
Resilience in Overlay Multicast Protocols
Stefan Birrer Fabián E. Bustamante

Department of Electrical Engineering and Computer Science
Northwestern University, Evanston, IL 60208, USA

Email: {sbirrer,fabianb}@cs.northwestern.edu

Abstract— One of the most important challenges of self-
organized, overlay systems for large-scale group communication
lies in these systems ability to handle the high degree of transiency
inherent to their environment. While a number of resilient
protocols and techniques have been recently proposed, achieving
high delivery ratios without sacrificing end-to-end latencies or
incurring significant additional costs has proven to be a difficult
task. In this paper we review some of these approaches and
experimentally evaluate their effectiveness by contrasting their
performance and associated cost through simulation and wide-
area experimentation.

I. INTRODUCTION

Deployment issues with IP Multicast [22], [23] have mo-
tivated recent work on alternate, peer-to-peer approaches for
supporting group communication applications over the Inter-
net [19], [29], [26], [37], [17], [10], [11], [4], [16], [39], [50],
[35], [45]. In this self-adaptive, application-layer approach,
participating peers configure themselves as an overlay topol-
ogy for data delivery. The topology is an overlay in that each
edge corresponds to a unicast path between two end systems in
the underlying Internet. All multicast-related functionality is
implemented at the end systems instead of at the routers, and
the goal of the multicast protocol is to construct and maintain
an efficient overlay for data transmission.

As multicast functionality is pushed to autonomous, un-
predictable end hosts, however, significant performance loss
can result from their higher degree of transiency when com-
pared to routers [6]. A good indicator of node’s transiency
is the peers’ median session time, where session time is
defined as the time between when a peer joins and leaves the
network. Measurement studies of widely used P2P systems
have reported median session times ranging from 90 to one
minute [12], [18], [42], [27]. Although collected mostly from
file-sharing applications, these measurements give us an idea
of the high level of transiency that can be expected in large
peer populations. Consequently, a number of techniques [5],
[14], [10] have recently been proposed to improve overlays’
resilience by exploiting path diversity [1], [43] and minimizing
node dependencies [2].

Delivering high application performance at relatively low
costs and under high degree of transiency has proven to be a
difficult task [40], [18], [33]. Each of the proposed resilient
techniques comes with a different trade-off in terms of delivery
ratio, end-to-end latency and additional network traffic. To
help guide further research, this paper reviews some of these
approaches and evaluates their effectiveness by contrasting the
performance and associated cost of representative protocols

through simulation and wide-area experimentation. We restrict
our comparison to tree-, stream-based protocols, where timely
data delivery is a key requirement. The evaluation of resilient
protocols for bulk data dissemination [30], [20], [36] is beyond
the scope of this paper.

Our results show that while all resilient schemes have their
particular merits, a combination of multiple techniques may
offer the best cost/benefit trade-off. In particular, we found that
combining a technique that improves tree resilience through
path diversity, i.e. in-tree redundancy, with a multiple-tree
approach yields excellent delivery ratios under a large range of
peer transiency. In bandwidth-limited environments, multiple
trees improve both delivery ratios and delivery latencies as
they avoid bottlenecks in the distribution topology thanks to a
more even distribution of forwarding load than conventional,
single-tree approaches.

The remainder of the paper is organized as follows. Sec-
tion II provides some useful background on overlay multicast
and Section III overviews some of the techniques proposed
for improving resilience, illustrating them with a more de-
tailed description of a representative protocol. We outline
our evaluation setting and report experimental results from
simulations and wide-area experimentation in Sections IV
and V. Section VI describes related work and Section VII
concludes.

II. OVERLAY MULTICAST

Multicast is an efficient mechanism to support group com-
munication applications such as audio and video conferencing,
multi-party games and content distribution. It decouples the
size of the receiver set from the amount of state kept at any
single node and potentially avoids redundant communication
in the network. Partially in response to the deployment issues
of network-layer multicast [22], [23], a number of protocols
recently proposed adopt an alternative peer-to-peer or overlay
approach, with all multicast related functionality implemented
exclusively at end-systems. Peers in most overlay multicast
protocols self-organize in two topologies: a control overlay for
group membership related tasks, and a delivery tree for data
forwarding. Based on the sequence adopted in the construction
of these topologies and their structuring approach, protocols
can be classified as – tree-first, mesh-first, DHT-first and
implicit [3]. In a tree-first approach [26], [29], [37], peers
directly build the data delivery tree by selecting their parents
from among known peers. Additional links are later added
to define the control topology. With a mesh-first approach,



(reverse) shortest path spanning trees, rooted at any peer, are
defined over a more densely connected graph (mesh) [19].
Under the DHT-first approach, peers organize themselves into
a well-defined geometrical structure over which a data delivery
topology is built [41], [39]. Last, under the implicit approach,
peers create only a control topology, while the data delivery
tree is implicitly defined by packet forwarding rules based
on the initial control tree. Resilient techniques for overlay
multicast have been targeted mainly at the latter two, the DHT-
first and the implicit approach.

Scribe [16] is probably one of the best known DHT-first
overlay multicast protocols. It builds upon Pastry [41], a
structured (DHT) P2P overlay. Every peer in Pastry [41] is
assigned a randomly unique node identifier (nodeId), uni-
formly distributed in the circular identifier space formed by all
possible identifiers. Given a message and an associated key,
Pastry routes the message to the node with nodeId numerically
closest to the message key. In order to route messages, each
node maintains a routing table, where the node associated with
each entry in row r of the routing table shares the first r
digits with the local nodeId. A message is routed to a node
whose nodeId shares a prefix with the message key of at least
one digit longer than the current node’s nodeId or, if no such
node exists, is numerically closer to the key. Additionally, each
node maintains a leaf set and a set of neighboring nodes.
The leaf set contains nodes which are numerically closest
to the local node’s nodeId, whereas the neighborhood set
consists of nodes which are closest based on a proximity
metric. In order to provide routing through the network, the
Pastry overlay requires a consistent mapping from keys to
overlay nodes and depends on persistent intermediate nodes for
successful message delivery. Scribe [16] group communication
builds upon Pastry to support applications that demand large
number of multicast groups. Each of these multicast groups
may consist of a subset of all nodes in the Pastry network.
Every multicast group in Scribe is assigned a random ID
(known as the topicId), and the multicast tree for the group is
formed by the union of Pastry routes from each group member
to the root, identified by the topicId. Messages are then
multicast from the root using reverse path forwarding [21].
Most recent implementations of Scribe and Pastry incorporate
the suggestions in [40], in an attempt to minimize the impact
of churn on DHT-based overlays.

Nice [4], on the other hand, belongs to a class of protocols
generally known as performance-centric, in which the primary
consideration for adding a link to the overlay topology is
performance. This is in contrast to DHT-based systems such as
Scribe, where the focus is on maintaining a structure based on
a virtual-id space [7]. Participating peers are organized into
clusters based on end-to-end latency, with every peer being
a member of a cluster at the lowest layer. Clusters vary in
size between d and 3d − 1, where d is a constant known
as degree. Each of these clusters selects a leader that has
minimum maximum distance to all other cluster’s members.
The leader of a cluster becomes a member of the immediately
superior layer. The process is repeated, with all peers in a layer

grouped into clusters and new leaders elected and promoted
to participate in the next higher layer. Hence peers can lead
more than one cluster in successive layers of this logical
hierarchy. Nice creates this hierarchically-connected control
topology, but leaves the delivery path implicitly defined by the
packet forwarding rules. Nice has been thoroughly evaluated
and shown to perform well in a variety of scenarios [4], [10],
[11].

III. RESILIENT APPROACHES TO OVERLAY MULTICAST

Given the impact of node transiency on the performance
of overlay multicast protocols, a number of techniques [5],
[14], [10], [9] have been recently proposed aimed at im-
proving overlay resilience by exploiting path diversity and
minimizing node dependencies. The different techniques can
be coarsely classified as: cross-link, in-tree, and multiple-
tree redundancy. Cross-link and in-tree redundancy improve
resilience by adding extra links to the original, single multicast
tree [10], [49], [45], [5]. Multiple-tree redundancy creates
several overlapping trees over which stripes of the multicast
stream are forwarded [14], [35], [9]. Figure 1 illustrates each
of these classes. This section reviews each class in the context
of concrete, representative protocols.

A. Cross-Link Redundancy

Probabilistic Resilient Multicast (PRM) is a general
scheme to improve the resilience of overlay multicast [5]
through randomized forwarding. PRM adopts triggered neg-
ative acknowledgment, as well as a cross-link redundancy
approach, forwarding an additional fraction of the stream
over extra cross-cutting links connecting random peers in the
tree [5]. The PRM scheme is defined as PRM(n, p) where n
is the number of random peering partners and p the forwarding
probability. In PRM, a node continuously discovers random
session members and forwards every received data packet
to any of those members with a specified probability. These
random packets help detect and recover from temporary tree
partitions. Under stable conditions, however, such an approach
introduces n·p duplicate packets that “waste” part of the peers’
available bandwidth.

B. In-Tree Redundancy

Nemo is a performance-centric, overlay multicast protocol
targeted at large-scale, heterogeneous and highly-dynamic en-
vironments. It adopts an implicit approach to overlay multicast,
organizing peers into a logical hierarchy over which the data
delivery network is defined, implicitly, by a set of forwarding
rules. Similarly to Nice, Nemo organizes nodes into clusters
based on network proximity, 1 with every peer being a member
of a cluster at the lowest layer. Each of these clusters selects a
leader that becomes a member of the immediately higher layer.
The process is repeated, with all peers in a layer being grouped
into clusters, crew members selected, and leaders promoted to
participate in the next higher layer.

1Although other factors such as bandwidth [46], [19] and expected peer
lifetime [12] can be easily incorporated.



(a) Cross-Link Redundancy. (b) In-Tree Redundancy. (c) Multiple-Tree Redundancy.

Fig. 1: Common Resilience Techniques. The cross-link and in-tree redundancy approaches improve resilience by adding extra
links to a single multicast tree. Cross-link redundancy forwards an additional fraction of the stream over extra cross-cutting links
connecting random peers in the tree, while in-tree redundancy creates alternative paths only around nodes with forwarding
responsibility. The multiple-tree redundancy approach creates several overlapping trees over which stripes of the multicast
stream are forwarded.

Nemo achieves resilience through the introduction of co-
leaders, alternative leaders that share the forwarding load
of clusters’ leaders, and their responsibility for triggered
negative acknowledgments. Co-leaders improve the resilience
of multicast groups by avoiding dependencies on single nodes
and providing alternative paths for data forwarding. Thus,
Nemo’s in-tree redundancy approach creates alternative paths
only around nodes with forwarding responsibility. As co-
leaders share the message-forwarding load with leaders, they
also help reduce the forwarding bandwidth demand of cluster
leaders improving overall system’s scalability. In addition,
Nemo reduces overlay maintenance cost through the adoption
of a probabilistic approach where operations are executed with
some probability or, alternatively, deferred to the next interval.
In the presence of high churn, many of these operations can
be completely avoided as follow-up changes may revert a
previously triggering situation.

C. Multiple-Tree Redundancy

In conventional tree-based multicast systems, a relatively
small set of nodes is responsible for forwarding all multicast
messages. This may introduce bottlenecks in the forwarding
topology as the induced load may easily overwhelm a specific
end host. To address this problem, Castro et al. [14] propose
the use of multiple interior-node disjoint trees over which
stripes of the data stream are disseminated. By forwarding
different stripes over each tree and making each peer an
interior node in at least one tree, the multiple-tree redundancy
approach distributes the forwarding load more equally among
the participating peers. To efficiently create and maintain
this forest, the SplitStream protocol leverages the inherent
properties of the DHT routing model, building on Scribe [16]
to provide a relatively simple and efficient method for forest
construction that neither requires of costly network monitoring
nor depends on a centralized coordinator.

Targeted at cooperative, group-communication applications
in heterogeneous environments, Magellan adopts the same
multiple-tree redundancy approach, but building instead on
a forest of performance-centric trees [10], [4]. Magellan en-

sures that every participating peer contributes resources to
at least one tree in the forest and that all trees have a set
of assigned peers to serve as their interior nodes. The set
of interior nodes to a tree is made of primary peers, i.e.
peers for which the tree is their primary tree, and additional
secondary peers. If a tree’s set of primary peers does not
collectively have the required resources to support the tree’s
stripe, e.g. due to peers with low bandwidth capacity, Magellan
assigns additional secondary peers with spare resources as
needed. Thus, Magellan guarantees that no tree will run out
of forwarding capacity before the full system is saturated
while still supporting the participation of non-contributors in
the system. By relying on balanced, multicast trees, Magellan
reduces the total end-to-end hop distance in the distribution
topology, thus lessening the tree vulnerability to node failures
and minimizing performance overhead. For detecting peer
failures/departures and repairing the topology, Magellan relies
on an efficient, per-tree maintenance protocol. In addition to
the frequency of interruptions a node experiences, the second
factor determining application performance is the efficiency
of the detection/repair protocol. All multicast messages in
Magellan are uniquely identified and lost messages are re-
covered via lateral error recovery, i.e. recovered from any of
the trees, not only the forwarding one [47]. Magellan was
originally implemented using Nemo, inheriting the latter’s
churn-resilience properties. To understand the benefits of each
multiple-tree and in-tree redundancy to performance-centric
multicast protocols, for our evaluation we implemented a
variant of Magellan that relies on Nice [4] as its underlying
tree construction protocol.

IV. EVALUATION

One of the most important challenges of self-organized,
overlay systems for large-scale group communication lies in
these systems ability to efficiently handle the high degree of
churn inherent to their environment. Measurement studies have
reported median session as short as one minute [12], [18],
[42], [27]. Effectively delivering high application performance



in an efficient manner under such levels of transiency has
proven to be a difficult task [40], [18], [33]. Our evaluation
aims at determining the trade-off brought in by each of the
proposed resilient techniques (Section III) in terms of delivery
ratio, response time and additional network traffic. To this
end we employ two non-resilient protocols, as baselines, and
five resilient protocols implementing the different techniques
described.

We carried out our evaluation both through simulation
and Internet experimentation in the PlanetLab wide-area
testbed [38]. We used our own implementation of all the
evaluated protocols. Each protocol implementation closely
follows the descriptions from the corresponding literature,
incorporating most published improvements, and its perfor-
mance is consistent with what has been previously reported.

The remainder of this section describes our evaluation setup,
provides some details on the implementations of the com-
pared protocols and the metrics employed in our evaluation.
Section V presents results from our simulation and Internet
experiments.

A. Evaluation Setup

Our simulation experiments are conducted using SPANS a
locally-written, packet-level, event-based simulator. For wide-
area experimentation we employed 100 PlanetLab [38] nodes.

We ran simulations using GridG [31], [32] topologies with
8,115 nodes, and a multicast group of 256 and 512 members.
GridG leverages Tiers [24], [13] to generate a three-tier
hierarchical network structure, before applying a power law
enforcing algorithm that preserves the hierarchical structure.
Multicast members are randomly attached to nodes, and a
random delay between 0.1 and 80 ms is assigned to every
link. Each end host uses per-connection buffers, dropping data
packets first in the presence of congestion. We chose not to
model bandwidth to avoid side effects due to control traffic
competing for available bandwidth [14].

Each simulation experiment lasts 40 minutes of simulation
time. All peers join the multicast group by contacting the ren-
dezvous point at uniformly distributed, random times during
the first 600 seconds of the simulation. The multicast session is
enabled after 20 minutes. Warmup time is set to 30 minutes for
all protocols to allow sufficient time to adjust to the topology
under load. This time is omitted from the figures. Starting
at 20 minutes and lasting to the end of the simulation, each
simulation run has a membership changing phase. During
this phase the evaluated protocols are exercised with end
system failures. Node failures are independent and their time
is sampled from an exponential distribution with mean, Mean
Time To Failure, varying from 5 to 120 min. [48], [27]. By
exploring a wide-range of MTTF, we avoid biases toward
any particular deployment environment [28]. Failed nodes
rejoin shortly after, with a delay sampled from an exponential
distribution with mean, Mean Time To Repair, set to 1

6 of
MTTF. Setting the MTTR as a fraction of MTTF assures
that the average online population is constant at different

failure rates. Note that node departures and re-joins commonly
require a number of expensive reorganization procedures. The
alternative approach of immediately replacing every departing
node potentially underestimates the impact of transiency as it
may fail to factor in the cost of these repair operations.

For our wide-area experiments, we employ a network of 100
end hosts. The order of the protocol setups is randomly chosen
for each experiment. At the beginning of every run we start one
client per host and select the least loaded nodes to participate
in the run. The experiment procedure is identical to the one
employed for simulations. To estimate the end-to-end delay,
we make use of a global time server. Every peer estimates
the difference of its local time to the time at the server. The
algorithm is inspired by [34] and leads to sufficient accuracy
for our application.

In all experiments, we model a single-source multicast
stream to a group of nodes. The source sends constant bit
rate (CBR) traffic of 1,000 Byte packet payload at a rate of 10
packets per second.

B. Details on Protocol Implementations

As previously mentioned, we used our own implementation
of all the evaluated protocols. These implementations, as well
as the values assigned to their configuration parameters, follow
closely the descriptions from the corresponding literature [4],
[5], [10], [9], [41], [16], [14]. We have made them available
to the community from our research group’s resource page. 2

For Nice [4] and Nice-PRM [5], the cluster degree, k, was
set to three (3). We used PRM with three random peers chosen
by each node, and with two percent forwarding probability.
Evaluation results with other, less optimal, forwarding proba-
bilities were reported in [10]. For Nemo, the cluster degree k
and the crew size were set to three. The grace period was set
to 15 seconds for Nice, Nice-PRM, Nemo and Magellan.

For Scribe and SplitStream, 3 we employ a leaf-set main-
tenance interval of 15 seconds and a route-set maintenance
interval of 1,200 seconds. We opted for this configuration
with the maintenance interval set to values four times lower
than those in [14], to give SplitStream the same ability to
detect failures as Nice and Nemo. The outdegree for Split-
Stream nodes is unlimited, yielding maximal performance for
the unlimited bandwidth scenario [14]. In addition to the
performance-optimized variant of SplitStream evaluated in this
paper, the protocol can also be used with perfect fairness in
mind. With this configuration, each peer contributes bandwidth
resources corresponding to one full-rate split. Enforcing such
tight outdegree requirements, however, results on deep delivery
trees with high latencies. As we focused our evaluation on
streaming media with low latency requirements, the evaluation
of the fairness-optimized SplitStream variant is outside the

2AquaLab: http://www.aqualab.cs.northwestern.edu
3For the evaluation of Scribe and SplitStream we employ NUScribe and

NUSplitStream, our own implementations of these protocols. NUScribe builds
on top of NUPastry and thus leverages its churn-optimized algorithms [33],
[40].



scope of this paper. The interested reader is referred to the
detailed analysis in the original publication [14].

We evaluate SplitStream and Magellan with 2, 4, 8 and
16 stripes (s) (trees), where each of the stripes is responsible
forwarding 1

s of the full rate stream to each client. Conse-
quently, an outdegree of one in a SplitStream tree corresponds
to a physical outdegree of 1

s .
For the wide-area implementation, we employed UDP with

TCP-friendly rate control [25]. We limited the number of
retransmissions to ten attempts for heartbeats and five for
all other control traffic. Data communication did not employ
retransmission.

C. Evaluation Criteria

We used several metrics to evaluate the different resilient
overlay multicast protocols, capturing both delivered perfor-
mance to the application and protocol overhead.
• Delivery Ratio. Ratio of subscribers which have received

a packet within a fixed time window. Disabled receivers
are not accounted for.

• Delivery Latency. End-to-end delay (including retrans-
mission time) from source to receivers, as seen by the
application. This includes path latencies along the overlay
hops, as well as queuing delay and processing overhead
at peers along the path.

• Physical Outdegree. The physical outdegree is the fanout
of a node and indicates the number of full rate streams a
peer has to support in the distribution topology. Whenever
multicast data is split into smaller messages and peers
only forward part of them (e.g. SplitStream), the effective
outdegree can be a non-integer value. One could consider
using the number of successors to define the outdegree of
nodes in a given protocol. This metric, however, could not
be used to compare different protocols, as each employs
different forwarding rules with some forwarding only
part of the total data stream from a given node to its
successors. The physical outdegree, on the other hand,
serves as a good indicator of nodes’ total bandwidth
contributions.

• Overhead. Total control traffic in the system, in packets
per peer, per second, during the observation interval. We
measure the total control traffic by accounting packets at
the end hosts.

V. EVALUATION RESULTS

The effectiveness of a group communication protocol can be
measured in terms of delivery ratio, i.e. the ratio of subscribers
that has received packets within a given time window, and the
end-to-end delay for this delivery as seen by the application.
The protocol’s efficiency can be measured, on the other hand,
in terms of the add-on overhead for a given delivery-ratio and
latency.

The following subsections present results from our simula-
tion and wide-area experimentation. Unless otherwise noted,

510153060120
MTTF [min]

0.4

0.6

0.8

1.0

D
el

iv
er

y 
R

at
io

 [%
]

Nice w/ NACKs
Nice-PRM

Fig. 2: Delivery ratio (256 end hosts, unlimited bandwidth).
The x-axis shows the degree of churn specified in terms of
MTTF (lower the MTTF means higher churn). Degree of churn
increases toward the right side of the axis. The x-axis crosses
at 55% delivery ratio. The plot shows how PRM increase the
average delivery ratio for different degrees of churn.

all reported results are based on five independent runs per
protocol and setup, for both the simulation and wide-area
experiments.

A. Cross-link Redundancy

Tree-based protocols organize participating peers into a
logical or physical tree over which the multicast data is
distributed. Trees are highly dependent on the reliability
of non-leaf nodes as their failure may result in temporary
tree partitions. Cross-link redundancy addresses this issue by
adding random links that improve the overlay robustness to
churn. Figure 2 illustrates the delivery ratios achieved under
different degrees of transiency by Nice, a tree-based protocol,
and by the same protocol now enhanced with cross-links,
Nice-PRM. Note, however, that in this case Nice is configured
with NACKs to isolate the contribution of cross-links to
the resilience of the protocol. The standard deviation of the
measurements range from 0.5% to 2% with various degrees
of churn. Cross-links provide a relatively minor increase to
delivery ratio with this parameter setting and at different levels
of churn.

Randomly forwarding data packets over cross-link poten-
tially creates duplicate packets at some nodes. Table I illus-
trates the data overhead for Nice and Nice-PRM at two failure
rates. With MTTF of 2 hours, PRM suffers from about 2 %
extra data packets which corresponds to its configured for-
warding probability. As one increases the failure rate, some of
the randomly forwarded packets help restore missing packets
and, consequently, the relative overhead of PRM decreases.
In general, each overlay protocol uses a number of control
messages to maintain and optimize the control-topology. Nice,



510153060120
MTTF [min]

0.4

0.6

0.8

1.0

D
el

iv
er

y 
R

at
io

 [%
]

Nice
Nemo

Fig. 3: Delivery ratio (512 end hosts, unlimited bandwidth).
The x-axis shows the degree of churn specified in terms of
MTTF (lower the MTTF means higher churn). Degree of churn
increases toward the right side of the axis. The x-axis crosses at
55% delivery ratio. The graph shows how in-tree redundancy
significantly improves delivery ratio at high degree of churn.

in particular, uses about 1.6 packets per peer, per second to
manage its topology. In addition to this general overhead, PRM
uses control messages to discover and maintain the list of the
random forwarding peers.

B. In-Tree Redundancy

A number of reinforced tree structures have been proposed
to avoid the potential overhead of cross link redundancy
while further reducing the dependency on single nodes. By
introducing alternate forwarding path, in-tree redundancy in-
creases overall resilience by lessening the impact of a specific
node’s departure has on the overall message delivery topology.
Figure 3 shows the delivery ratios of a tree-based protocol with
in-tree redundancy, Nemo, and its corresponding non-resilient
tree-based protocol, Nice. The figure plots the delivery ratio for
increasing degrees of churn. The outermost left value of the x-
axis corresponds to a MTTF of 2 hours whereas the outermost
right one to a MTTF of 5 minutes. The standard deviation
observed reaches 0.5% for very low failure rates, about 4%
for MTTF of 30 minutes and up to 9% for very high failure
rates. The figure shows that in-tree redundancy substantially
increases the delivery ratio under churn.

Some of the alternate delivery paths introduced by in-tree
redundancy could, on the other hand, result in additional de-
lays when compared to the best available path, thus negatively
affecting end-to-end latency. Table II shows that this potential
overhead is small especially considering the higher delivery
ratio of in-tree redundancy when compared to its conventional,
tree-based counterpart. In the presence of failures, lost packets
help reduce the overall delivery latency as packets delivered
over more hops are more likely to be dropped than packets

Protocol Duplicate Packets [%] Control Packets [/sec]
MTTF=120 min, MTTR=20 min

Nice 0.1 1.64
Nice-PRM 2.1 3.89
Nemo 0.4 1.67

MTTF=30 min, MTTR=5 min
Nice 0.2 1.57
Nice-PRM 2.3 3.63
Nemo 3.1 1.67

TABLE I: Overhead (512 end hosts, unlimited bandwidth).
The overhead in data communication is reflected in the number
of duplicated packets. We see that PRM adds a constant rate
of duplicates even with a very low failure rate. In contrast,
Nice and Nemo have a very low number of duplicates with
low churn rates. The generic overhead required to maintain the
tree topology is reflected in the number of control packets send
by Nice. Additionally, Nemo adds a few packets per second to
distribute information about its crew members. PRM, on the
other hand, uses control messages to discover and maintain
the list of random forwarding peers.

Protocol Delivery Latency [s] Delivery Ratio [%]
MTTF=120 min, MTTR=20 min

Nice 0.085 0.997
Nemo 0.093 1.000

MTTF=30 min, MTTR=5 min
Nice 0.141 0.969
Nemo 0.161 0.987

TABLE II: Delivery Latency (512 end hosts, unlimited band-
width). While in-tree redundancy potentially results in addi-
tional delivery latency, we see that this effect is neglectable
considering the higher delivery ratio of Nemo when compared
to Nice.

delivered closer to the source.
Overlay protocols commonly incur some default control

overhead necessary to maintain their distribution topologies.
In addition, maintaining and using multiple paths for resilience
requires additional control traffic and could result on higher
number of duplicate data packets. Table I also shows that
Nemo’s and Nice’s overheads in terms of extra data (dupli-
cates) and control packets, at low churn rates, are comparable.
The maintenance of Nemo’s in-tree redundancy additionally
introduce a small relative increase in control packets when
compared to the baseline protocol Nice.

C. Multiple-Tree Redundancy

Using multiple disjoint trees reduces the bandwidth re-
quirements of the participants and yields potentially flatter
distribution trees than single-tree approaches, reducing the
overlay’s dependency on any single node. Figure 4 shows the
latter benefits as NUSplitStream with 2 to 16 trees yields a
significantly better delivery ratio under churn than NUScribe.
The standard deviation only exceeds 2% for most of the single-
tree measurements and, only slightly, for very high failure
rates with 2, 4 and 8 trees. The highest observed standard
deviation is 4.5% with MTTF of 5 minutes and using a single-



510153060120
MTTF [min]

0.4

0.6

0.8

1.0

D
el

iv
er

y 
R

at
io

 [%
]

NUScribe
NUSplitStream S2
NUSplitStream S4
NUSplitStream S8
NUSplitStream S16

Fig. 4: Delivery ratio (512 end hosts, unlimited bandwidth).
The x-axis shows the degree of churn specified in terms of
MTTF (lower the MTTF means higher churn). Degree of churn
increases toward the right side of the axis. The x-axis crosses at
55% delivery ratio. Multiple-tree redundancy helps increasing
resilience at very high churn rates.

Protocol Delivery Ratio [%]
Nice 0.90
Magellan (Nice) S4 0.94

TABLE III: Delivery ratio (100 end hosts, wide-area,
MTTF=10 min, MTTR=2 min). Magellan uses 4 Nice trees
without lateral error recovery for this experiment. We see that
using multiple trees increase the overall delivery ratio.

tree approach. The benefits become more clear as the level of
churn exceeds the maintenance rate, defined in terms of the
maintenance interval (set at 20 min).

In wide-area environments, multiple trees help increase
the resilience of the distribution topology by increasing path
diversity. Table III summarizes the delivery ratio of Nice and
Magellan-Nice with four trees without lateral error recovery.
Using multiple trees increases the delivery ratio by 4% due,
in part, to a lower packet loss rate resulting from a better
distribution of the forwarding load.

By combining multiple trees with lateral error recovery,
peers can now restore missing packets from other trees (i.e.
not only the forwarding one) and thus better overcome a
temporary delivery outage in any one tree. Figure 5 shows the
advantage of using multiple trees with lateral error recovery.
For a MTTF of 30 minutes, we observe a standard deviation
of 4.1% for Nice without NACKs, 0.2% for Magellan-Nice
S2 with NACKs, 0.0% for Magellan-Nice S16, and 0.9% for
Nice with NACKs. The maximal registered standard deviation
is 7.6% for Nice with NACKs and a MTTF of 5 minutes.
Magellan-Nice shows a substantially higher delivery, ratio un-
der different levels of transiency, than the alternative protocols.
When contrasted with Figure 4, we can see the significant

510153060120
MTTF [min]

0.4

0.6

0.8

1.0

D
el

iv
er

y 
R

at
io

 [%
]

Nice w/ NACKs
Magellan-Nice S2 w/ NACKs
Magellan-Nice S16 w/ NACKs
Nice w/o NACKs

Fig. 5: Delivery ratio (512 end hosts, unlimited bandwidth).
Lateral-error recovery, as introduced here by Magellan, has a
significant impact on the resilience of multiple-tree protocols.

Protocol Duplicate Packets [%] Control Packets [/sec]
MTTF=120 min, MTTR=20 min

NUScribe 0.0 1.01
NUSplitStream S2 0.0 1.02
NUSplitStream S16 0.0 1.11

MTTF=30 min, MTTR=5 min
NUScribe 0.1 1.22
NUSplitStream S2 0.1 1.25
NUSplitStream S16 0.3 1.56

TABLE IV: Overhead (512 end hosts, unlimited bandwidth).

contribution of lateral error recovery to a protocol’s resilience
to churn.

As Table IV illustrates, maintaining multiple trees clearly
results in an increase on maintenance traffic, directly related
to the number of trees employed. Combining multiple trees
with other resilient techniques allows us to reduce the number
of trees, and so the associated overhead, needed to achieve
a given delivery ratio under churn. Figure 6 illustrates the
benefits of combining in-tree and multiple-tree redundancy.
The observed standard deviation for in-tree redundancy and
two trees is smaller than 0.3% for all failure rates except for
5 minutes MTTF where the standard deviation is 1.9%. Two
instances of a protocol with in-tree redundancy using lateral
error recovery are sufficient to provide near perfect delivery
ratios under the highest evaluated degree of churn.

Building multiple disjoint trees restricts the options for
internal nodes and potentially results in increased delivery
latencies, an important metric for a wide range of applications
such as multimedia streaming. Figure 7 shows how delivery
latency increases with the number of trees and different churn
rates. The standard deviation for Magellan-Nemo S2 ranges
from 0.03 seconds at low failure rates to 0.13 seconds at the
highest simulated failure rate. In general, the standard devia-
tion exceeds 0.3 seconds only in very few cases. The highest



510153060120
MTTF [min]

0.4

0.6

0.8

1.0

D
el

iv
er

y 
R

at
io

 [%
]

Nemo
Magellan-Nemo S2
NUScribe
NUSplitStream S2
NUSplitStream S16

Fig. 6: Delivery ratio (512 end hosts, unlimited bandwidth).
The combination of in-tree redundancy with multiple trees
substantially increases the latter’s effectiveness, i.e. two trees
achieve near perfect delivery at high churn rates.

Protocol Max. Outdegree Non-contributors [%]
Nice 18.0 83.0
Nemo 10.0 52.7
Magellan (Nemo) S2 10.8 17.8
NUScribe 138.0 94.1
NUSplitStream S2 66.7 91.2
NUSplitStream S16 11.8 25.2

TABLE V: Outdegree (512 end hosts, unlimited bandwidth,
MTTF=120 min, MTTR=20 min).

observed standard deviation is 0.4 seconds for SplitStream S2
at a MTTF of 15 minutes. As the degree of churn increases,
the delivery latency of a given system tends to increase as
the system lacks sufficient time to run its tree optimization
algorithms. At very high levels of churn, some protocols’
delivery latencies will seem to improve again as result of the
reduced delivery ratio observed (Figure 4) and the tendency
of packets to reach peers closer in the distribution topology
with higher probability than those farther away.

The increased delivery latency of DHT-based protocols
results from some of these protocols use of a unique node
identifier to build their routing tables and their consideration
of latency only as a tie breaker. Reverse path forwarding on the
resulting routing topology may thus impose considerable over-
head in terms of latency, especially for small peer populations.
We expect this effect to be less pronounced for large groups
due to the density of the participating peers’ population.

Beyond peer population transiency, the resilience of a proto-
col is also affected by the available bandwidth capacities at the
end hosts. Imposing high forwarding responsibilities on some
nodes may easily overload them, resulting in significant packet
losses. Figure 8 illustrates the distribution of the forwarding
responsibility for some of the evaluated protocols. The graph
shows the physical outdegree of the nodes on the x-axis and

510153060120
MTTF [min]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

D
el

iv
er

y 
La

te
nc

y 
[s

]

Nemo
Magellan-Nemo S2
NUScribe
NUSplitStream S2
NUSplitStream S16

Fig. 7: Delivery latency (512 end hosts, unlimited bandwidth).
Delivery latency is negatively affected by churn as node
departure and arrival events work against the protocols op-
timization strategies. Eventually, all protocols will experience
lower delivery latencies from significant packet losses and the
fact that delivered packets reach nearby nodes with higher
probability.

1 2 3 4 5 10
Outdegree

0.2

0.4

0.6

0.8

1.0

C
um

m
ul

at
iv

e 
P

ro
ba

bi
lit

y 
[%

]

Nemo
Magellan-Nemo S2
NUScribe
NUSplitStream S2
NUSplitStream S16

Fig. 8: Outdegree (512 end hosts, unlimited bandwidth,
MTTF=120 min, MTTR=20 min). The outdegree partially de-
termines the scalability of an overlay system in bandwidth
limited scenarios.

the cumulative fraction of the nodes on the y-axis. The physi-
cal outdegree is the forwarding capacity used at each node in
terms of a basic stream rate. That is, a physical outdegree of
one indicates that the peer contributes exactly the equivalent
of one full rate stream to the system. While conventional tree-
based protocols with no alternate paths put significantly high
forwarding load on a few nodes in the system, path diversity
(as offered by in-tree redundancy) and multiple disjoint trees
substantially reduce forwarding responsibility for most peers.
Table V summarizes the maximal outdegree and the number
of non-contributors in each of the delivery topologies, clearly
illustrating the advantages of path diversity and multiple-tree



Protocol Delivery Latency [s] Improvement [%]
Nice 0.464 -
Magellan (Nice) S4 0.369 20.5

TABLE VI: Delivery latency (100 end hosts, wide-area,
MTTF=10 min, MTTR=2 min).

redundancy.
In addition, in bandwidth-limited environments the use of

multiple trees can help reduce the queuing delay at each over-
lay hop, thus improving total delivery latency. Table VI shows
the delivery ratio of multiple trees. We see that Magellan-Nice
with four trees reduces the average delivery latency by more
than 20% when compared to Nice.

All the proposed resilient techniques scale well when com-
pared to their baseline, illustrating a powerful, if logical, syn-
ergy of goals between high resilience and scalability for over-
lay multicast protocols. In particular, SplitStream overcomes
the inherent scalability problem of conventional tree-based
multicast schemes in homogeneous environments. Nemo also
greatly reduces the physical outdegree requirement for interior
nodes when compared to conventional tree-based protocols
like Nice.

D. Summary

We have evaluated three alternative techniques for higher
resilience: cross-links, in-tree path diversity and multiple-tree
redundancy. While all of the evaluated techniques are able
to substantially increase the resilience of their base protocol,
each achieves this at different relative costs. For example,
while employing multiple trees improves delivery ratio and
reduces the bandwidth requirement of individual peers, it
may also result in higher delivery latencies. The latter effect
becomes particular pronounced when using several disjoint
trees. In bandwidth-limited environments, the outdegree dis-
tribution may become a key factor of the overall resilience as
bandwidth limited peers may become bottlenecks in the system
resulting in substantial packet losses. Using path diversity
and/or multiple trees helps to address this problem. Overall,
a combination of in-tree and multiple-tree redundancy seems
to efficiently achieve the highest delivery ratio under different
failures scenarios.

VI. RELATED WORK

To the best of our knowledge this is the first study of
alternative resilient techniques for overlay multicast.

In [3] the authors describe and analytically compare a set of
non-resilient application layer protocols including DHT-based
and tree-based techniques. Castro et al. [15] contrast CAN-
style versus Pastry-style overlay networks using multicast
communication workloads running on an identical simula-
tion infrastructure. They conclude that the DHT-based, tree-
building approach achieves lower delay and overhead than
flooding regardless of the underlying DHT system, and that
multicast trees built on Pastry provide higher performance than
those using CAN [39].

The feasibility of streaming applications in heterogeneous
environments has recently drawn significant attention. Chu et
al. [18] report on their experience in deploying an overlay
service in these environments. Sripanidkulchai et al. [44]
study the feasibility of supporting large-scale groups using an
application end-point architecture and conclude that the end
hosts have sufficient resources in most scenarios to support
such an overlay structure. Bharambe et al. [7] analyze the
impact of heterogeneous bandwidth constraints on DHT-based
multicast protocols and conclude that Scribe tends to create
deep unbalanced distribution trees under these conditions. Our
work extends this study by analyzing the implications of
transiency and bandwidth heterogeneity on the effectiveness
of DHT-based, cooperative multicast approaches [8]. Deep
unbalanced trees posit a challenge to resilient protocols as
they introduce additional points of failure in the overlay.
Rhea et al. [40] show, through an emulation-based evaluation,
the potential impact of realistic levels of peer transiency on
the performance of some earlier DHT implementations. The
authors propose a number of techniques for more churn-
resilient DHTs, a few of which have found their way into
recent systems.

VII. CONCLUSIONS

We have evaluated different techniques for resilient peer-to-
peer multicast and analyzed their effectiveness in the context
of their non-resilient alternatives. Our experimental study,
the first one of its class, compares the performance of sev-
eral resilient and non-resilient, tree-based and DHT-based
overlay multicast systems 4 through simulation and wide-
area experimentation in the PlanetLab testbed. The resilience
and overhead of the different protocols is evaluated under a
continuous stream of failures at different rates obtained from
the literature.

While each technique on its own achieves promising per-
formance gains, a combination of in-tree and multiple-tree
redundancy exhibits the highest degree of resilience and
the lowest relative cost, among the evaluated protocols. In
bandwidth-limited scenarios, multiple-tree redundancy lessens
the forwarding load and potentially the height of trees, thus
improving both delivery ratio and end-to-end latency. In wide-
area evaluations, Magellan-Nice with four trees significantly
improves delivery latency (by over 20%) in contrast with the
baseline, single-tree Nice.

REFERENCES

[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient
overlay networks. In Proc. of the 18th ACM SOSP, October 2001.

[2] T. Anderson, S. Shenker, I. Sotica, and D. Wetherall. Design guidelines
for robust Internet protocols. In Proc. of HotNets-I, October 2002.

[3] S. Banerjee and B. Bhattacharjee. A comparative study of application
layer multicast protocols, 2002. Submitted for review.

[4] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application
layer multicast. In Proc. of ACM SIGCOMM, August 2002.

4Source code for many of the these protocols, including Nemo, NUScribe
and NUSplitStream is publicly available from our research group’s resource
page at http://www.aqualab.cs.northwestern.edu.



[5] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. Resilient
multicast using overlays. In Proc. of ACM SIGMETRICS, June 2003.

[6] M. Bawa, H. Deshpande, and H. Garcia-Molina. Transience of peers &
streaming media. In Proc. of HotNets-I, October 2002.

[7] A. R. Bharambe, S. G. Rao, V. N. Padmanabhan, S. Seshan, and
H. Zhang. The impact of heterogeneous bandwidth constraints on DHT-
based multicast protocols. In Proc. of IPTPS, February 2005.

[8] S. Birrer and F. E. Bustamante. The feasibility of dht-based streaming
multicast. In Proc. of the IEEE/ACM MASCOTS, Atlanta, GA, Septem-
ber 2005.

[9] S. Birrer and F. E. Bustamante. Magellan: Performance-based, cooper-
ative multicast. In Proc. of IWCW, September 2005.

[10] S. Birrer and F. E. Bustamante. Resilient peer-to-peer multicast without
the cost. In Proc. of MMCN, January 2005.

[11] S. Birrer, D. Lu, F. E. Bustamante, Y. Qiao, and P. Dinda. FatNemo:
Building a resilient multi-source multicast fat-tree. In Proc. of IWCW,
October 2004.

[12] F. E. Bustamante and Y. Qiao. Friendships that last: Peer lifespan and
its role in P2P protocols. In Proc. of IWCW, October 2003.

[13] K. L. Calvert, M. B. Doar, and E. W. Zegura. Modeling internet
topology. IEEE Communications Magazine, 35(6):160–163, June 1997.

[14] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh. Splitstream: High-bandwidth multicast in cooperative
environments. In Proc. of the 19th ACM SOSP, October 2003.

[15] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer,
H. Wang, and A. Wolman. An evaluation of scalable application-level
multicast built using peer-to-peer overlays. In Proc. of IEEE INFOCOM,
March 2003.

[16] M. Castro, A. Rowstron, A.-M. Kermarrec, and P. Druschel. SCRIBE:
A large-scale and decentralised application-level multicast infrastructure.
IEEE Journal on Selected Areas in Communication, 20(8), 2002.

[17] Y. Chawathe. Scattercast: an architecture for Internet broadcast dis-
tribution as an infrastructure service. Ph.D. Thesis, U. of California,
Berkeley, CA, Fall 2000.

[18] Y.-H. Chu, A. Ganjam, T. S. E. Ng, S. G. Rao, K. Sripanidkulchai,
J. Zhan, and H. Zhang. Early experience with an Internet broadcast
system based on overlay multicast. In Proc. of USENIX ATC, June
2004.

[19] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for end system
multicast. IEEE Journal on Selected Areas in Communication, 20(8),
October 2002.

[20] B. Cohen. BitTorrent. bitconjurer.org/BitTorrent/, 2001. File distribution.
[21] Y. K. Dalal and R. M. Metcalfe. Reverse path forwarding of broadcast

packets. Communication of the ACM, 21(12):1040–1048, 1978.
[22] S. E. Deering. Multicast routing in internetworks and extended LANs.

In Proc. of ACM SIGCOMM, August 1988.
[23] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen.

Deployment issues for the IP multicast service and architecture. IEEE
Network, 14(1), January/February 2000.

[24] M. B. Doar. A better model for generating test networks. In Proc. of
Globecom, November 1996.

[25] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based
congestion control for unicast applications. In Proc. of ACM SIGCOMM,
August 2000.

[26] P. Francis. Yoid: Extending the Internet multicast architecture.
http://www.aciri.org/yoid, April 2000.

[27] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy,
and J. Zahorjan. Measurement, modeling and analysis of a peer-to-peer
file-sharing workload. In Proc. of ACM SOSP, December 2003.

[28] A. Haeberlen, A. Mislove, A. Post, and P. Druschel. Fallacies in
evaluating decentralized systems. In Proc. of IPTPS, February 2006.

[29] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W.
O’Toole Jr. Overcast: Reliable multicasting with and overlay network.
In Proc. of the 4th USENIX OSDI, October 2000.

[30] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High
bandwidth data dissemination using an overlay mesh. In Proc. of the
19th ACM SOSP, October 2003.

[31] D. Lu and P. A. Dinda. GridG: Generating realistic computational grids.
ACM Sigmetrics Performance Evaluation Review, 30(4):33–41, March
2003.

[32] D. Lu and P. A. Dinda. Synthesizing realistic computational grids. In
Proc. of Supercomputing, November 2003.

[33] R. Mahajan, M. Castro, and A. Rowstron. Controlling the cost of
reliability in peer-to-peer overlays. In Proc. of IPTPS, February 2003.

[34] D. L. Mills. Improving algorithms for synchronizing computer network
clocks. In Proc. of ACM SIGCOMM, August 1994.

[35] V. N. Padmanabhan, H. J. Wang, and P. A. Chou. Resilient peer-to-peer
streaming. In Proc. of IEEE ICNP, 2003.

[36] V. S. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr.
Chainsaw: Eliminating trees from overlay multicast. In Proc. of IPTPS,
February 2005.

[37] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An
application level multicast infrastructure. In Proc. of USENIX USITS,
March 2001.

[38] PlanetLab Consortium. PlanetLab. http://www.planet-lab.org.
[39] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-

level multicast using content-addressable networks. In Proc. of NGC,
November 2001.

[40] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a
DHT. In Proc. of USENIX ATC, December 2004.

[41] A. Rowstron and P. Drushel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In IFIP/ACM
Middleware, November 2001.

[42] S. Sen and J. Wang. Analyzing peer-to-peer traffic across large networks.
In ACM SIGCOMM Internet Measurement Workshop, November 2002.

[43] A. C. Snoeren, K. Conley, and D. K. Gifford. Mesh-based content
routing using xml. In Proc. of the 18th ACM SOSP, October 2001.

[44] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang. The feasibility
of supporting large-scale live streaming applications with dynamic
application end-points. In Proc. of ACM SIGCOMM, August/September
2004.

[45] D. A. Tran, K. A. Hua, and T. Do. ZIGZAG: An efficient peer-to-peer
scheme for media streaming. In Proc. of IEEE INFOCOM, April 2003.

[46] Z. Wang and J. Crowcroft. Bandwidth-delay based routing algorithms.
In Proc. of IEEE GlobeCom, November 1995.

[47] K.-F. S. Wong, S. G. Chan, W.-C. Wong, Q. Zhang, W.-W. Zhu, and
Y.-Q. Zhang. Lateral error recovery for application-level multicast. In
Proc. of IEEE INFOCOM, March 2004.

[48] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Networked Windows NT system
field failure data analysis. In Proc. of PRDC, December 1999.

[49] M. Yang and Z. Fei. A proactive approach to reconstructing overlay
multicast trees. In Proc. of IEEE INFOCOM, March 2004.

[50] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D.
Kubiatowicz. Bayeux: An architecture for scalable and fault-tolerant
wide-area data dissemination. In Proc. of NOSSDAV, June 2001.


