Elders Know Best - Handling Churn in Less Structured P2P Systems

Yi Qiao and Fabian E. Bustamante
Department of Computer Science
Northwestern University, Evanston, IL 60201, USA
Email: {yqiao,fabianb}@cs.northwestern.edu

Abstract

We address the problem of highly transient pop-
ulations in unstructured and loosely-structured peer-
to-peer systems. We propose a number of illustra-
tive query-related strategies and organizational proto-
cols that, by taking into consideration the expected ses-
sion times of peers (their lifespans), yield systems with
performance characteristics more resilient to the natu-
ral instability of their environments. We first demon-
strate the benefits of lifespan-based organizational pro-
tocols in terms of end-application performance and in
the context of dynamic and heterogeneous Internet en-
vironments. We do this using a number of currently
adopted and proposed query-related strategies, includ-
ing methods for query distribution, caching and repli-
cation. We then show, through trace-driven simula-
tion and wide-area experimentation, the performance
advantages of lifespan-based, query-related strategies
when layered over currently employed and lifespan-
based organizational protocols. While merely illus-
trative, the evaluated strategies and protocols clearly
demonstrate the advantages of considering peers’ ses-
sion time in designing widely-deployed peer-to-peer sys-
tems.

1. Introduction

Due in part to the autonomous nature of peers, their
architectural mutual dependency, and their excessively
large populations, the transiency of peer populations
(a.k.a. churn) and its implications on P2P systems
have recently attracted the attention of the research
community [3, 19, 7, 27, 16]. Measurement studies of
deployed P2P systems have reported median session
times ! varying from one hour to one minute [29, 6, 27].
The implications of such a high degree of transiency on

IWhere a node’s session time is the time from the node’s
joining to its subsequent leaving from the system. We employ

the overall system’s performance would clearly depend
on the level of nodes’ investment in their neighboring
peers. At the very least, the amount of maintenance-
related messages processed by any node is proportional
to the degree of stability of the node’s neighboring set.
Further, in the context of data-sharing P2P systems,
the level of replication, the effectiveness of caches, and
the spread and satisfaction rate of queries will all be
affected by how dynamic the peers’ population is.

We address the problem of highly transient popu-
lations in unstructured and loosely-structured peer-to-
peer (P2P) systems (collectively, less structured P2P
systems). Through active probing of over half-a-million
peers in a widely-deployed P2P system, we determined
that the session time of peers can be well modeled by
a Pareto distribution. In our context, this means that
the expected remaining session time of a peer is di-
rectly proportional to the session’s current length, i.e.
the peer’s current age. This observation forms the ba-
sis for a set of new protocols for peer organization and
query-related strategies that, by taking into consider-
ation the expected session times of peers (their lifes-
pans), yield systems with performance characteristics
more resilient to the natural instability of their envi-
ronments.

We first demonstrate the benefits of considering
lifespan in organizational protocols - i.e. how peers
organize themselves in an overlay network - in terms of
end-application performance and in the context of dy-
namic and heterogeneous Internet environments. The
lifespan-based approach for organizational protocols
was first proposed in our position paper [6], where we
show its effectiveness in terms of increased system sta-
bility (e.g. an over 42% reduction on the ratio of con-
nection breakdowns and their associated costs) through
a simulation study.

lifespan and session time interchangeably. Another metric of
transiency sometimes used, lifetime, refers instead to the the
time between the node first entering the system and its final
departure from it [27].

In this paper we go beyond those preliminary results
to evaluate the advantages of the proposed approach
in terms of application performance in a dynamic In-
ternet testbed of ~150 world-wide distributed Planet-
Lab nodes [25]. We do this using a set of illustrative
organizational protocols combined with a number of
currently adopted and proposed query-related strate-
gies, including methods for query distribution, caching
and replication. Our results show that even simple
lifespan-based overlays can significantly boost query
performance (with improvements of at least 57% on
aggregated query hits and 50% reduction in query res-
olution time) and increase system scalability by achiev-
ing query performance comparable to those of currently
deployed protocols with only a third of their load.

We then go further by applying similar ideas to
query-related strategies. Through trace-driven simu-
lation and wide-area experimentation in PlanetLab we
demonstrate the performance advantages of lifespan-
based query-related strategies when layered over cur-
rently employed organizational protocols as well as
when used in combination with our proposed lifespan-
based organizational protocols. Our results show that
lifespan-based strategies can generate over 2-5r more
query hits than alternative strategies.

While merely illustrative, the evaluated protocols
and strategies clearly demonstrate the advantages of
considering peers’ session time in designing widely-
deployed peer-to-peer systems.

The rest of this paper is structured as follows: Sec-
tion 2 provides some background and reviews related
work. Section 3 presents results from our study on
peers’ lifespans and discusses lifespan-based organiza-
tional protocols and query-related strategies. Section 4
describes our evaluation methodology and presents re-
sults from both trace-based simulations and wide-area
experiments. We conclude in Section 5.

2. Background

A peer-to-peer system is structured based on its own
organizational protocol. In unstructured and loosely-
structured P2P systems 2, nodes join the network
by first contacting a set of peers already in the sys-
tem [14, 15]. Peers define the P2P network over-
lay through connections with other, randomly chosen,
peers. While organizational protocols for unstructured
systems, such as Gnutella v0.4 [9], consider all peers
as equals, protocols for loosely-structured systems,
such as Gnutella v0.6 and Kazaa [31, 14, 15], com-
monly define a two-level hierarchy distinguishing be-

2We use the classification proposed by Lv et al. [20]

tween common “leaf” peers and resource-richer super-
peers [31, 14, 15]. Hereafter we also refer to unstruc-
tured and loosely-structured organizational protocols
as Unstructured Decentralized Protocols (UDP) and
Hybrid Decentralized Protocols (HDP), respectively.

Connected peers interact with each other exchang-
ing various types of messages, most of which are broad-
casted or back-propagated. Broadcasted messages are
sent on to all other peers to which the sender has con-
nections. Back-propagated messages are forwarded on
a specific connection on the reverse of the path taken
by an associated message. In addition to queries and
replies, discussed in detail in the following subsection,
other types of messages include object transfer and
group membership messages such as ping, pong and
bye. Pings are used to discover hosts on the network.
Pings are answered with pong messages, containing in-
formation (such as contact information and resources
shared) about the responding peer and about some oth-
ers that peer knows about. Information on neighbor-
ing peers can be provided either by creating pongs on
their behalf or by forwarding them pings and back-
propagating their replies. Byes are optional messages
used to report the closing of connections.

2.1. Query, Caching and Replication

A key component of resource sharing P2P systems is
their search or query mechanism. In highly structured
(DHT-based) systems, the search for an object based
on its object identifier is a relatively easy task, thanks
to the strictly controlled placement of objects. In less
structured P2P systems, however, the location of an
object is independent of the system’s topology, leaving
peers with only “near blind” query strategies [10]. We
review some of them for less structured systems next,
including currently used and other proposed techniques
for query distribution, caching and replication.

The earliest and simplest query strategy is flooding,
where a query is propagated to all neighbors within
a certain radius. Addressing flooding’s inherent scala-
bility problems, Lv et al. [20] propose k-random-walks,
where a set of parallel query messages (walkers) are in-
dependently forwarded to randomly chosen neighbors
at each hop, significantly reducing the number of mes-
sages in the network. A number of improvements to the
basic strategy have been suggested. Adamic et al. [1]
propose using random walk in power-law topologies
with walks biased toward high-degree nodes. While
this can significantly improve query performance, it
could also result in overloaded nodes. Lv et al. [21] and
Chawathe et al. [7] suggest taking node capacity into
consideration through biased random walks, directed

toward high-capacity peers.

To further boost query performance, different strate-
gies for index caching have been proposed, including
Path Caching with eXpiration (PCX) and Neighbor
Caching with incremental Update (NCU). With PCX,
each node in the system maintains an index cache, with
each entry being a (key, value) pair [28]. The value in
the pair is normally a pointer to the node holding a
replica of the object associated with the corresponding
key |26, 33]. Upon receiving a query message, the node
will not only check its own shared objects, but will also
scan the cache for entries with matching keys. Upon
a successful match, the node will reply with the asso-
ciated pair(s). PCX can be used in both DHT-based
and less structured systems to improve query results.
With NCU [1, 15, 7], each node maintains caches of
metadata for all of its neighbors. As with PCX, a node
will send a query hit either on its own behalf or on be-
half of its neighbors, effectively increasing the reach of
a query [23, 34].

Replication is a common approach to improve per-
formance when distributed systems need to scale in
numbers of users and objects in the system and in ge-
ographical area. The most commonly used file repli-
cation strategy in P2P systems simply makes replicas
of objects on the requesting peer, upon a successfully
query/reply. Beyond this, a number of proactive repli-
cation strategies aimed at improving query hits while
reducing response time have been proposed. Cohen
and Shenker [10] modeled various explicit replication
strategies; they found square-root replication, which
can be efficiently achieved using path replication, to be
optimal.

2.2. Transient Populations and P2P Systems

There have been a number of studies of peers’ partic-
ipation and transiency in P2P systems [29, 6, 8, 23, 30,
4, 13]. Through active probing of 17,125 peers during
60 hours, Saroiu et al. [29] found a median peer session
time ~60 minutes. Chu et al. [8] present results from
a considerably longer experiment on a smaller set of
peers (5,000 IP:port pairs). Their results show a highly
transient population and significant time-of-day effects.
Both works measured session times by actively probing
previously collected TCP/IP addresses of peers follow-
ing an approach that can only determine if a node is or
not accepting TCP connections in the requested port
without distinguishing what application is connected
to it.

We performed an independent study [6] of peers’
lifespans in the widely deployed Gnutella network
(v0.6 [15], i.e. with super-peers), collecting over 1 mil-

lion peer session times for over half-million peers. To
avoid potential measurement errors, each of our probes
tries to establish an application-level connection check-
ing for specific Gnutella packet headers. This work was
the first one to show that the peer session time distri-
bution can be modeled by a Pareto distribution of the
form AT* (k < 0) (an R? value higher than 0.99 ver-
ifies the very high goodness of fit of the model). In
our context, this means that the expected remaining
session time of a peer is directly proportional to the
session’s current length, i.e., its current age. Based on
this, in our position paper [6] we proposed a number of
illustrative lifespan-based organizational protocols and
show its performance benefits in terms of increased sys-
tems stability through a trace-driven simulation study.
In this paper, we go beyond those preliminary results,
reporting the advantages of the proposed approach in
terms of application performance and in a dynamic In-
ternet testbed. Further, we apply lifespan-based ideas
for query-related strategies (query, caching and repli-
cation) and demonstrate significant performance bene-
fits of these strategies when layered over currently em-
ployed organizational protocols as well as when used
in combination with our proposed lifespan-based pro-
tocols.

Related research efforts have looked at the perfor-
mance and maintenance cost of DHT-based systems in
the face of churn [18, 27, 22, 17]. Although originally
aimed to non-DHT protocols, our lifespan-based ap-
proach could be straightforwardly combined with some
of the techniques proposed in the literature to yield bet-
ter structurally churn-resilient DHT systems. We plan
to explore this as part of our future work.

3. Lifespan-based Protocols and Strate-
gies

This section presents a number of lifespan-based, il-
lustrative organizational protocols and query-related
strategies. For continuity and containment, we first
provide an overview of one of the previously proposed
lifespan-based organizational protocols [6] and describe
its extension for loosely-structured P2P systems. A
number of lifespan-based, query-related strategies are
also proposed and discussed in detail. We close the
section by outlining a lightweight distributed protocol
for peers’ age discovery.

3.1. Organizational Protocols
The basic idea behind the proposed organizational

protocols is to dynamically increase the system’s de-
pendency on a node as the node’s long-term commit-

ment to the community becomes clear. This can be
achieved by simply giving preference to peers with ex-
pected longer sessions times. Given the UBNE (Used-
Better-than-New-in-Expectation) nature of lifespan
distribution [6], a peer’s current age is a fair estimate
of its lifespan.

This idea can be equally applied to both unstruc-
tured and loosely structured protocols. In our position
paper [6] we described its use in an illustrative unstruc-
tured protocol, denoted here as Lifespan-based UDP,
or LUDP. 3 Under LUDP, a peer looking for a new
neighbor selects the oldest node from among those it
knows, a group formed from the random set of recom-
mendations forwarded by other peers in the network.
Since the actual number of incoming connections that a
peer can accept is commonly bounded, LUDP employs
a weighted credit selection scheme that also considers
the peer’s current age and the (estimated) number of
available incoming connection slots.

We apply lifespan-based ideas to loosely-structured
systems, where superpeers are placed at the highest
layer of the network and given greater responsibilities
toward the community than common (leaf) peers. As
with LUDP, superpeers can give preferences to older
superpeers when setting up new connections, while
leaf peers could opt, with higher probability, for older
superpeers when deciding to which node to connect.
We use Lifespan-based HDP, or LHDP to denote this
loosely-structured, lifespan-based, organizational pro-
tocol.

3.2. Query-Related Strategies

As with organizational protocols, existing query-
related strategies can be easily modified to incorporate
lifespan-based ideas. We now describe in detail various
illustrative lifespan-based strategies for query distribu-
tion, caching and replication.

Query dissemination In the original k-random-
walks query strategy [20], each visited node randomly
picks the next peer where to forward the query walker.
While offering good scalability, this “purely blind” ap-
proach is oblivious to peers’ properties or past history.
This basic random walk strategy could be easily ex-
tended to give preferences to those peers with esti-
mated longer session times when guiding the forward-
ing of a query walker. Depending on the weight that
a peer’s estimated session time plays in the forwarding
decision, a naive algorithm could increase the chance
of “collision” between different walkers. Collisions will
reduce the effectiveness of the approach and can even

3LUDP corresponds to the LSPAN-3 protocol in [6].

result in the creation of hotspots at longer-lived peers.
For our evaluation we adopt a simple weighted proba-
bilistic approach which has shown to be highly effective
while avoiding the aforementioned problems.

Caching Although directly applicable, the effective-
ness of PCX (Path Caching with eXpiration) in less
structured P2P systems is unclear, as different searches
for the same object may take different paths than pre-
vious ones, negating the benefits of caching. Thus, we
extend PCX to cover a broader region around the path
resulting in what we call Regional Caching with Ezpi-
ration (RCX). Under RCX, a peer routing a query hit
message back to the requester will also push the query
hit entry (an <object-ID, hit-peer-ID> tuple) toward
some of its neighbors’ caches. Pushing cache indexes
with higher probability to older peers can increase the
number of queries answered based on these cached en-
tries.

Given the transiency of peer populations, cached en-
tries must be expired after relatively short times to re-
duce the number of stale ones. For this we can employ
a cache expiration technique based on similar lifespan-
based ideas — the eviction policy can consider the esti-
mated session-length of the peer referred to in the cache
entry in determining the maximum age of a given entry.
We have found this strategy to be significantly more
effective than the straightforward approach of simply
setting a constant maximum age for all cache entries
and periodically remove those exceeding it.

Replication Replication also plays an important
role in improving the performance of queries. By repli-
cating files at some intermediate peers along the query
path, subsequent queries can be resolved in a more effi-
cient manner. The most straightforward form of proac-
tive replication “leaves” copies of the requested object
along the paths taken by query or query hit messages.
As with PCX caching, the effectiveness of this approach
in less structured P2P systems is unclear given that
different searches for the same object may take differ-
ent paths than previous ones. Consequently, we mod-
ify the path replication approach slightly by leaving
copies of the requested objects on some neighbors of
each peer along the query/query-hit paths; we refer
to this strategy as regional replication (RRep). Re-
gional replication can easily incorporate lifespan-based
ideas by opting for nodes with longer estimated ses-
sion times as target recipients of object copies. These
replicas would be more likely to remain online longer,
potentially serving a large number of requests. As with
our previously described organizational protocols and
query strategies, we use an age-weighted, probabilis-

tic approach to select the target peers for replication.
Clearly, a node could always constrain the number of
replicas it is willing to host on behalf of others.

Clearly, these illustrative lifespan-based strategies
could be directly employed in original unstructured and
loosely structured UDP and HDP systems, as well as
in the proposed lifespan-based LUDP and LHDP pro-
tocols described in the previous subsection.

3.3. Determining Peers’ Age

The effectiveness of the proposed lifespan-based ap-
proach depend in part on the fitness of our session
length estimators and the accuracy of peers’ age infor-
mation. The high goodness of fit of our model ensures
the former [6]. To improve the latter, we have designed
a lightweight distributed protocol for peers’ age determi-
nation based on previous work on reputation [11, 12, 5].

Assume a system composed of mostly selfish peers.
Before a given node can decide who it should attempt
connecting to, it must first determine the age of a set
of candidate peers. To this end, each peer in the sys-
tem keeps track of other peers with whom it has inter-
acted (through a connection request, a ping/pong or
a query/reply exchange) and the time of their earliest
and latest interactions. When a given peer, P, wants to
determine the age of a candidate peer C, the following
three-phase protocol can be used:

e Phase 1: Witness Collection: P first requests from
C a list of the peers that C has known the longest
and with whom C' has interacted most recently.
Peers in this list potentially serve as witnesses of
C’s age.

e Phase 2: Witness Sampling and Trimming: From
the provided list and in order to reduce the chances
of collusion, P first trims off proposed witnesses
with suspiciously large interaction windows (out-
liers) and then samples a subset of the remaining
peers to construct the final witness list.

e Phase 3: Collecting Testimonies and Determining
Age: In the final phase, P verifies the interaction
times C reported by directly contacting all peers
in the final witness list and determines C’s age
as a function (e.g. minimum or median) of the
collected testimonies, i.e. the verified interaction
windows.

The protocol has a number of properties that im-
prove its resilience to cheating. The age of a peer is
never directly requested from the peer itself, but de-
termined through the collected testimonies of randomly

chosen witnesses. In addition, the trimming of outliers
helps in reducing the probability of small cabals. Al-
though the value determined by our protocol may not
exactly match the “real” age of the peer in question, it
is sufficient for our purposes as our protocols are less
interested in the real age of a peer than in its relative se-
niority among other candidate peers. We are currently
evaluating the potential impact of estimation error of
peers’ seniority on the performance of lifespan-based
ideas.

4. Evaluation

We evaluate the advantage of the proposed lifespan-
based approach to both query-related strategies and
organizational protocols through simulations and wide-
area experiments in PlanetLab. We compare this ap-
proach against currently deployed and proposed strate-
gies and organizational protocols. The goal of this eval-
uation is to determine the efficacy of the proposed ap-
proach at improving system stability and, ultimately,
enhancing the performance of end applications.

4.1. Query-Related Strategies and Organizational
Protocols

For this evaluation, we implemented two random-
based organizational protocols, Unstructured Decen-
tralized Protocol (UDP) and Hybrid Decentralized Pro-
tocol (HDP), as well as our lifespan-based organiza-
tional protocols, LUDP and LHDP.

We implemented the original [21] (RQuery) and a
lifespan-based (LQuery) k-random-walk query strate-
gies. We also implemented PCX, NCU and RCX for
caching. For PCX and RCX, we set the maximum
number of object identifiers to 300 and the maximum
number of node identifiers per object to 10. The
lifespan-based RCX is denoted as LRCX, otherwise
is denoted as RRCX. The basic form of replication is
denoted as SRep (for “Simple Replication”). For Re-
gional Replication (RRep), we use LRRep and RRRep
to denote its lifespan- and random-based variants, re-
spectively. For both LRRep and RRRep, we set an
upperbound on the number of replicas a peer can hold
to be 10. Figure 1 lists various acronyms for different
protocols and strategies used throughout the rest of the

paper.

4.2. Metrics

The effectiveness of the proposed approach is eval-
uated in terms of the performance improvements to
query-related tasks, as captured by three metrics:

Organizational Protocol | Random | Lifespan
Unstructured UDP LUDP

Loosely Structured HDP LHDP

UDP: Unstructured Decentralized Protocol

HDP: Hierarchical Decentralized Protocol

Query—Related Strategies| Random Lifespan
Query Strategy RQuery LQuery
Caching Strategy RRCX, PCX, NCU| LRCX
Replication Strategy RRRep, SRep LRRep

RQuery, LQuery: Random- and Lifespan—based k—-random walker

RRCX, LRCX: Random- and Lifespan—based Regional Caching with eXpiration
PCX: Path Caching with eXpiration

NCU: Neighbor Caching with incremental Update

RRRep, LRRep: Random- and Lifespan—based Regional Replication

SRep: Simple Replication

Figure 1. List of organizational protocols and query-
related strategies and their acronyms.

Query Resolution Time, Query Hit Number and Z
Query Satisfaction. Query Resolution Time is the time
between query submission and the arrival of the first
reply. Query Hit Number stands for number of query
hits associated with a given query. We also analyze
the aggregated query hit number for all queries issued
during each experiment. Z Query Satisfaction [34] is
the percentage of queries achieving Z satisfaction, i.e.
obtaining at least Z query hits.

4.3. Simulation and Wide-Area Experimental Setup

For the simulation study we employ an in-house,
event-based simulator for P2P systems with support
for all membership management related functionalities
as well as a variety of query distribution, caching and
replication mechanisms. We ran simulations using 4 of
the 20 traces collected,* with a total simulation time
of 511,000 seconds, capturing the lifespan of 150,033
peers. At any time during a simulation run, there are
around 3,000 to 4,000 active peers in the system.

For our wide-area evaluation, we implemented
lifespan-based protocols and strategies as extensions
to an open source Gnutella client [24], thus inherit-
ing all the expected functionality of a typical P2P file-
sharing system. As mentioned earlier, we use random-
and lifespan-based k-random-walk instead of the orig-
inal flooding in Gnutella as query strategies. We de-
ployed and ran our system using 150 stable PlanetLab
nodes, distributed throughout the world. At any time

4Simulations using the remainder traces yield similar results.
On the other hand, due to memory and CPU limitations of the
physical machines, for some of our simulation scenarios, it was
prohibitively expensive to apply more than 4 traces simultane-
ously.

during an experiment, the number of active peers in
the whole system ranges between 200 and 300, evenly
mapped to the set of PlanetLab hosts. Peers’ lifes-
pans are sampled from our collected traces. Each ex-
periment lasts for 511,000 seconds, or about six days.
To ensure that peers of the different protocols and/or
strategies were exposed to the same network conditions
and host load as their counterpart for fair comparison,
all experiments run the compared configurations con-
currently.

Several studies [2, 32] have shown that object pop-
ularity in P2P systems and the Web follows a Zipf-like
distribution, where the probability of the i-th most
popular object being queried is directly proportional
to 1/i®. For our evaluation, the popularity of an ob-
ject is reflected in both the number of queries issued
for it and its degree of replication. We set a to 0.6 for
the query distribution, and use an object population of
3,000 for all simulations and 500 for our wide-area eval-
uation 5. Every new peer brings with it a number of
copies of objects (currently two), selected according to
the same Zipf-like distribution of object popularity. In
our evaluations we obtained a similar “fetch-at-most-
once” behavior and query distribution to that reported
in [13] by making peers issue queries only for files they
do not yet have.

In simulation, unless explicitly stated, we use 4
query walkers per query, with a TTL value of 20 for
each walker. In the wide-area, each query consists of
three walkers with a T'TL value of seven for each. Each
active peer issues a query every 600 seconds on average,
both in simulation and in wide-area experiments.

4 4. Simulation Results

4.4.1. Organizational Protocols

We first examine the advantages of a lifespan-based
approach in organizational protocols. To better under-
stand the effects of lifespan-based organizational proto-
cols, the first three sets of simulations isolate the con-
tributions of caching and replication to query perfor-
mance. We first evaluate the benefits of this approach
under simple replication (SRep) without caching. We
then demonstrate its advantages employing two dif-
ferent caching strategies, PCX and NCU, respectively,
but without replication. The fourth set of experiments
show results with both caching and simple replication
(SRep+NCU) enabled. These experiments are mainly
discussed in unstructured systems, followed by more
results in loosely-structured ones.

50bject population defines the number of distinct objects in
the system, not the total number of objects which counts each
replica of the same objects.

CDF of Resolution Time of All Successful Queries Query Hit Number for Different Query Percentiles

40 -6~ LUDP-(RQuery+SRep)
UDP-(RQuery+SRep)

8

Query Hit Number
R @

805 -~ --~1" [— LUDP-(RQuery+SRep)
oa [i o UDP-(RQuery+SRep)

4 45 % 0102 03 04 05 06 07 08 08 1

1 15 2 25 3 35 5 0.
Query Resolution Time (Second) Query Percentile

(a) CDF for query reso-
lution time.

(b) Query hit number
for different query per-
centiles.

Figure 2. Query performance for UDP and LUDP
using simple replication (SRep) and no caching.

Figure 2 shows the Cumulative Distribution Func-
tion (CDF) of query resolution time (Fig. 2.a)
and query hit number at different query percentiles
(Fig. 2.b) using simple replication (SRep) and no
caching. The advantage of a more stable overlay in
LUDP is clear from both graphs: Figure 2.a shows a
reduction of between 50% and 70% in query resolu-
tion time with the lifespan-based LUDP in contrast to
UDP, while Figure 2.b demonstrates 50-75% increase
on the query hit number at various query percentiles.
As an example, the dashed lines in Figure 2.a show that
50% of queries can be resolved in 0.5 seconds for LUDP
while it takes UDP over 1 second to resolve the same
percentage of queries. Similarly, Figure 2.b shows a me-
dian query hit number (corresponding to 50 percentile
of queries) of only 2 for UDP, but as many as 4 for
the LUDP case. The lifespan-based protocol results in
considerably larger aggregated query hit number than
UDP (57% more) and higher query satisfaction at dif-
ferent satisfaction levels (Figure 3). Note that all num-
bers in Figure 3 are relative improvements of LUDP
over UDP. The first simulation scenario - using simple
replication (SRep) and no caching - corresponds to the
first data row in Figure 3.

For the second and third simulation scenarios, using
PCX or NCU caching strategies without replication,
LUDP also shows clear advantages over UDP, reduc-
ing query resolution time by 40% to 70% for different
percentages of queries. We omit the graphs for PCX
or NCU for brevity.

Figure 3 offers the complete picture, showing the rel-
ative aggregated query hit number with different com-
binations of replication and caching strategies running
over LUDP. UDP is used as the comparison baseline.
Note that when using PCX, LUDP does not result in
higher query hits but in faster query resolution. NCU

with LUDP, on the other hand, yields faster query re-
sponses and 22% more query hits than with UDP.

Recall that our lifespan-based protocols differ from
UDP (HDP) mainly at the time of connection estab-
lishment, where a peer gives older peers (superpeers)
higher priority when selecting neighbors. Thus, al-
though the paths that query walkers take in both
LUDP and UDP are purely random, a walker in LUDP
still has a better chance of meeting long-lived peers
along its path. In our experiments with simple repli-
cation, long-lived peers are more likely to store more
shared objects than short-lived peers. For the second
set of experiments, using PCX and no replication, long-
lived peers contain more valid cache indexes than short-
lived ones and can thus respond to more queries on be-
half of other nodes, resulting on faster replies. In the
case of NCU, long-lived peers have a better chance of
being connected with more neighbors and thus contain
more metadata for shared objects, resulting in higher
query hit ratios, larger number of hits per query, and
shorter resolution time. Finally, independent of the
query, caching and replication strategies, the more sta-
ble LUDP overlay also reduces the chance of link break-
downs along the query path, thus guaranteeing safer
delivery of a query message and its associated query
hits.

All the results presented so far have intentionally
factored out some components of the query mechanism
to better understand the effects of our approach. We
also conducted experiments with both object simple
replication and caching (SRep+NCU) enabled. Our
results show the advantages of the lifespan-based ap-
proach in terms of system scalability. For example,
query performance of k random walk with 2 walkers for
LUDP are almost identical with that of 5 walkers for
UDP. In other words, LUDP achieves similar perfor-
mance as UDP while reducing the number of required
walkers per query and its associated costs by almost
60%.

Replication|Caching|Aggregate Query Z=5 Z=10 Z=20
Hit Number | Satisfaction|Satisfaction|Satisfaction

SRep None 157 121 1.50 1.65

None NCU 1.22 1.13 1.18 121

None PCX 1.00 1.00 1.00 1.00

SRep NCU 1.67 1.15 1.22 1.37

Figure 3. Relative performance comparison between
LUDP and UDP organizational protocols. Different
simulation scenarios are indicated by the combination
of SRep, PCX and NCU. All numbers in the table are
relative performance of LUDP over UDP, including
relative aggregated query hit number and relative Z
query satisfaction with different levels of Z.

So far we have been looking at lifespan-based or-

CDF of Resolution Time of All Successful Queries Query Hit Number for Different Query Percentiles

351 [©- LHDP-(RQuery+SRep)
HDP-(RQuery+SRep)

il

BN o
3

Query Hit Number
o]

805[-~ £ === 21" [[HDP-(RQuery+SRep)
o4t /1 ' HDP-(RQUery+SRep)

-
S

o
£
@

o >
0 01 02 03 04 05 06 07 08 09 1

0 o5 5 0.
Query Percentile

1 15 2 25 3 3.5
Query Resolution Time (Second)

(a) CDF for query reso-
lution time.

(b) Query hit number
for different query per-
centiles.

Figure 4. Query performance for LHDP and HDP
using simple replication (SRep) and no caching.

ganizational protocols for unstructured P2P systems.
Ilustrating the benefits of lifespan-based protocols
for loosely-structured systems, Figure 4 shows query
performance of the lifespan-based, loosely-structured
LHDP system versus the alternative HDP system. As
the figure shows, 50% of the queries can be answered in
about 0.45 seconds with LHDP, while they take over 1.3
seconds with HDP. LHDP has a query hit number of 9
for 80 percentile queries while HDP can only guaran-
tee a value of 6. Clearly, lifespan-based organizational
protocols can benefit loosely-structured P2P systems
in the similar way as they benefit unstructured ones,
yielding faster query resolution times and higher query
hit numbers.

4.4.2. Query-related Strategies

We now evaluate the performance of lifespan-based
query-related strategies. We show, for unstructured
P2P systems, how lifespan-based strategies can boost
search performance. Applying these strategies to
loosely-structured systems yields even more significant
performance gains, which we omit here due to space
constraint.

We first demonstrate the benefits of employ-
ing lifespan-based ideas only for the query strat-
egy (LQuery). This corresponds to the scenario in
which only implicit, simple replication (SRep) is used
upon successful queries, while explicit replication and
caching strategies are disabled. Note that this is the
common case for currently deployed P2P systems. Fig-
ure 5 shows the CDF of query resolution time (Fig. 5.a)
and query hit number at various percentiles (Fig. 5.b)
for k random walk query strategy (RQuery) and our
lifespan-based LQuery, respectively. 50% of all queries
can be resolved in 0.4 seconds when using LQuery,
while it takes 0.8 seconds with RQuery. Similarly, there

is a 100% increase in median query hit number (from
4 to 8) when switching from RQuery to LQuery. Since
no caching or explicit replication is presented in this
scenario, the difference between the two can only be at-
tributed to query strategies themselves. LQuery walk-
ers, i.e. random walkers biased toward old peers, are
more likely to run into peers with more shared objects,
making possible to answer queries more effectively.

CDF of Resolution Time of All Successful Queries Query Hit Number for Different Query Percentiles

70] -6~ UDP-(LQuery+SRep)
UDP-(RQuery+SRep)

— UDP-(LQuery+SRep)
UDP-(RQuery+SRep)

Query Hit Number
@ » o

0 05 1 15 2

25 3 35 4 45
Query Resolution Time (Second)

0
Query Percentile

(a) CDF for query reso-
lution time.

(b) Query hit number
for different query per-
centiles.

Figure 5. Query performance for LQuery and
RQuery using simple replication (SRep) and no
caching.

Next, we determine how much could be gained by
combining lifespan-based query, caching, and explicit
replication. Figure 6 shows the query performance of
two cases, one with RQuery, random regional caching
with expiration (RRCX), and random regional repli-
cation (RRRep), another with lifespan-based LQuery,
LRCX, and LRRep. As Figure 6.a shows, the orig-
inal random approach needs 0.55 seconds to answer
90% of all queries while the lifespan-based strategies
reduce this to 0.2 seconds. Query hit numbers of the
lifespan-based system (Fig. 6.b), are typically two to
four times larger than that of the alternate system at
different query percentiles. These big advantages of
lifespan strategies can be easily explained by earlier
description in Subsection 3.2.

Figure 7 offers a summary of the performance of sev-
eral simulation scenarios where different query, caching
and replication strategies were applied. As with Fig-
ure 3, in each scenario we show the relative perfor-
mance of the lifespan-based strategies over its random-
based counterpart. Systems relying on lifespan-based
strategies consistently result in significantly better per-
formance, both in terms of aggregate query hit number
and query satisfaction at different levels, than random-
based ones.

CDF of Resolution Time of All Successful Queries Query Hit Number for Different Query Percentiles

1
6~ UDP~(LQuery+LRCX+LRRep)
120| UDP-(RQuery+RRCX+RRRep)

"1 [— UDP-(LQuery+LRCX+LRRep)
i UDP-(RQuery+RRCX+RRRep)

Query Hit Number

4 a5 %01 0z 03 04 05 06 07 08 09
Query Percentile

-

0 05 1 15 2 25 3 35
Query Resolution Time (Second)
(b) Query hit number

for different query per-
centiles.

(a) CDF for query reso-
lution time.

Figure 6. Query performance for LQuery +LRCX
+LRRep and RQuery +RRCX +RRRep.

Replication|Caching|Aggregate Query Z=5 Z=10 Z=20
Hit Number | Satisfaction|Satisfaction|Satisfaction

SRep None 2.02 1.46 177 2.33

RRep None 1.68 1.14 1.30 1.66

RRep RCX 2.53 1.08 1.20 1.45

Figure 7. Relative performance comparison for
query-related strategies. Different simulation scenar-
ios are indicated by the combination of simple repli-
cation (SRep), regional replication (RRep), and re-
gional caching with expiration (RCX). All numbers
in the table are relative performance of lifespan-based
query-related strategies over alternative ones. Rela-
tive aggregated query hit number and relative Z query
satisfaction with different levels of Z are given.

4.4.3. Combined Lifespan-based Protocols &
Strategies

Clearly, the biggest advantage of lifespan-based
approaches would come from the combination of
lifespan-based organizational protocols and query-
related strategies. To demonstrate this, we com-
pare the performance of a purely random-based with
a purely lifespan-based system. The random-based
system uses UDP as the organizational protocol, ba-
sic k-random-walks (RQuery) for query dissemination,
plus random regional caching (RRCX) and replication
(RRRep). The lifespan-based system employs LUDP
as its organizational protocol, and lifespan-based query
(LQuery), caching (LRCX) and replication strategies
(LRRep). Combining the advantages of lifespan-based
approaches at both levels results in 3-5X increase in
query hits at different query percentiles, and over 4X
speed-up for query resolution.

The advantage of combining lifespan-based orga-
nizational protocols and query-related strategies also
holds for loosely-structured systems. Figure 8 com-
pares the performance of two loosely-structured P2P

systems: a random-based one using HDP as its organi-
zational protocol, along with RQuery and RRRep; and
a lifespan-based one relying on LHDP for its organi-
zational protocol, and LQuery and LRRep for query
dissemination and replication. No caching strategy is
used here, since superpeers already provide object in-
dex caching to leaf-peers. As Figure 8 illustrates, the
combined benefits of lifespan-based ideas results in a
significant improvement in query resolution time (re-
solving 80% queries in about 0.2 seconds instead of 1.0
seconds) and median query hit number (from 12 to 37
hits).

CDF of Resolution Time of All Successful Queries Query Hit Number for Different Query Percentiles

~6- LHDP—(LQuery+LRRep)
70 HDP-(RQuery+RRRep)

" [— LHDP-(LQuery+LRRep)
HDP-(RQuery+RRRep)

Query Hit Number

ol
4 a5 0 01 02 03 04 05 06 07 08 09 1
Query Percentile

1 15 2 25 3 35
Query Resolution Time (Second)
(b) Query hit number

for different query per-
centiles.

(a) CDF for query reso-
lution time.

Figure 8. Query performance for LHDP-

LQuery+LRRep and HDP-RQuery+RRRep.
4.5, Wide-Area Results

We first illustrate the effectiveness of lifespan-based
organizational protocols in wide-area. All queries take
two purely random walkers, no caching or proactive
replication strategies are used. Figure 9.a compares
CDF of query resolution time of the LUDP and UDP
systems in the wide area. The results show that query
resolution time is typically two times faster for LUDP
than for UDP. Figure 9.b gives query hit number distri-
bution, i.e., the percentage of queries that have a cer-
tain number of hits. For this experiment, most queries
(over 60%) on the lifespan-based LUDP system have a
query hit number of 3, while most queries (44%) on the
UDP deliver only one hit. In general, LUDP protocol
delivers over 40% more query hits than UDP.

We also evaluated the wide-area performance of our
lifespan-based query-related strategies. Two systems
were deployed, one with LQuery for query and LRRep
for replication and the second one employing RQuery
and RRRep. Both systems use UDP as the organiza-
tional protocol. As Figure 10.a shows, lifespan-based
strategies deliver between 2-3X faster query resolu-
tion. Figure 10.b indicates a much higher chance for
a lifespan-based query to return 5 or more query hits

CDF of Query Resolution Time (Wide-area Experiment)
1

Query Hit Number Distribution (Wide-area Experiment)
7

. " |[=- LUDP-(RQuery+SRep)
- -%- UDP—(RQuery+SRep)

bt
>

0.8|
0.7]

s
o

0.6]

%05 ,+* [— LUDP-(RQuery+SRep)
o 4 B === UDP-(RQuery+SRep)

Percentage
°
N
»

°
@

0.4
03
0.2

a
N

a
[

o1rfer

0 02 1 4

04 06 08 1 12 2 3
Query Resolution Time (Second) Query Hit Number

(a) CDF for query reso- (b) Query hit number

lution time (wide-area). distribution (wide-area).
Figure 9. Query performance for LUDP and UDP
from wide-area experiment.

than its random equivalent. Overall, lifespan strate-
gies provide 2.31 times more query hits than their al-
ternatives. These results, consistent with those found
through simulation, clearly demonstrate the advan-
tages of using lifespan-based ideas for query-related
strategies.

CDF of Query Resolution Time (Wide-area Experiment)
1 Query Hit Number Distribution (Wide-area Experiment)

X [“o= UDP-(LQuery+LRRep)
/1| -*- UDP-(RQuery+RRRep)

ou F %

0.9]
0.8]

0.7]
06 ,*" [— UDP-(LQuery+LRRep) o

& 05k-/---¢ [=== UDP—(RQuery+RRRep) ¥
o K g :
oaf [i ! S 0.08f !
[0.06} !
Wl :
o[

b ! A
0.1 | | 0.02p

T

*

0 0.2 2 14

04 06 08 1 20
Query Resolution Time (Second)

10
Query Hit Number

(a) CDF for query reso-
lution time (wide-area).

(b) Query hit number
distribution (wide-area).

Figure 10. Query performance for LQuery+LRRep
and RQuery+RRRep from wide-area experiments,
UDP are used in both experiment.

5. Conclusions

This paper addresses the problem of highly tran-
sient populations in unstructured and loosely struc-
tured P2P systems. Using a number of illustrative or-
ganizational protocols and query-related strategies, we
present trace-driven simulation and wide-area experi-
ment results that illustrate the performance advantages
of considering peers’ estimated session time as a key
system attribute in the design of churn-resilient P2P
systems. The benefits of lifespan-based ideas are not
constrained to control-related traffic, but extend to ap-
plications, resulting in improved query satisfaction and

10

resolution time, as well as significantly higher system
scalability.

Acknowledgments

We would like to thank NUIT and our Computing
Support Group for their aid and understanding while
obtaining the trace data used for our experiments. We
are also grateful to J. Casler, S. Birrer and K. Liv-
ingston for their helpful comments on early drafts of
this paper.

References

[1] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A.

Huberman. Search in power-law networks. Physical
Review, 64(046135), 2001.
[2] V. Almeida, A. Bestavros, M. Crovella, and

A. de Oliveira. Characterizing reference locality in the

WWW. In Proc. of IEEE PDIS, 1996.
M. Bawa, H. Deshpande, and H. Garcia-Molina. Tran-

sience of peers and streaming media. In Proc. of

HotNets-1, 2002.
R. Bhagwan, S. Savage, and G. M. Voelker. Under-

standing availability. In Proc. of IPTPS, 2003.
S. Buchegger and J.-Y. L. Boudec. A robust reputation

system for p2p and mobile ad-hoc networks. In Proc.

of P2PEcon Workshop, 2004.
F. E. Bustamante and Y. Qiao. Friendships that last:

Peer lifespan and its role in P2P protocols. In Proc. of

8th WCW Workshop, 2003.
Y. Chawathe, S. Ratnasamy, L. Breslau, and

S. Shenker. Making Gnutella-like P2P systems scal-

able. In Proc. of ACM SIGCOMM, 2003.
J. Chu, K. Labonte, and B. N. Levine. Availability and

locality measurements of peer-to-peer file systems. In

Proc. of ITCom, 2002.
Clip2. The Gnutella protocol specification v0.4. RFC,

The Gnutella RFC, 2000.
E. Cohen and S. Shenker. Replication strategies in

unstructured peer-to-peer networks. In Proc. of ACM

SIGCOMM, 2002.
E. Damiani, S. D. C. di Vimercati, S. Paraboschi,

P. Samarati, and F. Violante. A reputation-based ap-
proach for choosing reliable resources in peer-to-peer

networks. In Proc. of 9th ACM CCCS, 2002.
D. Dutta, A. Goel, R. Govindan, and H. Zhang. The

design of a distributed rating scheme for peer-to-peer

systems. In Proc. of P2PEcon Workshop, 2003.
K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble,

H. M. Levy, and J. Zahorjan. Measurement, modeling,
and analysis of a peer-to-peer file-sharing workload. In
Proc. of 19th ACM SOSP, 2003.

KaZaA. http://www.kazaa.com. 2001.

T. Klingberg and R. Manfredi. Gnutella 0.6. RFC,
The Gnutella RFC, 2002.

J. Li, J. Stribling, R. Morris, T. Gil, and F. Kaashoek.
Routing tradeoffs in peer-to-peer DHT systems with
churn. In Proc. of IPTPS, 2004.

(12]

(13]

14
15

[16]

[17] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and
T. M. Gil. A performance vs. cost framework for eval-
uating dht design tradeoffs under churn. In Proc. of
2/th INFOCOM, 2005.

[18] D. Liben-Nowell, H. Balakrishnan, and D. Karger.
Analysis of the evolution of peer-to-peer systems. In
Proc. of ACM PODC, 2002.

[19] P. Linga, I. Gupta, and K. Birman. A churn-resistant
peer-to-peer web caching system. In ACM Workshop
on Survivable and Self- Renegerative Systems, 2003.

[20] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search
and replication in unstructured peer-to-peer networks.
In Proc. of ICS, 2002.

[21] Q. Lv, S. Ratnasamy, and S. Shenker. Can hetero-
geneity make gnutella scalable? In Proc. of IPTPS,
2002.

[22] R. Mahajan, M. Castro, and A. Rowstron. Controlling
the cost of reliability in peer-to-peer overlays. In Proc.
of IPTPS 03, 2003.

(23] E. P. Markatos. Tracing a large-scale peer to peer
system: an hour in the life of gnutella. In Proc. of
CCGrid, 2002.

[24] Mutella. http://mutella.sourceforge.net. 2003.

[25] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
blueprint for introducing disruptive technology into the
Internet. In Proc. of ACM HotNets-1, October 2002.

[26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proc. of ACM SIGCOMM, 2001.

[27] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz.
Handling churn in a DHT. June 2004.

[28] M. Roussopoulos and M. Baker. Cup: Controlled up-
date propagation in peer-to-peer networks. In Proc. of
USENIX Annual Tech., 2003.

[29] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A mea-
surement study of peer-to-peer file sharing systems. In
Proc. of MMCN, 2002.

[30] S. Sen and J. Wang. Analyzing peer-to-peer traffic
across large networks. In Proc. of ACM SIGCOMM-
IM Workshop, 2002.

[31] A. Singla and C. Rohrs. Ultrapeers: Another step
towards Gnutella scalability. Working draft, Lime Wire
LLC, 2001.

[32] K. Sripanidkulchai. The popularity of Gnutella queries
and its implications on scalability. In O’Reilly’s
OpenP2P, 2001.

[33] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proc. of
ACM SIGCOMM, 2001.

[34] B. Yang and H. Garcia-Molina. Efficient search in peer-
to-peer networks. In Proc. of ICDCS, 2002.

11

