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Abstract

Existing peer-to-peer systems rely on overlay network
protocols for object storage and retrieval and message
routing. These overlay protocols can be broadly classi-
fied as structured and unstructured — structured overlays
impose constraints on the network topology for efficient
object discovery, while unstructured overlays organize
nodes in a random graph topology that is arguably more
resilient to peer population transiency. There is an ongo-
ing discussion on the pros and cons of both approaches.
This paper contributes to the discussion a multiple-site,
measurement-based study of two operational and widely-
deployed file-sharing systems. The two protocols are
evaluated in terms of resilience, message overhead, and
query performance. We validate our findings and fur-
ther extend our conclusions through detailed analysis and
simulation experiments.

1 Introduction

Peer-to-peer Internet applications for data sharing have
gained in popularity over the last few years to become
one of today’s main sources of Internet traffic [31, 12].
Their peer-to-peer approach has been proposed as the
underlying model for a wide variety of applications,
from storage systems and cooperative content distribu-
tion to Web caching and communication infrastructures.
Existing peer-to-peer systems rely on overlay network
protocols for object storage/retrieval and message rout-
ing. These overlay protocols can be classified broadly
as either structured or unstructured based on the con-
straints imposed on how peers are organized and where
stored objects are kept. The research community con-
tinues to debate the pros and cons of these alternative
approaches [5]. This paper contributes to this discussion
the first multi-site, measurement based study of two op-
erational and widely deployed P2P file-sharing systems.

Most P2P systems in use today [8, 13] adopt fully dis-
tributed and largely unstructured overlays. In such un-
structured systems there are few constraints on the over-

lay construction and data placement: peers set up overlay
connections to a (mostly) arbitrary set of other peers they
know, and shared objects can be placed at any node in the
system. While the resulting random overlay structures
and data distributions may provide high resilience to the
degrees of transiency (i.e., churn) found in peer popula-
tions, they limit clients to nearly “blind” searches, using
either flooding or random walks to cover a large number
of peers.

Structured, or DHT (Distributed Hash Table)-based
protocols [28, 33, 36, 25], on the other hand, reduce the
cost of searches by constraining both the overlay struc-
ture and the placement of data — data objects and nodes
are assigned unique identifiers or keys, and queries are
routed based on the searched object keys to the node re-
sponsible for keeping the object (or a pointer to it). Al-
though the resulting overlay provides efficient support
for exact-match queries (normally in O(log(n))), this
may come at a hefty price in terms of churn resilience,
and the systems’ ability to exploit node heterogeneity
and efficiently support complex queries.

This paper reports on a detailed, measurement-based
study of two operational file-sharing systems — the un-
structured Gnutella [8] network, and the structured Over-
net [23] network. In a closely related effort, Castro et
al. [5] presents a simulation-based, detailed comparison
of both approaches using traces of Gnutella nodes arrival
and departures [30]. Our study complements their work,
focusing on the characterization — not comparison — of
two operational instances of these approaches in terms
of resilience, query and control message overhead, query
performance, and load balancing.

Some highlights of our measurement results include:

e Both systems are efficient in terms of control traf-
fic (bandwidth) overhead under churn. In particular,
Overnet peers have surprisingly small demands on
bandwidth.

e While both systems offer good performance for



exact-match queries of popular objects, Overnet
surprisingly yields almost twice the success rate of
Gnutella (97.4%/53.2%) when querying for a set of
shared objects extracted from a Gnutella client.

e Both systems support fast keyword searches. Flood-
ing in Gnutella guarantees fast query replies, espe-
cially for highly popular keywords, while Overnet
successfully handles keyword searches by leverag-
ing its DHT structure.

e Overnet does an excellent job at balancing search
load; even peers responsible for the most popular
keywords consume only 1.5x more bandwidth than
that of the average peer.

We validate our findings and further extend our con-
clusions (Sections 7 and 8) through additional measure-
ments as well as detailed analysis and simulation experi-
ments. The measurement and characterization of the two
large, operational P2P systems presented in this paper
will shed light on the advantages/disadvantages of each
overlay approach and provide useful insights for the de-
sign and implementation of new overlay systems.

After providing some background on unstructured and
structured P2P networks in general and on the Gnutella
and Overnet systems in particular, we describe our mea-
surement goals and methodology in Section 3. Sec-
tions 4-6 present and analyze our measurement results
from both systems. Section 9 discusses related work. We
conclude in Section 10.

2 Background

This section gives a brief overview of general unstruc-
tured and structured P2P networks and the deployed sys-
tems measured in our study — Gnutella and Overnet.

2.1 The Gnutella Protocol

In unstructured peer-to-peer systems, the overlay graph
is highly randomized and difficult to characterize. There
are no specific requirements for the placement of data
objects (or pointers to them), which are spread across
arbitrary peers in the network. Given this random place-
ment of objects in the network, such systems use flood-
ing or random walk to ensure a query covers a suffi-
ciently large number of peers. Gnutella [8] is one of the
most popular unstructured P2P file-sharing systems. Its
overlay maintenance messages include ping, pong and
bye, where pings are used to discover hosts on the net-
work, pongs are replies to pings and contain information
about the responding peer and other peers it knows about,
and byes are optional messages that inform of the up-
coming closing of a connection. For query/search, early
versions of Gnutella employ a simple flooding strategy,
where a query is propagated to all neighbors within a cer-

tain number of hops. This maximum number of hops, or
time-to-live, is intended to limit query-related traffic.

Two generations of the Gnutella protocols have been
made public: the “flat” Gnutella V0.4 [7], and the newer
loosely-structured Gnutella V0.6 [14]. Gnutella V0.6 at-
tempts to improve query efficiency and reduce control
traffic overhead through a two-level hierarchy that dis-
tinguishes between superpeers/ultrapeers and leaf-peers.
In this version, the core of the network consists of high-
capacity superpeers that connect to other superpeers and
leaf-pears; the second layer is made of low-capacity
(leaf-) peers that perform few, if any, overlay mainte-
nance and query-related tasks.

2.2 The Overnet/Kademlia Protocol

Structured P2P systems, in contrast, introduce much
tighter control on overlay structuring, message routing,
and object placement. Each peer is assigned a unique
hash ID and typically maintains a routing table contain-
ing O(log(n)) entries, where n is the total number of
peers in the system. Certain requirements (or invari-
ants) must be maintained for each routing table entry
at each peer; for example, the location of a data object
(or its pointer) is a function of an object’s hash value
and a peer’s ID. Such structure enables DHT-based sys-
tems to locate an object within a logarithmic number of
steps, using O(log(n)) query messages. Overnet [23] is
one of the few widely-deployed DHT-based file-sharing
systems. Because it is a closed-source protocol, de-
tails about Overnet’s implementation are scarce, and few
third-party Overnet clients exist. Nevertheless, some of
these clients, such as MLDonkey [21], and libraries like
KadC [11] provide opportunities for learning about the
Overnet protocol.

Overnet relies on Kademlia [20] as its underlying
DHT protocol. Similar to other DHTs, Kademlia as-
signs a 160-bit hash ID to each participating peer, and
computes an equal-length hash key for each data object
based on the SHA-1 hash of the content. <key,value>
pairs are placed on peers with IDs close to the key,
where “closeness” is determined by the XOR of two
hash keys; i.e., given two hash identifiers, x, and y, their
distance is defined by the bitwise exclusive or (XOR)
(d(z,y) = x @ y). In addition, each peer builds a routing
table that consists of up to loga(n) buckets, with the ith
bucket B; containing IDs of peers that share a ¢-bit long
prefix. In a 4-bit ID space, for instance, peer 0011 stores
pointers to peers whose IDs begin with 1, 01, 000, and
0010 for its buckets By, By, By and Bj, respectively
(Fig. 1). Compared to other DHT routing tables, the
placement of peer entries in Kademlia buckets is quite
flexible. For example, the bucket B, for peer 0011 can
contain any peers having an ID starting with 1.

Kademlia supports efficient peer lookup for the k clos-



Bucket ID | Common Prefix| Cached Peers
Length (Bucket Entries)
B, 0 1001, 1100, 1101
B, 1 0110, 0100
B, 2 0001
B, 3 0010

Figure 1: Routing table of peer 0011 in a 4-digit hash
space.

est peers for a given hash key. The procedure is per-
formed in an iterative manner, where the peer initiat-
ing a lookup chooses the o closest nodes to the target
hash key from the appropriate buckets and sends them
FIND_NODE RPCs. Queried peers reply with peer
IDs that are closer to the target key. This process is
thus repeated, with the initiator sending FIND_NODE
RPCs to nodes it has learned about from previous RPCs
until it finds the k closest peers. The XOR metric and the
routing bucket’s implementation guarantee a consistent,
O(log(n)) upper bound for the hash key lookup proce-
dure in Kademlia. '

Overnet builds a file-sharing P2P network with an
overlay organization and message routing protocol based
on Kademlia. Overnet assigns each peer and object a
128-bit ID based on a MD4 hash. Object search largely
follows the FIND_NODE procedure described in the
previous paragraph with some modifications. We will
introduce additional details on Overnet’s search mecha-
nism as we present and analyze its query performance in
Section 5.

3 Measurement Goals and Methodology

Our study focuses on the characterization of two op-
erational instances of the unstructured (Gnutella) and
unstructured (Overnet) approaches to P2P networks in
terms of churn resilience (Section 4.1), query and con-
trol message (Sections 6 and 4.2) overhead, query perfor-
mance (Section 5.1 and 5.2)), and load balancing (Sec-
tion 6.1). A fair head-to-head comparison of the two de-
ployed systems would be impossible as one cannot con-
trol key parameters of the systems such as the number of
active peers, the content and the query workload.

We employed a combination of passive and active
techniques to carry out our measurement study. For
Gnutella, we modified Mutella-0.4.3 [22], an open-
source Gnutella client. Mutella is a command-based
client, which conforms to Gnutella specifications V0.4
and V0.6. Our measurements of Overnet are based on
a modified MLDonkey [21] client, an open-source P2P
client written in Objective Caml, that supports multi-
ple P2P systems including Overnet. Modifications to
both clients included extra code for parameter adjust-
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Figure 2: Peers’ session length in Gnutella.

ment, probing and accounting, among others. None of
these modifications affected the outcome of the collected
metrics.

Our modified Gnutella and Overnet clients, each per-
forming a similar batch of experiments, were instanti-
ated at four different locations > around the world and
run concurrently to identify potential geographical bi-
ases and factor out time-of-day effects from our measure-
ments. All experiments were conducted from April 1st to
the 30th, 2005. For brevity, unless otherwise stated, the
data presented in the following sections as well as the as-
sociated discussions are based on clients placed behind
a DSL connection in Evanston, Illinois. Measurements
and analysis from the remaining three sites yield similar
results and will be briefly discussed in Section 7.

4 Churn and Control Traffic Overhead

The transiency of peer populations (churn), and its im-
plications on P2P systems have recently attracted the at-
tention of the research community. A good indication of
churn is a peer’s session length — the time between when
the peer joins a network until it subsequently leaves.
Note that a single peer could have multiple sessions dur-
ing its lifetime by repeatedly joining and leaving the net-
work. We performed measurements of session length for
peers in both the Gnutella and Overnet networks, and
studied the level of churn of these two systems.

In the context of file-sharing P2P systems, the level of
replication, the effectiveness of caches, and the spread
and satisfaction rate of queries will all be affected by
how dynamic the peers’ population is [1, 3, 6, 15, 27].
For P2P networks in general, control traffic overhead
is also a function of the level of churn. Control traffic
refers to protocol-specific messages sent between peers
for overlay maintenance, including peers joining/leaving
the overlay, updating routing tables or neighbor sets, and
so on. It does not include any user-generated traffic such
as query request and replies. In this section, we study
the control traffic overhead for both networks and dis-
cuss our findings.

4.1 Level of Churn

We performed session-length measurements of Gnutella
by modifying the Mutella client [22]. We first collected a



large number of (1P, port) tuples for Gnutella peers by ex-
amining ping/pong messages that our Mutella client re-
ceived. From the set of all the (IP, port) tuples, we probe
a randomly selected subset to collect data representative
of peers’ session-length distribution for the Gnutella net-
work. While performing the measurement, our client pe-
riodically (every 20 minutes) tries to initiate a Gnutella-
specific connection handshake with each peer in the list.
The receiving peer at the probed IP and port, if active, ei-
ther accepts or refuses the connection request (indicating
its “BUSY” status). Our session length measurement for
Gnutella lasted for 7 days, and captured approximately
600,000 individual peer sessions.

Session-length probing for Overnet was conducted us-
ing our modified Overnet (MLDonkey) client [21]. Each
peer in Overnet is assigned a unique 128-bit hash ID that
remains invariant across sessions. To search for a par-
ticular user by hash ID, Overnet provides the Overnet-
Search message type. Peers connect using a Overnet-
Connect message; when a peer receives an OverentCon-
nect message, it responds with an OvernetConnectReply,
which contains 20 other peers’ IDs known by the reply-
ing peer. To begin the session-length measurement, we
collected the hash IDs of 40,000 Overnet peers by send-
ing OvernetConnect messages and examining IDs con-
tained in the corresponding reply messages. We then pe-
riodically probed these peers to determine whether they
were still online. Since it is possible for a peer to use
different (IP, port) pairs for different sessions, we rely on
OvernetSearch messages to iteratively search for and de-
tect peers that start new sessions using different (1P, port)
tuples. As in the case of Gnutella, the session length
measurement for Overnet also lasted 7 days. During this
time we continuously probed 40,000 distinct peers and
measured over 200,000 individual sessions.

Figures 2 and 3 give the Complementary Cumula-
tive Distribution Function (CCDF) of peers’ session
lengths for Gnutella and Overnet, respectively. Fig-
ure 2 shows that peers in the Gnutella network show a
medium degree of churn: 50% of all peers have a ses-
sion length smaller than 4,300 seconds, and 80% have
session lengths smaller than 13,400 seconds (< 4 hours).
Only 2.5% of the session lengths are longer than one day.
The median session length of an Overnet peer (Fig. 3) is
around 8,100 seconds, 80% of the peers have sessions
that last less than 29,700 seconds, and 2.7% of all ses-
sion lengths last more than a day. Overall, the Overnet
network has a measurably lower, but still similar, level
of churn when compared to the Gnutella network. In the
next section, we analyze the impact of these levels of
churn on control traffic overhead for each of these sys-
tems.
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Figure 3: Peers’ session length in Overnet.
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Figure 4: Bandwidth consumption of control messages
for the Gnutella client.

4.2 Control Traffic Overhead

In this section, we present and discuss a three-day mea-
surement of the control traffic for Gnutella and Overnet.
To better illustrate changes on bandwidth demands at
finer time resolution, each figure in this section shows
a representative measurement window of 10,000 sec-
onds taken from a client behind a DSL connection in
Evanston, Illinois. Each data point corresponds to the av-
erage bandwidth demands for every 100 seconds. Data
on bandwidth demand for other measurement periods
and measurement sites produced similar results.

The measurement of the Gnutella network was done
for Gnutella V0.6 using our modified client, which can
act either as a leaf peer or as an ultrapeer. The modified
client records all control-related messages that it gener-
ates in addition to those messages originating from other
peers and routed through it. The majority of control-
related messages in Gnutella are pings and pongs, along
with small percentages of other types of control mes-
sages such as those used to repair routing tables. We
opted for Gnutella V0.6 as this is the most common ver-
sion in the Gnutella network.

Gnutella uses ultrapeers to exploit peers’ heterogene-
ity in attributes such as bandwidth capacity and CPU
speed, thereby making the system more scalable and effi-
cient. Ultrapeers typically connect to a larger number of
neighbors than do leaf peers and they are assigned more
responsibility for responding to other peers’ messages,



Control Message Overhead for a Representative Overnet Client
T T T T

N
o
=}

i

©

=}
T

-
)
=)

-

N

[}
T

-

N}

=]
T

Bandwidth (Bytes/Second)
B (2] © S
& & 8 8

IN)
=]
T

0 . . . .
0 2000 4000 6000 8000 10000

Time (Seconds)

Figure 5: Bandwidth consumption of control messages
for the Overnet client.

thus consuming several times more bandwidth for con-
trol messages than leaf peers. Figure 4 illustrates this
for a leaf peer connected to no more than 4 ultrapeers,
and an ultrapeer connected to a maximum of 5 ultra-
peer neighbors and 8 leafpeer children. As would be ex-
pected, while a leaf peer typically only consumes around
200 Bytes/second for control messages, an ultrapeer nor-
mally needs to contribute 5 to 6 times more bandwidth
for control traffic (between 800 and 1,400 Bytes/second).
Despite this high relative difference between peer types,
the bandwidth consumption for an ultrapeer is still rea-
sonably low and never exceeds 2,000 Bytes/second in our
measurement.

Overall, a Gnutella peer does not consume a large
amount of bandwidth for control-related messages, as
it would be expected given the loose organization of
its overlay infrastructure. Peers joining and leaving the
Gnutella network have little impact on other peers or on
the placement of shared data objects, and thus do not re-
sult in significant control traffic.

Figure 5 shows the control traffic overhead for our
modified Overnet client. Contrary to common belief,
we found that Overnet clients consume surprisingly little
bandwidth: only around 100 to 180 Bytes/second. The
control message overhead for a peer is determined by a
number of factors, such as the peer’s number of neigh-
bors, the peer’s (and its neighbors’) probing intervals, the
size of the control message, etc. It is thus difficult to di-
rectly compare control overhead across different proto-
cols. Nevertheless, the reader should consider that while
the measured Gnutella client has a significantly shorter
probing interval (10 seconds), it also limits the number
of neighbors to 13 (in the ultrapeer case). The Overnet
client, on the other hand, often has over 300 neighbor
peers in its buckets, which are probed at 1,800-sec inter-
vals.

Although a structured (DHT-based) system has strict
rules for neighbor selection and routing table mainte-

nance, these invariants can be maintained in a variety of
ways, resulting in quite different levels of control mes-
sage overhead for different DHT-based systems. Recall
that an Overnet peer p only needs to maintain certain
numbers of buckets to peer with others and perform rout-
ing. Any peer whose hash ID shares the first bit with that
of peer p can be in the bucket By of p. Moreover, an
Overnet peer never immediately repairs bucket entries
corresponding to peers that have left the system. In-
stead, it fills the missing entries either by periodically
asking some of its active neighbors for fresh peers to
fill the entries or by performing lazy updates when the
peer receives control- or query-related messages for a
peer whose key matches an empty bucket entry. Inter-
estingly, this flexibility built into the Overnet’s bucket
entry system shares much in common with the routing
table entry flexibility in Pastry [5], while the periodical,
lazy bucket entry repair is quite similar to the periodi-
cal, passive routing table (or leaf set) maintenance and
repair mechanism that MSPastry [4] and Bamboo [27]
employ. Their simulation results and our measurement
data on the large, operational Overnet demonstrate the
low control message overhead for a DHT-based system
with these two properties.

5 Query Performance

Querying is a key component of any P2P file-sharing net-
work, and the effectiveness and the scalability of queries
largely determine the user’s experience. Queries can be
broadly divided into two categories: keyword searching
and exact-match queries. Keyword searching is an at-
tempt to find one or more objects containing a specific
keyword, while an exact-match query aims at specific
objects. Exact-match queries can be further classified
as searches for popular (and thus highly replicated) ob-
jects and for rare objects (or needles) which appear on
very few peers. In this section, we evaluate query perfor-
mance for all three cases in both networks.

Query performance is evaluated in terms of the fol-
lowing three metrics: Query Success Rate, the ratio of
successful queries to all queries, Query Resolution Time,
the time between query submission and the arrival of the
first query reply, and Z Query Satisfaction Time [35], the
time it takes for a query to get back at least Z query hits.
The last metric is mainly used for keyword search, since
it is desirable for such a search to return multiple objects
with the requested keyword.

5.1 Keyword Searching

In a P2P file-sharing network, a user often wants to per-
form a broad search for one or more keywords (such as
Piazzolla, Adios Nonino or US Open) to get a list of pos-
sible interesting objects before deciding what to down-
load. Intuitively, unstructured P2P systems appear to be



2
w

Fraction of Keywords

. \ . .
2000 4000 8000 8000 10000
Z Query Satisfaction Time {(Seconds)

Figure 6: Keyword search in Gnutella.

better suited for keyword searching than do structured
ones. For example, a simple implementation of keyword
searching uses flooding to propagate the query, and re-
quires that each peer check its local file index for possi-
ble matches and reply to the request originator if a match
is found. Structured systems, on the other hand, usually
have single one-to-one mapping between each individual
object and one particular peer that is based on the close-
ness of the object and the peer hash.

To evaluate the efficiency of each system in support-
ing keyword searching, we performed experiments using
our modified peer clients. For each system, our client se-
quentially issued queries for 10,000 different keywords.
For each search we record the time we start the search
and the time when a query hit matching the keyword is
received. Since a keyword search can often return multi-
ple query hits indicating different objects containing that
keyword, we record all hits for that keyword.

Note that the keywords used were the 10,000 most
popular keywords extracted from the query strings routed
through our Gnutella client. Thus, our measurement
methodology may give some performance advantages
to Gnutella, since it is possible that some keywords
searched by Gnutella clients never appear in the Over-
net system.

Figure 6 shows the CDF of Z query satisfaction time
of searches for the 10,000 keywords in Gnutella. Each
curve depicts a CDF of query satisfaction times for a par-
ticular query satisfaction level (7). As can be seen, 50%
of all keyword searches can be resolved in 100 seconds
when Z = 1, but it takes over 400 seconds for the same
percentage of searches to be satisfactory when Z = 10.

Although an unstructured system can easily support
keyword searches, it may not be able to do this in the
most efficient manner. Recall that for flooding to be scal-
able, a TTL value must limit the scope of a search. While
this may not cause any problems for popular keywords,
for less popular ones a single controlled flooding may not
be able to find enough peers that collectively contain Z
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Figure 7: Keyword search in Overnet.

different matching objects.

Figure 7 gives the CDF of Z query satisfaction time
for keyword searches in Overnet. Surprisingly, the DHT-
based Overnet does an excellent job: 50% of all searches
can be resolved in 2.5 seconds with at least a single query
hit. Even when Z = 20, half of all queries can be satis-
fied in around 7 seconds.

A careful inspection of the MLDonkey source code
and relevant documentation [20, 11] revealed the reason
behind these results. To publish keywords for a shared
object in Overnet, a client first parses the object name
into a series of keyword strings. For each keyword string,
the client sends the object’s metadata block (containing
the object’s name, file type and size, MD4 hash of the
content, etc) to a certain number of peers with hash IDs
close to the keyword’s MD4 hash. Note that this tech-
nique does not require a “perfect” match between the
keyword hash and the peer ID. In Section 6, we will show
that this type of inexact match is important for load bal-
ancing and search efficiency in Overnet.

When a user performs a search for one of the key-
words, the query will be directed to peers whose hash
IDs are close enough to it. As a result of the keyword
publishing process just described, these peers are very
likely to store metadata blocks for objects that match the
keyword. For a search that contains multiple keywords
the peer can simply filter the results based on the addi-
tional keywords. Upon receiving the query, a peer with
matching keywords returns a query hit to the initiator and
also sends the metadata for the objects matching the key-
word(s).

5.2 Exact-match Queries

The performance of exact-match queries is another im-
portant factor in determining the user experience. With
the results from a keyword search, a user typically
chooses one or more specific objects to download; at this
point, exact-match queries are performed to locate and
download these objects.
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Figure 8: Finding “needles” in Overnet.

Previous work has shown that the object download
process often takes from several hours to days or even
weeks to complete [29, 9]. During this period, some
peers providing a specific shared object may be too busy
to handle clients” download requests, or may become dis-
connected after some time. To improve download times
in this environment, most recent P2P systems support
parallel downloading, where a downloading peer can
fetch multiple, different pieces of the same object from
various peers. Thus, the ability of a peer to continuously
search and find alternative sources for a particular object
is extremely important for fast and reliable downloads.

5.2.1 Finding Rare Objects — “Needles”

‘We now look at the performance of Overnet and Gnutella
when searching for rare objects. We do this using
a worst-case approach, evaluating system performance
when each object being searched for has exactly one
replica in the entire system.

For each experiment, we ran our modified Gnutella or
Overnet clients at the four different measurement loca-
tions (Section 3). We alternatively name the four clients
A, B, C and D. Peer A shares 1,000 different, randomly
generated binary files, each of which has a 50-byte long,
random string-based file name; these files are stored only
on peer A. Peers B, C and D each issue queries searching
for these 1,000 objects. Upon receiving a query hit from
peer A, we mark the search as successful and record the
time it took to resolve the query. Overall, we are inter-
ested in not only the success rate of such queries, but also
the resolution speed of successful queries. The process is
repeated 10 times before choosing a new node A for the
next “round”. In total we ran four rounds of experiments
in both Gnutella and Overnet.

Figure 8 shows the query performance for finding
“needles” in Overnet. Clearly, our Overnet client does
an impressive job at finding “needles” — over half of the
needles can be found in 20 seconds, while 80% of them
can be located within 65 seconds.

GDF of Query Resolution Time for Finding Popular Objects in Gnutella and Overnet
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Figure 9: CDF of query resolution time for 20,000 dis-
tinct objects from a Gnutella and a Overnet client (x-axis
is in log-scale).

Peers whose hash IDs are the closest to that of a shared
object will be responsible for storing the object pointer
(i.e. the location of the peer sharing the object). Exact-
match queries in Overnet first perform the node lookup
procedure (Section 2) using the object hash key as the
target, then obtain object pointers from these peers to fin-
ish the query. Due to the DHT structure, this procedure
can be efficiently finished in O(log(n)) steps. One minor
difference with other DHT-based systems is that pointers
for a specific object not only exist at the peers whose IDs
are the closest, but also at peers whose IDs are “close
enough” to the object hash. As with the case of keyword
publishing and searching (Subsection 5.1), this results in
a faster search as well as better load balancing.

The performance for finding ‘“needles” from our
Gnutella client is significantly worse than expected: an
average success rate of about 1.5% across all four rounds
of the experiments. Recall that each search in Gnutella
is a “controlled” flooding process; thus, it is possible
for such a query never to reach peer A, host to the sole
replica of the searched object. The lack of mapping be-
tween objects and their locations in unstructured systems
makes the task of finding needles particularly difficult,
even when using flooding as the query mechanism.

5.2.2 Finding Popular Objects

To study the performance of exact-match queries for
popular objects, we examined query hit messages from
one of our Gnutella clients and extracted 20,000 distinct
shared objects. We then performed queries for all these
objects on both the Gnutella and Overnet networks us-
ing our modified clients and measured their query per-
formance.

Figure 9 shows the CDF of the query satisfaction time
for finding these objects in both systems. We use a log
scale for the x axis to accommodate the wide time scale
over which queries are resolved. Note that each curve
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Figure 10: Query-related message overhead for a

Gnutella client.

in the figure is normalized by the number of successful
queries; failed queries are not considered. Both systems
can usually return results for such queries very quickly:
50% of all successful queries are finished within 47 sec-
onds in Gnutella and in less than 17 seconds in Over-
net. This is not surprising since Gnutella quickly floods
a large number of peers within a few hops, while Overnet
takes advantage of its O(log(n)) search mechanism for
each object. A particularly interesting difference, how-
ever, is the query success rate in each system — while the
Overnet client successfully resolves 97.4% of all these
queries, the Gnutella client only yields a success ratio of
53.2%, where most failed searches were for objects that
are relatively less popular.

6 Query-related Traffic Load

Query-related traffic includes query messages and query
replies and can be generated either by the peer itself due
to its own queries, or by some other peers for which
the peer needs to forward, route, or answer query-related
messages. Thus, the query traffic load serves as a good
indication of query efficiency and system scalability.

Note that the numbers we present here include only the
query or query-reply messages our client received or sent
on behalf of other peers. In other words, our Gnutella
or Overnet client did not issue any queries during the
measurement, which removes the potential bias intro-
duced by our own queries. We performed this measure-
ment for both Gnutella and Overnet at all our four mea-
surement sites, with each measurement lasting for about
three days. Each figure presented below shows only a
representative measurement window of 10,000 seconds
taken from our measurement client behind a DSL line in
Evanston, Illinois. Each data point corresponds to the
average bandwidth for every 100 seconds. Bandwidth
data from other measurement periods and other sites are
similar.

Figure 10 gives the bandwidth consumption of query-
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Figure 11: Query-related message overhead for a Over-
net client.

related traffic for the Gnutella client. Note that we only
give numbers for the case of ultrapeer, since leaf peers in
Gnutella do not receive or relay any query messages on
behalf of other peers. Similar to Figure 4, our Gnutella
peer has up to 5 ultrapeer neighbors and 8 leaf-peer chil-
dren. As the figure shows, our client typically consumes
5 to 10 KBytes/second for sending query and query-hit
messages, and 2 to 6 KBytes/second for receiving such
messages. Clearly, even under the default settings of
our Gnutella implementation (Mutella) of an ultrapeer,
query-related traffic could overwhelm a dial-up a mo-
dem user and can only be safely handled by broadband
peers. This result is not surprising given the flooding
query mechanism at the ultrapeer layer of the network.
Overall, Gnutella does a reasonable, but not excellent job
for query efficiency and query traffic load. We will see
later in Section 8 that the introduction of ultrapeers in un-
structured systems greatly improved query success rate
and system scalability compared with the purely flat, old
Gnutella V0.4, making the inherently unscalable flood-
ing query mechanism acceptable in practice.

Upon receiving a query message in Overnet, a peer
will select, from its own buckets, peers whose hash IDs
are among the closest to the target keyword or file hash
of the search, and send these peers’ identities back to the
query initiator. Additional query messages could then
be sent to those peers during the next iteration of the
search until the query is resolved. Figure 11 gives the
bandwidth consumption of our Overnet client for send-
ing and receiving all these types of query-related mes-
sages. Queries here incur much less overhead than in
the case of Gnutella: our Overnet client only consumes
around 200 Bytes/second for incoming query messages,
and 700 to 900 Bytes/second for sending out replies.
Queries in Overnet only involve up to O(log(n)) itera-
tive steps, with the number of messages involved in each
step being at a constant level and never growing expo-
nentially as in the case of flooding. As a result, our Over-



net client only needs about one tenth the bandwidth of
our Gnutella ultrapeer for handling query-related mes-
sages.

Both the Gnutella and Overnet clients consume more
outgoing bandwidth than incoming bandwidth for query
traffic. Recall that our measurements here are passive.
Both our Gnutella ultrapeer in Figure 10 and the Overnet
peer in Figure 11 do not initiate any queries. On the other
hand, they need to respond to other peers’ query mes-
sages with replies. Since query reply messages in both
systems are typically larger than query messages, more
bandwidth thus needs to be consumed for the outbound
traffic in our passive measurement.

6.1 Load Balancing

The query load measurement results presented so far
are representative of peers with typical configurations in
Gnutella and Overnet. Load balancing is critical to sys-
tem scalability.

Due to the flooding approach to queries, the main con-
tributor of query load for a Gnutella peer is the large
number of queries and replies that this peer has to for-
ward. A peer’s query load thus largely depends on its
number of neighbors. To verify this, we conducted a
measurement on our ultrapeer client, where we initially
limit the number of its neighbors to 5, then gradually
increase the number of neighbors to 100. We record
the average query message bandwidth consumption with
different number of neighbors. As expected, the query
load of the client grows roughly linearly with increas-
ing number of neighbors. In fact, when the number
of neighbors exceeds 50, the outgoing bandwidth con-
sumption alone at our ultrapeer consistently rises above
50 KBytes/second, a volume that cannot be handled by
common DSL connections. Therefore, query load at dif-
ferent Gnutella peers can be highly skewed and greatly
affected by their outdegrees. Still, a peer can easily ad-
just its query load by changing its number of neighbors.

Previous research reveals that object popularity in P2P
systems is highly skewed, and can be well modeled as
a Zipf distribution [32]. Thus, for Overnet peers, the
main concern about load balancing is that some peers
may have IDs that are very close to those of some highly
popular keywords, making them potential hot spots of
large number of keyword searches. To study this, we
change our Overnet client’s hash key to be the same as
different keywords with different popularities, so that it
would be responsible for storing pointers of objects con-
taining these keywords. Due to the diversity of the hash
keys for different keywords, we only change the peer’s
hash key to that of one popular keyword at a time, and
test how the query load changes. Overall, we modified
our Overnet client to change its own hash ID every 2
hours to be the same as a particular keyword, and mea-
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Figure 12: CDF of query-related traffic load when
the Overnet client is responsible for different keyword
groups with different popularities.

sured its query load during that period. We tested 200
different keywords in four groups, each group contain-
ing 50 keywords with similar popularity and different
groups representing different popularities. All 50 key-
words in Group A belong to the top 1% most popular
keywords, while those in Groups B, C, and D belong to
the top 5%, 20% and 50% most popular keywords, re-
spectively. These 200 keywords are a small subset of the
10,000 keywords used in Subsection 5.1, and the key-
word populartity is based on the local observation of our
Gnutella client by examining all query strings that come
through.

Figure 12 gives the CDF of query traffic bandwidth
consumption for our Overnet client. Each curve corre-
sponds to the CDF of average bandwidth consumption
during which our Overnet client has been sequentially
assigned the same hash ID as each of the 50 keywords
in a particular popularity group. Surprisingly, we did not
observe any significant query traffic load for any of these
data points: the load for Group A (the top 1% most pop-
ular) is generally only 50% higher than that of Group
D (50% most popular, or equivalently, median popular-
ity) under different percentages. On the other hand, the
highly skewed keyword popularity distribution indicates
that the most popular keywords should get at least one
order of magnitude more queries than keywords with me-
dian popularity.

One possible explanation of the aforementioned dis-
parity between query load and keyword popularity is that
Overnet does a good job at distributing query load for a
popular keyword among multiple peers whose hash ID is
close enough to the hash of the keyword. As briefly men-
tioned in subsection 5.1, Overnet is not restricted to put
file pointers containing a given keyword precisely at the
peer whose hash ID is the closest to the keyword’s hash.
Instead, these pointers can be replicated and distributed
among multiple peers whose hash keys are close enough
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Figure 13: CDF of common prefix lengths between hash
keys of responding peers with keyword hashes.

to that of the keyword.

To validate this, we conducted another experiment
where we issue searches for keywords in each of the four
popularity groups. To each peer that answers a particu-
lar keyword search with object pointers, we issue another
message to retrieve its hash ID and compare it with the
keyword hash to get their common prefix. The longer the
common prefix, the closer the two hash keys are.

Figure 13 shows the CDF of the common prefix
length between IDs of peers that answered our keyword
queries with those of the keywords. Different curves
correspond to keyword searches in different popularity
groups. Clearly, peers that answer more popular queries
tend to share shorter prefixes with the keyword hashes.
For example, for keywords in the top-50% popularity
range, the common prefix lengths between a keyword
and a responding peer is typically between 13 to 15 bits,
but often drops to around 10 to 11 bits for the top 1%
most popular keywords. This indicates that object point-
ers for the top 1% most popular keywords are replicated
and distributed on about 8 to 16 times more peers than
are those of the top 50% most popular keywords. Thus,
query load for popular keywords is widely distributed
across a larger number of peers in Overnet, effectively
achieving load balancing as illustrated in Figure 12.

7 The Impact of Geographical Placement
of Peers

Most measurement and discussions presented so far were
illustrated using data from our North America measure-
ment site in Evanston, Illinois. To validate that the ob-
served trends and corresponding conclusions are general
and do not depend on the particular geographical loca-
tions of the measured peers, we repeated our study in all
four sites previously mentioned.

For example, Figure 14 depicts the Z query satisfac-
tion time of keyword searches using the four measure-
ment sites in three different continents for both Over-

Fraction of Keywords ~ 0.50 0.80 0.90 0.95

Gnutella—U.S. 402.63 2462.57 4511.07 5820.36
Gnutella- Switzerland  421.83 2527.22 4301.53 5574.51
Gnutella— France 430.79 2729.32 4599.89 6220.87
Gnutella— China 483.18 2946.60 4741.86 6184.62

Overnet —U.S. 7.03 2716 5497 97.49
Overnet — Switzerland ~ 6.38 23.60 49.12 82.21
Overnet - France 6.65 2685 5114 100.47
Overnet - China 7.54 28.19 5818 109.82

Figure 14: Keyword search performance of four clients
across different continents for both the Gnutella and
Overnet networks. Numbers shown in the table are Z
query satisfaction times (in seconds) for different frac-
tions of keywords with Z = 20.

net and Gnutella. As the figure shows, at the US mea-
surement site searches for 80% of all keywords can be
satisfied in 2,462 and 27.16 seconds, respectively, for
Gnutella and Overnet. At the Switzerland site, these two
results only change slightly to 2,527 seconds for Gnutella
and 23.60 seconds for Overnet. It is clear from the ta-
ble that search performance across different sites shows
only minor difference for either system across the differ-
ent sites.

In general, all measured data show similarly high de-
grees of consistency across the different sites. With the
same network and same client configurations, for in-
stance, the average control traffic across different mea-
surement sites for both Overnet and Gnutella always re-
mains well below 10%, while the degree of churn of
other peers in either Gnutella or Overnet systems as ob-
served by our clients is virtually the same, regardless of
the client location.

8 Simulation Study

Having presented measurement data and their analysis
for both Gnutella and Overnet, we now use trace-driven
simulation of both systems to help further validate and
consolidate our findings. Simulations also enable us to
obtain aggregated performance numbers of the whole
system besides those from individual peers.

Due to space constraints, we only present a small sub-
set of our simulation results. For Gnutella, we explore its
message overhead with respect to flooding queries. We
also examine the advantage of ultrapeers in terms of sys-
tem scalability and efficiency. For Overnet, we focus on
the lower-than-expected control message overhead and
its potential impact on query performance, as well as how
effective search and load balancing is attained in Over-
net.

All simulations were driven by our collected traces
in each system as described in Subsection 4.1. Joins
and leaves of peers strictly follow individual sessions
captured in the traces. The number of online peers at
any time during a simulation ranges between 12,000 and
16,000 for both the Gnutella and Overnet network. Each
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Figure 15: CDF of message overhead for Gnutella V0.4
peers and V0.6 ultrapeers.

simulation runs for one week of simulated time, during
which we capture and log various performance numbers
including control message overhead, query performance,
load balancing condition, etc.

8.1 Gnutella

Our event-based Gnutella simulator was written in 5,000
lines of C++ code. The simulator follows the Gnutella
specification, and supports all membership management
functionalities as well as query related tasks. We run
simulations for both Gnutella V0.4 and V0.6. Each
active peer issues a query every 100 seconds on aver-
age. Since our network is much smaller than the whole
Gnutella network, a smaller value of TTL, 5, is used for
flooding. For Gnutella V0.4, each peer is connected with
3 to 10 other peers and has an average outdegree of 5.
For Gnutella V0.6, each ultrapeer is connected with 4
leafpeers and 5 other ultrapeers on average.

Figure 15 show the CDF of control message and query
message overhead for Gnutella peers in our simulation.
Results for both normal peers in Gnutella V0.4 and ul-
trapeers in Gnutella V0.6 are included. Note that for
Gnutella V0.6 we only show numbers for ultrapeers since
they dominate the message overhead of leafpeers. As
can be seen in the figure, control message overhead for
Gnutella is usually very low. Under our simulation set-
tings, it is usually around 1 message/second for both nor-
mal V0.4 peers and V0.6 ultrapeers. On the other hand,
the flooding query mechanism in Gnutella, although be-
ing controlled by the TTL value, results in much higher
bandwidth consumption. Normal V0.4 peers typically
need to support 5 to 60 messages per second while an
ultrapeer could experience 30 to 300 query messages per
second. This is not surprising since for Gnutella V0.6,
flooding is only restricted to the ultrapeer layer which
has a much smaller number of peers than the total pop-
ulation. Thus a flooding query has much higher chance
of imposing load on ultrapeers than of reaching normal

CDF of Query Satisfaction Rate in the Simulated Gnutella Network (Z=10)
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Figure 16: CDF of query success rates for Gnutella V0.4
and V0.6.

peers in V0.4. On the other hand, leaf peers in V0.6 have
no query-related responsibility. As a result, the aggre-
gated query loads of all peers for V0.4 and V0.6 stay
about the same. Clearly, Gnutella V0.6 takes full advan-
tage of peers’ heterogeneity by placing peers with lower
bandwidth capacity as leaves.

Another potential benefit of ultrapeers in V0.6 is im-
proved query performance. As already mentioned, flood-
ing in V0.6 is only performed at the ultrapeer layer,
which consists of a small fraction of all peers in the sys-
tem. With similar TTL settings, a query message in V0.6
reaches a much larger fraction of all peers in the net-
work when one considers that each ultrapeer indexes all
its leaf peers’ shared objects. As a result, query perfor-
mance in V0.6 is much better than in V0.4. Figure 16
shows the CDFs of keyword query satisfaction rate for
both Gnutella V0.4 and V0.6, with the same TTL setting
of 5. Here we set the value of Z to be 10. We sample
query satisfaction rates of all queries in the network ev-
ery 100 seconds to obtain the CDF curve. Gnutella V0.6
shows a clear advantage, yielding 30-50% higher query
satisfaction rates for the same fraction of satisfaction rate
measures.

The introduction of ultrapeers not only improves the
usability of the system for lower-bandwidth capacity
users but also boosts query performance. Nevertheless,
the scalability problem of flooding queries in Gnutella
V0.4 persists in V0.6.

8.2 Overnet

Our Overnet simulator was written in 3,000 lines of C++
code and supports all membership management, routing,
as well as query functionalities of Overnet. We use a 64-
bit key space for all hash keys. Each peer maintains a
set of buckets storing its neighbor peers, each bucket B;
stores up to 5 neighbors whose hashes share a common
prefix length of ¢ with the ID of the host peer. Each peer
sends out a query every 100 seconds.



Pinging Interval 200S 400 S 800S 1600S | 3200S

Control Message Overhead 0.5351 0.2669 | 0.1319 | 0.0657 | 0.0328
Valid Bucket Entry Percentage ~ 0.9808 0.8936 | 0.5679 | 0.4892 | 0.3986
Average Query Iterations 2.8826 3.0227 | 34725 | 3.6021 | 3.7248
Query Success Rate 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000

Figure 17: Control Message Overhead and Query Per-
formance for Different Probing Intervals.

To update and populate bucket entries, a peer period-
ically contacts its neighbor peers, i.e. peers in its buck-
ets, both indicating its own liveness and asking them for
identities of other peers. The control message for a peer
thus includes these probing messages as well as replies
from other peers. The control message overhead, the
freshness of bucket peers, and eventually, the efficiency
of searches, would all be affected by the frequency of this
probing.

Figure 17 illustrates this well. We vary the probing in-
terval from 200 to 3,200 seconds, doubling it at each step.
As expected, the average control message overhead of a
peer proportionally decreases as one increases the prob-
ing interval. As shown in the figure, the reduced control
overhead comes at the cost of worse bucket “freshness”
and slower query resolution, as indicated by the average
number of iterations a query takes. Nevertheless, even
when using a probing interval of 3,200 seconds and with
a bucket freshness of 0.4, we can still resolve queries
very efficiently within a few iterations. This degree of
robustness and efficiency can be largely attributed to the
construction of bucket peers. Each bucket contains mul-
tiple peer entries; even if some peer entries become stale,
we can still rely on the remaining fresh entries for the
search. Missing or stale peer entries can be easily re-
placed since prefix matching (Kademlia’s XOR metric)
provides enough flexibility for many peers to qualify for
a bucket entry. On the other hand, even when using a
short probing interval of 200 seconds, the overhead is
smaller than 0.5 control messages per second. Control
overhead clearly benefits from the bucket entry flexibil-
ity and the lazy or periodic repair of buckets in the face
of churn. In the following analysis, we employ a probing
interval of 800 seconds.

We also explore through simulation how effectively
one could balance the load imposed by popular keyword
searches. We compare two approaches to object pointer
placement, one naive where we simply put pointers to
objects on the peer that shares the longest prefix with the
keyword, i.e., the “root” peer, and another load-balance
conscious one. The load-balancing algorithm applies to
any peer x that stores object pointers containing a popu-
lar keyword K as follows:

1. Peer x periodically checks its query load for the
keyword K. Assume the common prefix length of
z and K is L bits.

” Performance of Query Load Adjustment for Highly Popular Keywords
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Figure 18: Query load adjustment for the most popular
keywords under different load threshold P.

2. If the load is smaller than certain threshold P, go
back to step 1. If the load exceeds the threshold,
find n other peers whose hashes shared a common
prefix of at least M bits with K. The initial value of
nissetto2,and M issetto L — 1.

3. Store (some) of the object pointers to these n peers.

4. Set M = M — 1, and n = n * 2, and start from step
1 again.

For each round of the load-balancing algorithm, we
distribute the keyword searching load to more peers by
reducing M, the length of the required common prefix
between the keyword K and the potential peers that share
the load, by 1. Each round thus increases the number of
peers that share the query load by a factor of 2, achiev-
ing fast and effective load balancing. Even for the most
popular keywords, the load balancing algorithm can be
finished within a few rounds.

Figure 18 illustrates the responsiveness of load balanc-
ing for keyword searches, where we show the average
query load for peers that store pointers for a keyword
with top 0.1% popularity. We begin by strictly limiting
the data pointers on the “root” peer for the keyword. Af-
ter 200 seconds (shown with a vertical line in the graph),
we start the load balancing algorithm by putting object
pointers on more qualified peers. The search loads of the
keyword under different thresholds P, as indicated by the
arrows, can all be reduced to below or around the desired
level within 100 seconds.

Load balancing for searches in Overnet is essentially
achieved by scattering query load across multiple peers.
The more popular a keyword, the more peers will be in-
volved in sharing the load. Figure 19 shows the CDF
of common prefix lengths for IDs of peers that answer a
keyword search, where each curve corresponds to a set
of keywords with certain level of popularity. The load
upperbound for keyword search is set to 4 messages per
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with different popularities.

second. As expected, the more popular a keyword, the
shorter the common prefix length: the common prefix
lengths corresponding to the top 0.1% popular keywords
are usually 5 to 7 bits shorter than those for the top 50%
popular keywords. In other words, we would be able
to get query answers from 32 to 128 times more peers
for the most popular keywords. Note that our simulation
results here are consistent with our measurement-based
findings shown in Figure 13.

Load balancing in an Overnet-like system also yields
two other desirable consequences. Since object pointers
are replicated across multiple peers, there is no need to
react to nodes’ joins and leaves. These pointers can be
lazily replicated to new-born peers to compensate for the
pointers lost because of dead peers. In addition, repli-
cated pointers at multiple peers help reduce the average
iteration steps that a peer has to take to resolve a query.
We have verified this through simulations, but omit our
results for brevity.

9 Related Work

The work by Castro et al. [5] compares both unstruc-
tured and structured overlay via trace-based simula-
tion, focused on leveraging structural constraints for
lower maintenance overhead, exploiting heterogeneity
to match different peer capacities and novel techniques
of performing floodings or random walks on structured
overlays for complex queries. Our study complements
their work with the characterization, through extensive
measurements, of two operational P2P systems, trying to
gain additional insights into the design and implementa-
tion of more scalable and efficient peer-to-peer systems.

A lot of measurement works has been done to im-
prove our understanding of different aspects of peer-to-
peer file-sharing networks. Saroiu et al. [30] were among
the first to perform a detailed measurement study of Nap-
ster and Gnutella file-sharing systems using crawlers and
probers. In their later works, Gummadi et al. [9] per-

formed a larger-scale P2P workload study for Kazaa at
the border routers of the University of Washington, with
the main focus on the object content retrieval aspect of
the system. Sen et al. [31] also performed aggregated
P2P traffic measurement by analyzing flow-level infor-
mation collected at multiple border routers across a large
ISP network, and revealed highly skewed traffic distri-
bution across the network at three different aggregation
levels and high dynamics of the three measured P2P sys-
tems. Bhagwan et al. [2] present an earlier study of
Overnet as they question the usefulness of session times
in understanding the availability of objects in a P2P file
sharing network. Our study focuses on the measurement-
based characterization of two unstructured and structured
P2P networks in terms of resilience to churn, control traf-
fic overhead, query performance and scalability. To the
best of our knowledge, this is the first study discussing
the advantages/disadvantages of each approach based on
actual measurement of operational systems.

The more strict routing table and rules in struc-
tured P2P systems (i.e., DHTs) compared with unstruc-
tured ones motivate the common concern on the po-
tentially large control message overhead and degraded
routing performance of structured systems under churn.
Bamboo [27] addresses this issue by relying on static
resilience to failures, accurate failure detection and
congestion-aware recovery mechanisms. Li et al. [16]
present a performance versus cost framework (PVC) for
evaluating different DHT algorithms in the face of churn.
Some other works handling churn include [17, 19]. Our
measurement study shows that Overnet does a very good
job at handling the level of churn faced by a file-sharing
network, yielding low control message overhead and
good query performance. It is also interesting to note that
Overnet (or Kademlia) already incorporates some im-
portant design lessons from previous works on resilient
DHTs, including the use of periodic instead of proactive
routing structure repair [27], parallel lookups [16], and
flexible neighbor selection [5].

Given their key role in the functionality of this class
of systems, queries have been actively studied for both
the unstructured and structure approaches. A number
of proposals have been made to enhance the scalability
of queries in Gnutella-like systems. Lv et al. [18] pro-
poses replacing flooding with random walks for queries
in such systems. Gia [6] further adopts the idea of topol-
ogy adaptation, capacity-aware flow control, and biased
random walks to both improve query performance and
scalability. Our previous work [3, 24] presents addi-
tional measurements of Gnutella’s peer session lengths
and suggests organizational protocols and query-related
strategies that take advantage of their distribution to in-
crease system scalability and boost query performance.
The reported measurement of Gnutella shows that flood-



ing does indeed result in high overhead, especially for
high degree ultrapeers. Applying ideas such as those pro-
posed in [6] and [24] could help improve system scala-
bility.

Some recent work has focused on keyword searches
in structured systems [26, 10, 34]. Most of the pro-
posed solutions include the hashing of a keyword to a
peer with the closest hash, and the storing of pointers
to all objects containing the keyword at this peer. Per-
haps one of the biggest concerns with this approach is
the load on the peer that stores the pointers, especially if
this peer is responsible for very popular keywords. Over-
net uses a similar idea to support keyword search, ex-
cept that instead of mapping a keyword to one particular
peer, it replicates object pointers around a collection of
peers whose hash IDs are close enough to that of the key-
word. As we have shown in Section 6, this implicit load-
balancing mechanism turns out to be very effective in
distributing the load of popular keyword searches across
multiple peers. As a result, keyword searches in Overnet
are lightweight, effective, and achieve a balanced load.

10 Conclusion

We presented a multiple-site, measurement-based study
of two operational and widely-deployed file-sharing sys-
tems. The two protocols were evaluated in terms of re-
silience, message overhead, and query performance. In
general, our findings show that the structured overlay
approach, as represented by Overnet, offers good scala-
bility and efficiency in supporting file sharing networks.
For example, while both Gnutella and Overnet show rela-
tively low control message overhead, Overnet’s overhead
is particularly low in part as a result of its flexible bucket
management policies. Also, both approaches seem to
support fast keyword searches with Overnet successfully
guaranteeing efficient, non-trivial keyword searching by
leveraging the underlying DHT infrastructure and its
O(log(n)) lookup mechanism. Finally, while Gnutella’s
ultrapeers can adjust their load by changing their outde-
gree, Overnet’s peers implicitly distribute and replicate
popular object pointers across multiple peers, achieving
excellent load balancing and faster query replies.

We trust that the measurement and characterization
presented in this paper will help the community to better
understand the advantages and disadvantages of each ap-
proach as well as provide useful insights into the general
design and implementation of new peer-to-peer systems.
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