coordinates. In [10], [23] landmarks aredis

based approach, including its potential costs, in Section @nly for bootstrapping and node coordinates are then cosaput
and conclude in Section VIL. based on the coordinates of peers. In systems with higheegre

of churn, this could result in compounded embedding errors
over time. Based on GNP [30], NPS [31] builds a hierarchical
architecture to ensure convergence. Lighthouse [33] avoid
CRP is the first approach to network positioning basediked landmarks and relies instead on nodes already in the
on strategic reuse of CDNs' network measurements. Thgstem to obtain a coordinate relative to them, which are the
following paragraphs set the context for our work by brieflgonverted into a global coordinate by solving a system of
reviewing past CDN-related studies and surveying appmeschinear equations. Rather than relying on landmarks, sitimurla
to scalable network distance estimation and, more gegerabbased systems compute coordinates based on the modeling of
“‘information plane” services for globally-distributedstgms. physical systems. Vivaldi [11] uses spring relaxation ehil
CRP leverages the dynamic association of Internet hoShbavitt et al. [41] models a potential force field instead.
with CDNSs’ replica servers. Previous work has analyzed theThe above approaches require extensive latency measure-
effectiveness and impact of CDNs [13], [18], [20], [39]. 18] ments to estimate absolute network positions. Our focus is
the authors examine how content distribution servers ingroinstead on supporting a relative network positioning sysés
latency when compared to throughput from the origin servethat proposed by Ratnasamy et al. [36], but without reqgirin
Based on a study of CDN redirection from two different CDNandmark selection oadditional measurements. Gummadi et
providers, Johnson et al. [16] argue that these CDNs coal: [15] proposes to leverage the existing DNS infrastmectu
monly avoid bad recommendations rather than select optinzadd estimate the latency between two nodes as the measured
servers. More recently, through a detailed measuremeiieof tatency between their DNS servers. Like King [15], CRP is
Akamai CDN, we show that CDN redirections are primarileasy to deploy and use as it leverages existing CDN infras-
driven by network conditions, specifically network latersti tructures and provides a well-known interface that simgslifi
on the paths between clients and the Akamai servers, and application integration.
updated frequently enough as to be useful for control [42]. CRP is not intended as the basis of a general latency
Our early study illustrated the potential benefits of emjpigy estimation system, but as a lightweight approach to solve
CDN redirections for identifying good detouring paths antkelative network positioning problems commonly found in
demonstrated that in approximately 50% of scenarios, the bdistributed systems. Meridian [46] also solves spatialrigse
measured one-hop path through an Akamai server outperforwithout relying on a virtual coordinate system, buildingtead
the direct path in term of latency. on direct measurements and a loosely structured overlay
There has been a variety of proposed approaches for saptwork. A Meridian node keeps track of a small fixed
porting accurate network distance estimation. IDMaps [$2] number of other nodes in the system organized into a set
an early service that estimates latency between arbitrairg p of concentric, non-overlapping rings. To promote geogi@ph
of nodes using a small set of strategically placed traceesoddiversity in ring members, Meridian nodes periodically re-
These tracer nodes proactively measure distances amang thasses ring-membership decisions with the goal of maximizin
selves and representative nodes from each address prefix, the hypervolume of the polytope formed by the selected nodes
use these distances to generate a virtual distance map of Ebe node discovery and dissemination Meridian relies on a
Internet. IDMaps depends on the deployment of a system-wisienple gossiping mechanism based on an anti-entropy push
infrastructure and incurs errors based on the distancegbat protocol. While Meridian’s direct-measurement approach ca
clients and their closest tracers. Chen et al. [6] propose awoid some of the issues with coordinate-based systems, it
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does this by re-introducing direct probing and its accuracy
strongly depends on the time available for on-demand mea- UN = (g, f&), ("1, 11)y ooy (Pimy fn))

surement [46]. For brevit t t the ratio of timg that
More generally, a number of research efforts have begun or brevity, we usey,; to represent the ratio of timg: tha

to address some of the challenges in supporting Clark Q%QEN IS redlze_cted t(l) replica servet{._Note thatl_each node’s
al’s [8] grand vision of a knowledge plane for large-scalf- ratio map contains only as many entries as replica servers se

managing distributed systems. Examples projects thaleaaddrby that node and that the sum of thigs in any given ratio

the scalable monitoring of end-hosts and network paths, angP equals one. Despite the large number of replica servers

the efficient support of query processing in the informatio orId—Wlde_, in our study we have found that hosts see a small
plane include Sofia [45], IrisNet [14], PIER [35], Under-set of replica servers<( 20) very frequently and see others

lays [29] and iPlane [27]. A CRP-based service complemerﬂ%UCh less so.
these efforts providing a practical, easy-to-use, highblable
approach to relative network positioning. X oo

D\\ ror D Replica server

" Redirection

Ill. CDN-BASED RELATIVE NETWORK POSITIONING ”°S‘\©/
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We begin this section with a short background on CDN wE r
operations before describing our CRP approach to network ‘D\ £ {ﬂ,D

positioning in more detail. L
O
Nj
A. Content Distribution Networks

CDN atternpt to improve web performance by delverins, ; oss & sesoceed wih dierent CDN eplca servers e
content to end users from multiple, geographically dispers
servers located at the edge of the network [1], [25], [28].
Content providers contract with CDNs to host and distribute Based on our formulation of ratio maps, each node in our
their content. Since most CDNs have servers in ISP points®@ferlay can be represented as a vertex in a general graph
presence, clients’ requests can be dynamically forwardedaonnected by edges labeled with the degree of overlap in thei
topologically proximate replicas. DNS redirection and URIredirection frequency maps. Following from the premise tha
rewriting are two of the commonly used techniques for direcEDN redirections are primarily driven by network conditson
ing client requests to a particular server [17], [40]. the structure of this graph can be used to determine théveslat
Beyond static information, such as geographic location apgsition of hosts based on tlhesine similarityof their ratio
network connectivity, most CDNs rely on network measurénaps.
ment subsystems to incorporate dynamic network informatio Cosine similarity [38] is a mathematical measure, with
in replica selection and determine high-speed Interngtspavalues on a scale o), 1], of how similar two vectors are.
over which to transfer content within the network [4]. Amongsiven two hosts4 and B and treating a redirection map as
CDNs, Akamai's is perhaps the most extensive distributiomvector, the cosine similarity between hogtsand B can be
system in the world with over 25,000 servers, operating flermally defined as:
approximately 1,000 networks.

. VAai X VB

. o cos_sim(A, B) = ZZEIA( A 5)
B. CDN-Based Relative Network Positioning \/Z,eI v X Sier vy,
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CDN-based relative network positioning (CRP) is based
on the hypothesis that one can estimate relative distanc
among hosts by comparing their respective sets of CDN re&pli
servers with which these hosts are associated over time.

Each host keeps track of the servers to which a CDN re
rects it over time. Each set of redirections can be compac
represented as a map of ratios, where each ratio represé .
the frequency with which the host has been directed towaf mmon), the valqe s 0. . .
the corresponding replica server during the past time windo Th'us, to determine th.e relative position Of. two hodtsnd
Specifically, if nodeA is redirected toward replica servey B with respect t0 a third hosC, we can simply compute

30% of the time and toward replica server70% of the time, the cosine similarity of their respective redirection malws
then the corresponding ratio map is: particular, if cos_sim(A,C) < cos_sim(B,C), then hostA

is the closer taC of A, B.
Note that CRP is not, nor is intended as, a general solution
to the network positioning problem — if two hosts are never
More generally, the ratio map for a nod€ is a set of redirected to common replica servers (e.g. a host located in
(replica-server, ratio)tuples represented as Buenos Aires and one placed in Delhi), CRP is of no use

herel 4 represents the set of replica servers to which node
as been redirected over the time window. Intuitively, the
cosine similarity metric is analogous to taking the dot jpreid

&)I[ two vectors and normalizing the result. When the maps
re identical, their resulting cosine similarity value jsnhen

gy are orthogonal (i.e., the hosts have no replica seiuers

va={r1 = 03,70 =0.7)



in estimating their relative network positions. Stated enor

formally, CRP cannot determine proximity between two nodes va = (ry = 02,7, = 0.8)
if the dot product of their redirection maps is zero. In such
a case, CRP can only indicate that the two nodes are not
likely to be near one another, assuming that the CDN used ve = (ry = 0.1,r, = 0.9)

for positioning has sufficiently broad coverage. CRP is not a

complete service, but an approach that can serve as the basfeS the following simple calculations show, the cosine sim-
for a lightweight and highly scalable service that supportéity between the paifA, C) is higher than that of4, B),

common uses of location information in distributed systems© nodeA selects serve'.
In this paper, we focus on thieasibility of reusing CDN

v = (ry = 0.6,7, = 0.4)

information to determine relative position informationamg . . sim(A, B) = 0.2x0.6+0.8 x0.4 — 0.740
nodes and leave the implementation of this approach asefutur /(022 +0.82) x (0.62 + 0.42)

work. We note, however, that a CRP-based service could 0.2 x0.1+0.8 x 0.9

be easily built as a stand-alone service, shared by multipfes_sim(A,C) = =0.991

2 2 2 2
applications, or as part of an application library that take V/(0.22 +0.8%) x (0.12 4 0.9)

advantage of application-specific communication to diste

redirection maps [34]. B. Clustering

Another application of CDN-based network positioning is
node clustering, where the objective is to divide a set ofpee
into disjoint groups (i.e., clusters) according to the et
constraints, such as cluster diameter or the average déstan

CRP provides a general approach to solve some commgsim the “center” of the cluster. In our clustering techrégu
relative positioning problems found in distributed syssedm \ye define the cluster distance to be in terms of round-trig tim
the following sections, we describe two of its potentialise(RTT) latency and our objective is to find clusters such that

IV. USES OFCDN-BASED RELATIVE NETWORK
POSITIONING

closest node selection and node clustering. each node in each cluster is closer to the center of its cluste
than to any other cluster center.
A. Closest Node Selection In general, a clustering service should be able to address

L .. _the following queries:

One of the most common uses of location information in a . : e

distributed system is for identifying nodes near a targettho ° Given a node |dent_|f|(_er, find the other nodes_that belo_ng 0

In particular, it is often desirable to select the closegt. (i the s?me CIUSten_th'S IS useer]ll, fongzframpli, n ﬁwarmlngd

lowest-latency) server host to a particular client hostha t peer-io-peer systems (such as BitTorrent) where a node
wishes to peer with nodes on low RTT paths so as to

system. For example, interactive massively multi-play@ine inimize lat d potentiallV i bandwidth
games could use location information to improve latencies minimize fatency and potentially Increase bandwiath.
Given a set of nodes, map each node to a cludter.

by assigning clients to nearby hosts in their mirrored serve * )
architectures. Similarly, peer-to-peer data sharing asksv an ovgrlay network, a quality overlay path may become
could optimize response time by downloading from nearby unavailable due to chum. When a node along a path goes
servers. down, one can use knowledge of clusters to quickly repair
the path and maintain its quality by using another node
in the same cluster.
« Given a set ofn nodes, find: (< m) nodes in different

P Q clusters.Nodes in different clusters are often in different
i ‘\J‘\\Oﬁ\ A regions of the Internet. The answer to the preceding
= /\_:Dy guestion allows one to find a group of peers for which
O ) network faults are not correlated (with high probability),
B he< Qe an essential service for systems providing high relighilit

Figure 3 provides a high-level illustration of how our CRP-
Fig. 2: CRP can support closest node selection, allowing clienenédo  based clustering service works. As usual, nodes monitar the
select betwegn servef$ andC' by comparing its cosine similarities for each redirections toward replica servers. In the figure, nodes?
of the potential servers. . .
and C are all directed to replica server and nodesD, F
and F' are all directed toward replica server Because these
CRP supports closest node selection based on the compan sets of nodes do not otherwise have replica servers in
ison of cosine similarities between the client host and eacbmmon, we form cluster§A, B,C} and{D, E, F'}.
of the potential servers. Figure 2 illustrates CRP-baseskesit More generally, we use the cosine similarity between two
node selection with a small example of three nodes, wharedes’ redirection behavior as the distance metric for our
node A is the client host selecting between servBrandC. clustering algorithm. Recall that the main hypothesis idgv
All three nodes are dynamically redirected to CDN replicaur CDN-based positioning approach is that if nodes see the
serverse andy with varying frequency. For example, assumeame redirection behavior over time, then those two nodes ar
the nodes generate the following ratio maps: likely to be near one another in the network sense. Thus, CRP
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Fig. 4: CRP’s closest node selection yields accuracy comparabterrims of
latency, to Meridian’s.

Fig. 3: CRP-based clustering. The objective is to divide a set ofgeeo
disjoint groups (i.e., clusters) according to cluster disner the average

distance (in terms of RTT) from the center of the cluster. was collected between November 12-25, 2006 and January
17-23, 2007.

assigns two nodes to the same cluster if the cosine sinyilafrit
their ratio maps is sufficiently high. Similarly, CRP detémas A. Closest Node Selection
that two nodes are likely to be relatively far from one anothe

) ) . . LT We first evaluate CRP-based closest node selection and
if their corresponding cosine similarity is near zero.

compare responses with those provided by the Meridianebase
service, For Meridian, we use the measuring PlanetLab node
V. EVALUATION as the entry point to the Meridian overlay.
In this section, we present experimental results showingfror this experiment, we selected 1,000 DNS servers from
CRP’s performance in closest-node selection and clustelin the King [15] data set as participants in our service. Werélie
is important to note that the goal of CRP is to provide scalabhe original set to include only those servers responding
relative network positions by avoidingny path probing and to ICMP pings and currently supporting recursive queries,
relying on pre-existing infrastructure. Thus, our evaluatis |eaving us with a total of 4,000 hosts from which we randomly
intended to show that such an approach is feasible and dtfected our 1,000 DNS servers. The 1,000 DNS servers
performanceomparableto more precise and correspondinglyrepresentlientsrequesting the identity of their closest server.
more more costly, alternatives. We discuss the limitatiofge use the 240 active PlanetLab nodes running Meridian
and possible costs of CRP in the context of our discussigg candidateserversfor selection. To derive a baseline for
(Section VI). comparison, we directly measured the RTT between these
To demonstrate the potential for the CRP approach, we UsginetLab nodes (our candidate servers) and the 1,000-diffe
a set of ConSiStently active PlanetLab nodes and a COlhBCti@nt DNS servers (acting as clients in our eva|uati0n)_ "-'yna]
of DNS servers selected from the King data set [15]. Wge used Meridian and our CRP-based approach to select the
filtered the original set of DNS servers to include Only thOS@osest server (from among the PlanetLab candidates) éyev
responding to ICMP pings and currently supporting recersiglient, and compared their recommendations based on the
queries. To drive CRP, we employ the Akamai CDN [1] angOmp|ete, RTT-based Ordering of servers.
gather CDN redirections using Yahband Fox New& As  \while CRP aims at supporting node selection based on
reported in [42], lookups to these names result in redoesti rg|ative network proximity, rather than highly accurateetecy
that reflect dynamic network conditions. During each evalgstimates, it is useful to compare the different recommenda
ation period, we determine CDN-based relative positions s in terms of average RTT between the client and the
issuing recursive DNS queries to reveal the mapping of hogiSiected servers. Figure 4 shows this comparison for Maridi
to replica servers. In parallel, we used the King measurémejhq CRP. For the latter, we plot the Top 1 and the average
technique [15] to estimate “ground-truth” round-trip tine rank of the Top 5 recommendations. As it can be seen from
(RTTs) between all pairs of hosts in the experiment. We Ugge figure, about 65% of the time CRP Top 5 recommendation
these RTTs to evaluate the effectiveness of CRP-based clygers from Meridian by less than 7ms (or about 12%) and
tering. Additionally, for closest-node selection, we C@&I® jmproves over it in over 25% of the responses. For example, in
CRP performance to that of a Meridian-based sertidis anout 10% of the cases, the RTT to the Meridian recommended
service enjoys a large PlanetLab deployment includinghet tserver is more than twice that to the CRP Top 5 selected node.
time of our exp_eriments, over 413 PIgpetLab n.0('jes of whiche right-hand side of this graph is particularly intenegti
240 were consistently active. In addition, Meridian’s difé pere the latency of both recommendations differ signifigant
measurement approach has been shown to fare well in tefRg, the optimal selection based on direct measurement. To
of accuracy when compared with well-known systems such gsiermine the unique causes of poor performance for the
Vivaldi [11] and GNP [30]. The data presented in this sectiofyq approaches, we removed servers that caused poor results
1The Yahoo image servars.il.yimg.com (relative RTTs larger than 80 ms) for both Meridian and.CRP.
2w, foxnews.com We found that less than 20% of the servers appeared in both
Shttp://www.closestnode.com datasets.



After removing errors common to both approaches, weor Meridian, we plot the difference between the RTT to
investigated their root causes. We found that Meridiahe recommended server and the measured closest host. The
errors can be mostly attributed to the instability of themall fraction of negative values are the result of network
overlay network, its broad coverage, and the knowtynamics throughout the experiment. The figure clearly show
connectivity problems with some PlanetLab nodes. Durirthat most of these errors do not lead to significant relatiVé R
its bootstrapping phase, a newly joined Meridian noddifferences.
will simply recommend itself as the “closest” node, The above results for server selection illustrate the aifec
effectively ignoring the request parameters. For examplegss of the CRP-based approach to relative network position
the node planetlabl.cis.upenn.edu restarted Note that, as previously stated, although our results sheuv t
soon after November 13, 2006, took 10 hours befotsoth CRP and Meridian incur comparable errors, we are not
responding to any requests and then, for the followirgdvocating a CRP-based service as a replacement for more
7 hours, provided itself as the closest node to all ogeneral positioning systems.
requests. Similarly, nodesj t ul. 6pl anet | ab. edu. cn,
cspl anet | ab3. kai st. ac. kr and
pl anet| ab2. eee. hku. hk never successfully joined the
Meridian overlay during our 5-day experiment, while hosts i We now present an evaluation of CRP-based clustering. We
the pairspl anetlab[1,2].iii.u-tokyo.ac.jp and begin by describing our clustering technique, then provide
pl anet | ab[ 1, 2] . at cor p. com only connected to the an evaluation using a data set that contains 177 broadly
other host in their site. These hosts either return therasaly distributed DNS servers as candidate nodes for clustering.
their collocated nodes as their closest-node recommemdatior this evaluation, we assigned a set of DNS servers to
to all of our requests. There were also some hops throughch PlanetLab server, then issued recursive DNS lookups to
the Meridian overlay that we have been unable to explagietermine CRP positions as previously described. Finaky,
(e.g., going frompl anet | ab- 01. bu. edu in Boston, MA estimated the “ground-truth” distances among servers ingus
to the DNS servens1. uskonet . comin South Africa via King to measure RTTs between each DNS server and the other
pl node02. cs. nu. oz. au in Australia). N — 1 DNS servers.

Because CRP leverages the network view gathered by CDNTO place our results in the context of another low-cost tech-
infrastructures, its accuracy naturally depends on the €DNique, we compare the results of CRP-based clustering with
coverage in the area of interest. CRP’s poor performancetirat of ASN-based clustering. ASN-based clustering redies
the tails of the above graphs corresponds to clients lodatedthe hypothesis that nodes located in the same autonomous
regions of the world that are currently poorly served by thgystem are nearby in a networking sense.We determine the
Akamai CDN. As an example, a DNS server in New Zealaniembership of nodes to ASes according to AS numbers
(nsl.iconz. co. nz) that appears in the tail of the CRP(ASNs) by using data from the RouteViews project; any
curves is redirected to 27 different replica servers inicigd node belonging to the same ASN is grouped into the same
ones in Massachusetts, Tennessee and Japan. cluster. We acknowledge that ASN-based clustering is not

The remaining cases for poor performance are commonagtimal; however, because ASNs explicitly encode inforarat
both CRP and Meridian. This is simply due to the limite@bout network structure, we believe they provide a meaaingf
coverage of the selected PlanetLab nodes used in our expedseline for evaluating the effectiveness of our approach.
ments, such that some of the client nodes (i.e., DNS serversyhere is a number of clustering algorithms in the literature
are not near any of the used PlanetLab servers (e.g., thany of which we found inappropriate for CRP. For example,
DNS servers in Iceland;hopi n. sanski p. i s and Russia, k-means and fuzzy-means clustering require, as input, the

B. Clustering

ns. spb. ru). number of clusters to form — knowledge that is not generally
available to our system. Other clustering algorithms,.(dg
500 _ erarchical) assume a node-distribution model that is taigiei
Meridian -~ .
400 | CRPTopl —e— for CRP clustering of Internet hosts.
A CRP Top5 ----a-- ] . . .
£ In our approach, the input to the algorithm is the set of
£ all nodes, N, their mapping to replica server clusters and a
% minimum cosine similarity threshold, We compared various
° approaches to selecting initial cluster centers (e.g.daan
100 or structured based on redirection information) and agsign

0 100 200 300 400 500 600 700 800 900 1000 unclustered nodes to clusters. Ultimately, we found that a
DNS Server hybrid approach that we caBitrongest Mappings First (SMF)
Fig. 5: Relative errors for CRP and Meridian. CRP errors do not lead {yorks best.
significant relative RTT differences. . . L .
In this algorithm, we initially define the cluster centers as
those with the strongest mappings to replica servers. Once
Figure 5 shows the relative errors for for CRP Top 1, Topthe cluster centers have been set, the algorithm picks an
and Meridian. In the case of CRP, we compute the differenoeclustered node and finds its cosine similarity to eachietus
between the average of the RTTs to the Top 5 recommendszhter. The node is assigned to the cluster whose center
servers, and subtract this from the RTT to the closest nogeoduces the largest cosine similarity, if that value isatge



than a threshold. Otherwise, the node is assigned to its owto the bottom right of the solid curve (the shaded region in
cluster. the figure), indicating that the clustered nodes are closer t
This algorithm can result in a significant number of clustertheir cluster center than to the center of any other cluStes.
of size one, i.e., unclustered nodes. Thus, in an optioralngk graph shows that most of the clusters exhibit a diameter of
pass of the algorithm, we select unclustered nodes at ratmoness than 40 ms, and members of those clusters are in fact far
be cluster centers and determine if any of the other unckostefrom other cluster centers. Thus, CRP provides the ability t
nodes belong to the cluster based on the cosine- similartym high-quality node clusters without directly probingch
metric. node.
While we do not claim that SMF is the optimal CRP-

based clustering algorithm, it is a simple, easily depldgab 45 _@

approach that serves to demonstrate the feasibility of CRP- 08 | Intracluster —|* =0 L

based clustering. T 07} . ]
We begin our evaluation by examining high-level charac- & 06 . 1

teristics of clusters produced by our technique and by ASN- & 8-2 I

based clustering. Table | provides a summary of the results. G 5|

As described above, our CRP clustering algorithm assigns a 02t

node to a cluster only if the cosine similarity between thdeno 01t )

and a cluster center is greater thariThe first three rows in 0 0 p- 48 & o 100

Table | demonstrate howimpacts the clustering algorithm. Ledenay fms)

A lower value for ¢ assigns a greater fraction of nOde‘?—i . 6: CDF of intra- and inter-cluster distances. Good clusteeslazated in
to clusters and also leads to a larger average cluster Si&g.shaded region.
This occurs because nodes with relatively weak similanity i
CDN redirection behavior are grouped into the same cluster._. .
. . . Finally, we evaluate whether the quality of clusters gen-
With a relatively larget, we see that the average cluster size

is significantly lower, but the fraction of nodes assigned %rated by CRP is on par with those generated by ASN-

clusters is also significantly smaller. The reason is that ased clustering. Intuitively, ASes should provide higlziy

largert provides clusters containing only nodes with nearlcfflu‘?’terS when the A.S does not' span multiple geographic
Jeglons, a case that is common in our dataset. As we noted

identical redirection behavior and thus excludes many s0 )
L L . above, CRP produces a larger number of clusters and includes
that may have significantly similar behavior. Based on these

. a larger portion of candidate nodes; in this evaluation we
observations, we elected to use a value fdhat straddles . ;

. . . determine whether CRP results on lower-quality clusters as
these two extremes. Thus, for the remainder of this secti®n \g/ result of this broad coverage
uset = 0.1 for CRP clustering. We chose this value because . . ge. . .

. . ) L For this analysis, we group clusters into buckets of diamete
it leads to satisfactory results; however, determinatibthe N i
e . 0-25ms and 25-75ms, then count the number of “good
optimal” threshold is left as future work. . : I .
. . clusters (i.e., those in the shaded region in Fig. 6) in each
Next, we compare CRP clustering characteristics to those, 0 . .
. L . ~ “bucket for each algorithm. Figure 7 demonstrates that CRP
ASN-based clustering. It is immediately clear that CRP fin : ) . : .
Clustering finds over 50% more high-quailty clusters in the
§ifst bucket and more than double the number of clusters in

ASN-ba_sed clustering. Correspondingly, 't. glso finds mog second bucket. As already pointed out, this is due to CRP
than twice the number of total clusters. This is because CRP: . ) . . )
ability to find clusters with nodes in multiple ASes.

can cluster together nearby nodes that are located in differ
ASes, a case that is quite common when considering a large
number of nodes.
We now determine the quality of CRP clustering. A useful
metric for gauging the quality of clustering in this contéxt
to compare the average intracluster distance for nodes in a
cluster to their average intercluster distance, i.e., trexage
distance from the center of a cluster to the center of allrothe
clusters. If the average intercluster distance is hightiveldo
an intracluster distance, then we are reasonably certain th i L
our algorithm has found a good cluster. 0-25 25-75
For the remainder of this section, we limit our results to Cluster diameter range (ms)
clusters with diameters smaller than 75 ms. Larger cluster's rig. 7: Number of good clusters with intracluster distance withinrehucket
few in number and are unlikely to be useful to applicationstange.
Figure 6 presents a CDF ahtracluster distances for
clusters formed by CRP-based clustering. The solid curve
represents intracluster distances and the circular poegs VI. DiscussioN
resent thecorrespondingntercluster distances. The clustering The designer of a relative network positioning service is
algorithm is most effective if most of the circular pointdl fa faced with clear tradeoffs between accuracy and measure-

14 ¢
12 ¢
10

Number of good clusters

o N A OO
— T




Technique # nodes clustered % nodes clustered # of clusters| [mean, median, max] cluster size
CRP (=0.01) 131 74% 35 [3.74, 3, 21]
CRP (¢t=0.1) 128 72% 36 [3.56, 3, 12]
CRP (=0.5) 114 64% 38 [3.00, 2, 9]
ASN 41 23% 16 [2.56, 2, 5]

TABLE I: Summary statistics for clusters formed by CRP (using varioustei-membership threshold$,and ASN-based clustering.
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Fig. 8: Average rank for different probe frequencies (lower rankodster). Fig. 9: Average rank for different probe window sizes, i.e., the nambf
An effective service can be based on a request interval aaso®00 minutes observations needed to make a useful estimation. A small, difepwindow
— a virtually insignificant overhead. size is sufficient for effective CRP-based server selection

ment overhead, deployment cost, ease of use and turnarotordvhich average rank is plotted. Clearly, an effectivevirr
time [34]. For example, although increasing the number ofin be based on request intervals as low as 100 minutes.
direct measurements will certainly improve the accuracy &¥hen considering that the Akamai CDN sets its DNS entry’s
an estimate [46], [47], it may also render the service nof-TL to 20 seconds, a probing interval of almost two hours
scalable. Similarly, while estimate accuracy could be mapd means that a CRP client will generate an additional load
via longer turnaround times [46], many applications reguisignificantly lower than what is expected from an ordinary
quick responses to make their decisions. web client. Furthermore, even this minor overhead may not be
CRP offers a new point in this space — a lightweight angecessary if the service can passively monitor user-getera
highly scalable approach to perform node selection based DNS translations (e.g., from Web browsing) instead of atyiv
relative network positioning with accuracy comparablehatt requesting CDN redirections.
of alternative approaches. CRP’s achieves these propdayie Once a probing interval is set, a related question is the
avoiding additional direct measurements to either lan#srxamumber of redirections necessary to make a useful estimatio
or other peers in an overlay. Instead, it strategically @susof relative network positioning. This would help determine
the network views gathered by large-scale CDNSs. In additiothe overhead of a CRP-based service and the bootstrapping
CRP is easy to deploy and use, as it leverages existing Chihe of a CRP node, i.e., the time before an effective CRP-
infrastructures without imposing an unduly large load aenth based decision can be made from the first observed redinectio
and provides a well-known interface that simplifies appiara Again based on the closest node selection experiment, we
integration. illustrate the potential impact of probe window sizes,, itee
CRP can form the basis of service that is commensalisumber of recent redirections considered in a recommendati
tic with symbiotic CDNs, where client applications benefiFigure 9 shows this with a probe interval fixed at 10 minutes.
by reusing CDNs’ network monitoring information withoutThere are a few clear points to draw from the figure. While
negatively impacting CDN services. Early results indica@ 30-probe window size offers some small improvement, a
that is indeed possible. Based on our closest node selectieindow size of 10 probes seem to be sufficient for effective
experiment (Sec. V), we explored the potential of differef@RP-based closest node selection. Also, given a 10-probe
intervals between redirection requests and the effectiofl@w window size and a probe interval of 10 minutes, a CRP client
sizes on CRP’s relative positioning estimations. will need a bootstrapping time o£100 minutes. Finally, as
Figure 8 shows the average ranks resulting from requédistan be seen from the graph, the “all probes” curve shows
intervals of 20 min, 100 min, 500 min and 2000 min. Ranketter average rank for two-thirds of the DNS servers than
is set to the index of the recommended server in the RTWhat is possible with more limited window sizes. However,
based ordered list. For example, if the node selected byemgivor the remainder of the DNS servers, using all probes yields
approach is the first one in the list, the result is assignedhla r worse average rank than looking at the last 10-30 probes. Thi
of 0. If the recommended “closest” node is the fifth one in this primarily due to variable network dynamics: in more s¢abl
list, the rank value of the result is environments, maintaining longer histories helps to refine
Note that, as a side effect of extending the probe intervagsults, while longer histories in an environment with more
some DNS servers may not be able to find PlanetLab nodbgamic conditions can actually harm overall performange b
with common replica servers during the duration of ouncorporating stale information.
experiments. This explains the smaller number of DNS server In this paper, we hand-picked the CDN names to use



based on historical empirical data; however, in practités i [5]
preferable to use an approach that selects CDN names based o
the quality of relative position information that they pide.

One way to do this is to ping the replica servers returneg]
for each CDN name during the bootstrapping phase and use
only those names corresponding to low-latency servers.eWhit7
this approach requires a small amount of active probing,
the overhead is a small and independent of the number of
nodes in the system. If one requires an adaptive solutian th
does not perform any active probing, one can eliminate those
CDN names that return replica servers that do not providil
positioning information. For example, our experiments eéhav
shown that when the Akamai CDN returns replica servers witty;
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often far away from the node performing the DNS lookup.
Based on this observation, one can use simple filtering rulgg
to select only CDN names that do not return such servers.

VII. CONCLUSIONS [12]

In this paper, we introduced a new approach to relati\flesl
network positioning that avoids direct probing by leverapi
the dynamic association of nodes with replica servers from
a large content distribution network. We call this approadh?l
CRP for CDN-based Relative network Positioningle de-
scribed a CRP-based positioning service that is lightweighus)
highly scalable and easy to deploy and use. We apply CRP
to two common location problems in distributed systems;.
closest node selection and clustering. Results from a wide-
area evaluation with over 1,200 hosts show that CRP offers
accuracy comparable to that of alternative approaches wtid
virtually no overhead on the CDNs it relies on, thus indiogti
that the technique can be implemented as a commensalit}
service with CDNs. An open problem that directly follows
from this work is to understand how a CRP-based service casg,
be combined with previously proposed latency-predictipn a
proaches into a service that offers relative network parsitig

X s 20
between arbitrary hosts with little-to-no overhead. [20]
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