
Magellan: Performance-based, Cooperative Multicast

Stefan Birrer Fabían E. Bustamante
Northwestern University

Department of Computer Science
Evanston, IL 60201, USA

{sbirrer,fabianb}@cs.northwestern.edu

Abstract

Among the proposed overlay multicast protocols, tree-
based systems have proven to be highly scalable and effi-
cient in terms of physical link stress and end-to-end latency.
Conventional tree-based protocols, however, distribute the
forwarding load unevenly among the participating peers.
An effective approach for addressing this problem is to
stripe the multicast content across a forest of disjoint trees,
evenly sharing the forwarding responsibility among partic-
ipants. DHTs seem to be naturally well suited for the task,
as they are able to leverage the inherent properties of their
routing model in building such a forest. In heterogeneous
environments, though, DHT-based schemes for tree (and
forest) construction may yield deep, unbalanced structures
with potentially large delivery latencies.

This paper introduces Magellan, a new overlay mul-
ticast protocol we have built to explore the tradeoff be-
tween fairness and performance in these environments.
Magellan builds a data-distribution forest out of multiple
performance-centric, balanced trees.It assigns every peer
in the system a primary tree with priority over the peer’s
resources. The peers’ spare resources are then made avail-
able to secondary trees. In this manner, Magellan achieves
fairness, ensuring that every participating peer contributes
resources to the system. By employing a balanced distribu-
tion tree withO(lg N)-bounded, end-to-end hop-distance,
Magellan also provides high delivery ratio with compara-
ble low latency. Preliminary simulation results show the
advantage of this approach.

1. Introduction

A recent research trend advocates an end-system, or
application-level, approach to multicasting as a viable al-
ternative to network-level multicast for a wide range of
group communication applications [15, 22, 35, 3, 12, 6].
In this application-layer approach, participating nodes orga-

nize themselves into an overlay topology for data delivery.
The topology is an overlay in that each edge corresponds to
a unicast path between two end systems in the underlying
Internet. All multicast related functionality is implemented
at end systems instead of at routers, and the goal of the pro-
tocol is to construct and maintain an efficient overlay for
data transmission. There is ample motivation for such an
approach, as it delivers the scalability advantages of multi-
cast, in terms of server load and bandwidth communication,
while avoiding the deployment issues of a network-level so-
lution [16, 18] .

Among the proposed end system multicast protocols,
tree-based schemes have shown to be highly scalable and
efficient in terms of physical link stress and end-to-end la-
tency [25, 22, 3, 12, 11, 6].Conventional tree-based pro-
tocols, however, are not well suited for cooperative envi-
ronments as the forwarding load tends to be unevenly dis-
tributed among the participants.A small fraction of peers,
those interior to the tree, are made only responsible for sup-
porting the commonly needed service, while the majority
of nodes act as leafs and thus contribute no resources to the
forwarding task.

Castro et al. [10] proposed addressing this problem by
the striping of multicast content across a forest of interior-
node-disjoint trees. By making each peer an interior node in
at least one tree, forwarding responsibilities can be evenly
shared among the participating nodes. A key challenge of
these schemes is to efficiently create and maintain this for-
est, a task for which Distributed Hash Tables (DHTs) seem
naturally well suited. By leveraging the inherent properties
of the DHT routing model, SplitStream [10] can provide
a relatively simple and efficient method for creating a for-
est of interior-node-disjoint trees that neither requires costly
network monitoring nor depends on a centralized coordina-
tor. DHT-based schemes for tree and forest construction,
however, have been found to result in deep, unbalanced
tree structures. Deep structures are undesirable due their
increased vulnerability to node failures/departures and po-
tentially large application-performance overhead [10, 5].

1



This paper introduces Magellan, a new overlay multi-
cast protocol targeted to cooperative applications with low-
latency constraints (such as online gaming and live stream-
ing) over large-scale, heterogenous environments.Similar
to SplitStream [10], Magellan builds a data-distribution
forest over which trees it forwards stripes of the multicast
content. Unlike SplitStream, Magellan constructs its for-
est from multiple performance-centric, balanced trees in-
stead of DHT-based ones.While DHT-based approaches
focus on constructing/maintaining a structure based on a
virtual ID space, performance-centric approaches consider
primarily the application’s performance (e.g. latency) when
adding a new link to the overlay [5, 15, 3, 6]. With Mag-
ellan, every peer in the system is assigned a primary tree
with priority over the peer’s resources. A peer’s spare re-
sources are then allocated to the remaining trees in the
forest. We present experimental evaluation results con-
trasting Magellan’s performance-centric and SplitStream’s
DHT-based [10] approaches to cooperative multicast. To
provide a baseline against which to evaluate the perfor-
mance/fairness tradeoffs in Magellan, we rely on Nemo [6],
a conventional performance-centric, tree-based multicast
protocol. These preliminary results show that Magellan
achieves its goals of striking a balance between fairness and
performance.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the Magellan approach in more detail. We
briefly review relevant background material in Section 3 and
present the design of Magellan in Section 4. Section 5 dis-
cusses related efforts. We present simulation-based results
in Section 6 and conclude in Section 7.

2. The Magellan Approach

Magellan addresses the needs of cooperative, group-
communication applications in large-scale, heterogeneous
environments by forwarding the stripped multicast content
over a forest of performance-centric trees. Example ap-
plications include large group teleconferencing [24], large-
scale virtual environments (e.g. Quake Arena) [30], and ac-
tive spectator support for on-line, multiplayer games [4]. In
all these examples, the need for humans to interact in realis-
tic and natural ways within the virtual setting places bounds
on the performance of the underlying group communication
system.

In cooperative settings, nodes are expected to contribute
resources in exchange for using a commonly needed ser-
vice. Conventional tree multicast are not well suited
to this model, as the load of duplicating and forward-
ing messages is unevenly distributed among the partici-
pating peers. To ensure a fairer load distribution, Mag-
ellan adopts a SplitStream-like solution [10], forwarding
the stripped, multicast content over a forest of interweaved

trees. Unlike SplitStream, Magellan follows a performance-
centric instead of a DHT-based approach to overlay mul-
ticast [25, 14, 3, 6]. DHT-based tree and forest construc-
tion schemes have been found to yield deep, unbalanced
tree structures in highly heterogenous and dynamic environ-
ments as those targeted by Magellan. [5]. Trees with high
depths can have a significant impact in application perfor-
mance which, in this context, is mainly determined by the
frequency of interruptions due to node failures/departures
and/or congestion on an upstream link, which in turns de-
pends on the number of ancestors a node has [10, 5].

2.1. Magellan

Magellan ensures that every participating peer contribute
resources to at least one tree in the forest and that all trees
have a set of assigned peers to serve as their interior nodes.
The set of interior nodes to a tree is made ofprimary peers,
i.e. peers for which the tree is theirprimary tree , and ad-
ditionalsecondary peers.

Figure 1 illustrates the logical organization of Magellan
with two trees. Each peer primarily serves in either the
black or white tree (as indicated by the peer’s color). In this
simple scenario, all peers are able to contribute resources to
the system.

If a tree’s set of primary peers does not collectively have
the required resources to support the tree’s stripe, e.g. due to
peers with low bandwidth capacity, Magellan assigns peers
with spare resources as needed. Thus, Magellan guarantees
that no tree will run out of forwarding capacity before the
full system is saturated while supporting the participation
of non-contributors in the system.1 By relying on balanced
multicast trees, Magellan reduces the total end-to-end hop
distance in the distribution topology, thus lessening the tree
vulnerability to node failures and minimizing performance
overhead.

For detecting peer failures/departures and repairing the
topology, Magellan relies on an efficient, per-tree mainte-
nance protocol. In addition to the frequency of interruptions
a node experiences, the second factor determining appli-
cation performance is the efficiency of the detection/repair
protocol. All multicast messages in Magellan are uniquely
identified and lost messages are recovered via lateral error
recovery, i.e. recovered from any of the trees, not only the
forwarding one [39].

3. Background

A variety of overlay multicast protocols have been pro-
posed covering a range of targets level of scalability, ap-
plications and primary performance metrics [14, 35, 25,

1Dealing with free-riders, however, is outside the scope of this work.



(a) The ‘black’ tree. (b) The ‘white’ tree. (c) Both trees overlayed.

Figure 1. Magellan with two stripes and one publisher in the middle of the network. The peers are
colored according to their primary tree. Every peer serves as interior node in its primary tree and as
leaf in the other one.

3, 6, 7, 36, 42, 22, 12]. Among the proposed schemes,
performance-centric protocols [15, 25, 3, 33, 6, 7] have been
shown to deliver excellent performance, while efficiently
utilizing the underlying network infrastructure. Although
clearly realizable with any performance-centric, tree multi-
cast protocol, this paper describes and evaluates the design
and implementation of Magellan based on Nemo [6]. Thus,
before delving into Magellan’s details, this section provides
a brief overview of Nemo. For a complete description the
reader is referred to [6].

In Nemo [6], participating peers are organized into clus-
ters based on network proximity, with every peer being a
member of a cluster at the lowest layer.2 Each of these
clusters selects aleaderthat becomes a member of the im-
mediately higher layer. In part to avoid dependency on a
single node, every cluster leader recruits a number ofco-
leadersto form its crew. The process is repeated, with all
peers in a layer being grouped into clusters, crew members
selected, and leaders promoted to participate in the next-
higher layer. Thus peers can lead more than one cluster in
successive layers of this logical hierarchy. Co-leaders im-
prove the resilience of the multicast group by avoiding de-
pendencies on single nodes and providing alternative paths
for data forwarding. Figure 2 illustrates the logical organi-
zation of Nemo.

Beyond enhancing the overlay’s resilience, crew mem-
bers share the load of message forwarding, as messages
routed to a cluster are directed to a randomly selected crew
member. The receiving crew member is then responsible
for forwarding the packet to all other members in the target
cluster. In this manner, Nemo reduces the outdegree of clus-
ter leaders (by comparison with protocols that do not rely on

2Clusters vary in size betweend and3d − 1, whered is a constant
known asdegree. This is common to both Nemo and Nice [3]; the degree
bounds have been chosen to help reduce oscillation in clusters.

Leader

Co−leader

Ordinary member

Figure 2. Nemo’s logical organization.
Shapes illustrates the role of a peer within
a cluster: a leader at a given layer can act
as co-leader or ordinary member at the next
higher layer.

co-leaders, such as Nice [3]) and consequently improves the
system scalability.

Nemo’s data delivery topology is implicitly defined by
the set of packet-forwarding rules. A peer sends a message
to one of the leaders for its layer. Leaders (the leader and its
co-leaders) forward any received message to all other peers
in their clusters and up to the next higher layer. A node in
charge of forwarding a packet to a given cluster must select
the destination peer from among all crew members in the
cluster’s leader group. Figure 3 presents a sketch of the
forwarding algorithm. Figure 4 illustrates the algorithm in
action using the logical topology in Figure 2. At timet0 a
publisher forwards the packet to its cluster leader, which, in
turn, sends it to all cluster members and the leader of the
next higher layer (t1). At time t2, this leader will forward
the packet to all its cluster members, i.e. the members of its
lowest layer and the members of the second lowest layer. In
the last step, the leader of the cluster on the left forwards



FORWARD-DATA(msg)
1 R ← ∅
2 if leader /∈ msg.sender crew
3 then R ← R ∪ leader
4 for eachchild in children
5 do if child /∈ msg.sender crew
6 then R ← R ∪ child
7 SEND(msg, R, sender crew ← CREW-OF(self))
8 if IS-CREW-MEMBER(self) andleader /∈ msg.sender crew
9 then R ← ∅

10 R ← R ∪ super leader
11 for eachneighbor in neighbors
12 do R ← R ∪ neighbor
13 SEND(msg, R, sender crew ← CREW-OF(leader))

Figure 3. Data Forwarding Algorithm. SEND

transmits a packet to a selected node among
a destination’s crew members.

t0

t1

t2

t3

T
im

e

Figure 4. Basic data forwarding in Nemo.
Each row corresponds to one time step.

the packet to its members.

4. Magellan’s Design

Magellan builds a data-distribution forest over which
trees it forwards stripes of the multicast content. For build-
ing the balanced multicast trees that constitute this forest,
Magellan relies on Nemo, inheriting its resilience to the
degree of churn inherent to the target environments. Tree
construction/maintenance in Magellan makes use of a two-
metric approach inspired on previous work by Wang and
Crowcroft [38] and Chu et al. [13]. Following ashortest
wide-enough pathalgorithm, a Magellan’s node first se-
lects candidate neighbor peers based on sufficient (instead
of highest) bandwidth, thus increasing the pool of alterna-
tive peers to choose from, to then choose among them those
in the shortest path (lowest latency). To handle heteroge-
neous bandwidth constraints that may lead to “under” pro-

CHECK-LEADERSHIP-TRANSFER(cluster, tree)
1 optimal ← GET-LEADER-FOR(cluster, tree)
2 if GET-SELF 6= optimal
3 then TRANSFER-LEADERSHIP(optimal, cluster, tree)

CHECK-CLUSTER-SPLIT(cluster, tree)
1 if SIZE-OF(cluster) > MAX CLUSTER SIZE
2 then c1, c2 ← SPLIT-CLUSTER(cluster, tree)
3 if GET-SELF() in c1
4 then % we remain leader of c1
5 TRANSFER-LEADERSHIP(
6 c2, GET-LEADER(c2, tree), tree)
7 else % we remain leader of c2
8 TRANSFER-LEADERSHIP(
9 c1, GET-LEADER(c1, tree), tree)

CHECK-LEADER-REFINEMENT(leader, candidates, tree)
1 optimal ← leader
2 cost ← GET-COST-FOR(leader, tree)
3 for eachpeer in candidates
4 do cost2 ← GET-COST-FOR(peer, tree)
5 if cost2 < cost
6 then optimal ← peer
7 cost ← cost2
8 if optimal 6= leader
9 then TRANSFER-TO-NEW-LEADER(optimal, leader, tree)

Figure 5. A simplified representation of
Magellan’s maintenance operations. SPLIT-
CLUSTER returns two cluster so that the
sum of the two emerging clusters’ diame-
ter is approximately minimized. TRANSFER-
LEADERSHIP notifies all affected peers about
the new leader. TRANSFER-TO-NEW-LEADER

joins the new leader and notifies the old
one about the departure. The candidates for
leader refinement are the members of the su-
per cluster, i.e. the cluster one layer above.

visioned trees, peers with excess bandwidth capacity can be
recruited to assist in secondary trees.

Based on Nemo, Magellan optimizes each of its indepen-
dent trees for a generic end-to-end cost. For this purpose, it
relies on the maintenance algorithms of its underlying tree
protocol, Nemo, in which cluster leaders are chosen so that
the sum of the costs to each cluster member is minimized,
i.e. the cluster cost. Consequently, a cluster leader period-
ically reevaluates its owned clusters and transfers the clus-
ter’s ownership to another peer if this results in a reduced
cluster cost. Additionally, cluster split operation divide the
peers into two groups so that the sum of the pairwise costs
is minimized for the two emerging clusters. Lastly, clients
may switch clusters if they find a new leader with a smaller
cost than their current parent, i.e. leader refinement. Mag-
ellan’s maintenance algorithms are summarized in Figure 5
with general helper functions defined in Figure 6.



GET-LEADER-FOR(cluster, tree)
1 leader ← NIL

2 cost ← 0
3 for eachpeer in cluster
4 do cost2 ← GET-CLUSTER-COST(peer, cluster, tree)
5 if leader = NIL or cost2 < cost
6 then leader ← peer
7 cost ← cost2
8 return leader

GET-CLUSTER-COST(leader, cluster, tree)
1 cost ← 0
2 for eachpeer in cluster
3 do if peer 6= leader
4 then cost ← cost + GET-COST(leader, peer, tree)
5 return cost

GET-COST(from, to, tree)
1 cost ← 0
2 if IS-SELF(from)
3 then cost ← GET-COST-FOR(to, tree)
4 else cost ← cache[from][to]
5 return cost

Figure 6. Helper functions used in Magellan’s
maintenance operations. The cost cache
cacheis populated with the cluster members’
announced cost to each other.

In the simple yet common scenario where cost is de-
fined as the latency between two peers, Nemo, Magellan
and Nice [3] use similar techniques for cluster split and
leader refinement. The periodical cluster reevaluation that
prevents weak peers from monopolizing higher layers by
promoting high bandwidth peers up in the tree, however,
is unique to Nemo and Magellan. In bandwidth constraint
environments, this technique would demote bandwidth-
limited peers in favor of peers with higher available band-
width.

Figure 7 outlines the heuristic cost function employed
in Magellan’s construction scheme. The cost accounts for
the latency between two peers at first, adding a penalty if

GET-COST-FOR(peer, tree)
1 cost ← latency(self, peer)
2 if IS-L INK -OVERLOADED(self, peer)
3 then cost ← cost+
4 GET-OVERLOADED-PENALTY(self, peer)
5 if !IS-PRIMARY-TREE(peer, tree)
6 then cost ← cost+
7 GET-NON-PRIMARY-TREE-PENALTY(self, peer)
8 return cost

Figure 7. Determining the cost for a peer for
promotion/demotion in a given tree.

the link is overloaded. To encourage the promotion of pri-
mary peers inside each tree structure, the cost function adds
a cost penalty to secondary peers. While this scheme will
favor performance over fairness, as it will opt for a nearby
secondary peer over a distant primary one, experimentation
results show the negative effects on fairness to be mostly
neglectable.

To avoid overloading a peer, our scheme tracks the mes-
sage drops from the outgoing queue of the flow controlled
stream for each peer. We consider a peer to be over-
loaded whenever it starts to drop messages; at this point
a penalty, that dominates the latency metric, forces the tree
construction algorithm to prefer non-overloaded over satu-
rated peers. To monitor a flow’s performance, we rely on an
implementation of a TCP-friendly, UDP transmission layer
that implements TCP-friendly rate control (TFRC) [21].

Our heuristic provides a best-effort approach of ensur-
ing that every peer contributes resources to its primary tree,
while high capacity peers help out in other, secondary trees
on demand. As long as there are primary peers with suffi-
cient bandwidth capacity within a reasonable distance, re-
sources from secondary peers will not be required. As the
group size increases, Magellan’s construction operations
are more likely to find qualified primary peers within a rea-
sonable distance, thus reducing the heuristic’s potential neg-
ative impact on fairness.

5. Related Work

A number of application-level multicast schemes have
been proposed [14, 25, 3, 12, 36, 42, 6, 17]. Most of these
schemes are based on a single application-level multicast
tree with some targeting video and high-bandwidth content
distribution [25, 26, 27, 17]. Nice [3] relies on balanced
multicast trees to achieve high scalability. By relying on
balanced trees, it is able to provide low end-to-end latency
in large multicast groups. Nemo [6] introduces the concept
of crew members in conjunction with negative acknowl-
edgements to early detect and recover lost packets, thus in-
creasing the resilience of the data delivery topology. Nemo
adopts a periodic probabilistic maintenance operations, to
help reduce the control overhead under high churn, and a
periodic cluster reevaluation operation that demotes weak
peers to guarantee an efficient distribution topology. Mag-
ellan builds upon Nemo to construct multiple performance-
centric, balanced multicast trees. FatNemo [7], in particu-
lar, provides high-bandwidth multisource, multicast in co-
operative environments by porting a fat-tree approach from
parallel architecture to overlay networks. Both Magellan
and FatNemo build on a balanced, performance-centric tree
protocol and exposes the alternate paths introduced by co-
leaders to achieve high performance and resilience. In con-



trast with Magellan, FatNemo does not aim at fair load dis-
tribution and, in fact, specifically leverages unbalanced load
distribution to achieve low delivery latency under high load
with potentially many publishers.

A number of protocols address multisource, multicasting
for higher throughput, and some of these employ codecs
for fault tolerance in bursty environments [29, 31, 32, 1, 2].
Magellan uses a fully decentralized algorithm to organizes
peers into a scalable content delivery topology. While it
currently does not employ any form of redundant encoding
for recovery (such as Forward Error Correction), it can be
easily extended for in this manner to potentially increase its
performance in transient environments [8, 23].

Multiple trees have been proposed as an approach to
achieve a resilient, high performance overlay mesh [41,
34, 33]. CoopNet [34, 33] uses a centralized organiza-
tion scheme to build a set of distribution trees over which
it stripes video using MDC. Multiple trees allows Coop-
Net to reduce the disruption caused by rapid node ar-
rivals/departures common in flash crowds situations. Both,
interleaved spanning trees [41] and Magellan leverage a de-
centralized construction scheme for multi-tree, overlay cre-
ation and maintenance. In addition, Magellan relies on
properties provided by the tree maintenance protocol and
on the use of lateral error recovery [39] for high resilience.
Furthermore, it aims at providing fairness in bandwidth con-
tribution for individual peers and uses balanced trees for
higher performance.

SplitStream [10] introduces an approach to striping con-
tent across a forest of interior-node-disjoint multicast trees.
By enforcing the bandwidth constraint of each peer, Split-
Stream achieves contribution fairness among the coopera-
tive peers. The implementation of SplitStream is based on
Scribe [12], an application-level group communication sys-
tem built upon Pastry [37], a proximity-aware DHT rout-
ing protocol. By utilizing multiple disjoint trees, Split-
Stream achieves fairness by making every peer contributing
resources to the system. Having every peer as a contributor,
however, reduces the performance as it results in suboptimal
distribution topologies. Further, every peer must be able to
support at least one stripe since any peer could be root for a
multicast tree in Scribe. Magellan, in contrast, builds upon
a performance-centric, multicast protocol which allows it to
strike a balance between fairness and performance.

6. Evaluation

We study the fairness of Magellan and analyze its ability
to handle heterogenous environments. Fairness is evaluated
in terms ofoutdegreeandimbalance,

• Outdegree: The outdegree is the fanout of a node and
indicates the number of full rate streams a peer has to

support in the distribution topology. Since the multi-
cast data is split into smaller messages and peers may
only forward part of them, the effective outdegree can
be a non-integer value.

• Imbalance: The imbalance is defined as
stdev(outdegree) and illustrates how much the
peer’s contribution differ. A higher imbalance indi-
cates that the peers’ contribution to the system is less
balanced. Thus a fair protocol aims at providing a
small imbalance.

Performance, on the other hand, is analyzed in terms of
the more traditionaldelivery latencyanddelivery ratio.

• Delivery Latency: End-to-end delay (including re-
transmission time) from the source to the receivers, as
seen by the application. This accounts for path laten-
cies along the overlay hops, as well as queueing delay
and processing overhead at peers along the path.

• Delivery Ratio: Ratio of subscribers that have re-
ceived a packet within a fixed time window. Disabled
receivers are not accounted for.

These last two metrics are also use to illustrate the re-
silience of a protocol to high degrees of churn in the peer
population , as node failures may result in suboptimal or
interrupted delivery, and its ability to support bandwidth
heterogeneous environments. The remainder of this section
presents implementation details of the compared protocols
and describes our experiment setup. We discuss evaluation
results in Section 6.3.

6.1. Details on Protocol Implementations

We present experimental evaluation results contrasting
Magellan’s performance-centric and SplitStream’s DHT-
based [10] approaches to cooperative multicast. To pro-
vide a baseline against which to evaluate the perfor-
mance/fairness tradeoffs in Magellan, we rely on Nemo [6],
a conventional performance-centric, tree-based multicast
protocol. For this evaluation we rely on the implemen-
tation of the protocols employed in the respective papers,
Nemo [6] and FreePastry 1.3.2 [20] for SplitStream [10].
For the latter, we port the FreePastry communication layer
to our simulation environment.

For Nemo [6], the cluster degree,k, is set to 3 and the
grace period is set to 15 seconds. For SplitStream, we use
a leaf set maintenance interval of 15 seconds and a route
set maintenance interval of 225 seconds. We opted for this
configuration with intervals set to values four times lower
than those employed in [10], to give SplitStream an ability



to detect failures comparable to that of Nemo.3 The out-
degree for SplitStream nodes is limited to the number of
stripes for thefair variant and set to a value corresponding
to their available bandwidth capacity for theperformance-
optimized variant4. For Magellan, we multiply the grace
period (and all other maintenance intervals) by the number
of stripes in an effort to keep the overhead at the same level
than Nemo.

We evaluate Magellan and SplitStream with different
number of stripes (trees) - we employ S2, S4, S8 and S16 to
denote the configuration with 2, 4, 8 and 16 stripes, respec-
tively.

6.2. Experimental Setup

We performed our evaluations through detailed simula-
tion using SPANS, a locally written, packet-level, event-
based simulator. For the purpose of this evaluation, SPANS
models latency and bandwidth constraints at the link-level.

We ran simulations using GridG [28] topologies with
8115 nodes and a multicast group of 1024 members. GridG
leverages Tiers [19, 9] to generate a three-tier hierarchical
network structure, before applying a power law enforcing
algorithm that preserves the hierarchical structure. Mem-
bers are randomly attached to nodes at the lowest tier, and
a random delay between 0.1 and 80 ms is assigned to every
link. The links use drop-tail queues with a buffer capacity
of 0.5 sec. Each end-host buffers up to 200 packets waiting
for transmission, tail-dropping data packets in the presence
of congestion. We configure GridG to assign different band-
width distributions to different link types [26]. We assume
that the core of the Internet has higher bandwidth capacities
than the edges. For every link type, bandwidth is sampled
from a uniform distribution. The scenario employed and the
bandwidth ranges for each of link types are listed in Table 1.
For the purpose of our evaluation of fairness-optimized vari-
ants, we set the minimal bandwidth capacity of a peer to be
larger than one full stream rate.

Each simulation experiment lasts for 30 minutes of simu-
lation time. All peers join the multicast group by contacting
the rendezvous point at uniformly distributed, random times
during the first 300 seconds of the simulation. For all the
simulations, the warm-up interval of 24 minutes is omitted
from the figures. While the tree-based protocols enable the
multicast layer immediately after joining, SplitStream is ac-
tivated after Pastry runs for 10 minutes [10]. In an effort to
eliminate the effect of potential implementation artifacts on
the convergence time, we opted for a relatively long warm-
up interval in order to provide each evaluated protocol with

3While this increases the overhead through control-related messages, it
results also in better optimization of the underlying routing substrate.

4Both of these two variants were proposed in the original publication
of SplitStream [10], although not labeled in the same manner.

sufficient time to optimize its distribution topology.
Starting at 18 minutes and lasting to the end of the sim-

ulation, each simulation run has a membership changing
phase over which the evaluated protocols are exercised with
and without end system failures. Node failures are indepen-
dent and their time is sampled from an exponential distribu-
tion (with mean,Mean Time To Failure, equal to 60 min.).
Failed nodes rejoin shortly after with a rejoin delay sampled
from an exponential distribution with mean,Mean Time To
Repair, equal to 10 min. The two means are chosen asym-
metrically to allow, on average, 6/7 of all members to be up
during this phase. Failure rates were obtained from a pub-
lished report of field failures for networked systems [40].
The failure event sequence is generated a priori based on the
above distribution and used for all protocols and all runs.

In all experiments, we model single source multicast
streams to a group. Each source sends constant bit rate
(CBR) traffic of 1000 B payload at a rate of 10 packets per
second. The buffer size is set to 16 packets for Nemo and
Magellan, which corresponds to the usage of a 1.6-second
buffer, a realistic scenario for applications such as video
conferencing. SplitStream, on the other hand, is configured
without a bounded buffer size to avoid it from being penal-
ized, in terms of delivery ratio, by excessively long delivery
latencies on some stripes.

6.3. Experimental Results

The outdegree of the participating peers well illustrates
the fairness of a multicast protocol. Using multiple trees
distribute the forwarding load more evenly among the par-
ticipants as illustrated in Figure 8, which shows the cumu-
lative distribution function of the outdegree for Nemo, our
conventional tree-based multicast protocol, and four differ-
ent configurations of Magellan with 2, 4, 8 and 16 stripes.
Note that the outdegree of a given peer may be a non-integer
value, as the multicast data is split into smaller messages
and every peer may forward only parts of it. The outdegree
CDF of a protocol that perfectly distributes the forwarding
load among all participating peers would appear as a verti-
cal line, thus all peers having an outdegree of 1.

The observation by Castro et al. [10] on the mismatch
between conventional tree-based multicast and cooperative
environments is well illustrated by Nemo’s curve in Fig-
ure 8. Close to 50% of peers in Nemo are non-contributors
or leaves, i.e. with an outdegree of zero. Magellan’s for-
est of interweaved performance-centric trees, on the other
hand, significantly reduce the fraction of non-contributors
when compared to a basic single tree approach even with
only two stripes (i.e. two parallel trees).

Using more trees reduces the forwarding load within
each of them and thus enables more low bandwidth peers to



Scenario
High Bandwidth

Nodes 8115
Links 16450
Client-Stub 1000-15000
Stub-Stub 10000-30000
Transit-Stub 10000-50000
Transit-Transit 50000-100000

Table 1. Our simulation scenario. The bandwidth is expressed in Kbps.

0.01 0.1 1 10 100
Outdegree

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
[x

<
X

]

Nemo
Magellan S2
Magellan S4
Magellan S8
Magellan S16

Figure 8. Outdegree CDF (Simulation, high
bandwidth scenario).

participate as interior nodes. Figure 8 illustrates the increas-
ing fairness achieved by using more trees. As expected,
when the number of stripes increases, Magellan’s outdegree
graph approaches the ideal fairness scenario with a signifi-
cantly small number of non-contributors.

Using multiple distribution trees, however, may nega-
tively affect the delivery latency of a multicast protocol as
only a subset of all peers may server as an interior node
in each tree. To better understand the performance im-
pact of using multiple trees, Figure 9 shows the mean de-
livery latencies of Nemo and Magellan’s four alternative
configurations. It is clear that fair distribution of forward-
ing responsibilities comes at a cost in terms of delivery la-
tency, as Magellan’s tree construction algorithm cannot re-
cruit potential peers as internal nodes based solely on per-
formance, but must account for primary/secondary peers for
each tree. This effect is particularly pronounced when com-
paring Nemo to a two-stream Magellan, but it becomes less
significant as additional trees are added.

Figure 10 contrast the outdegree of Magellan with that of
the fair and performance-optimized variants of SplitStream.
As reported in [10], the fair variant of SplitStream, where

0.22

0.45
0.50

0.55 0.56

N
em

o

M
ag

el
la

n 
S

2

M
ag

el
la

n 
S

4

M
ag

el
la

n 
S

8

M
ag

el
la

n 
S

16

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
el

iv
er

y 
La

te
nc

y 
[s

]

Figure 9. Delivery Latency (Simulation, high
bandwidth scenario).

the outdegree of a node is limited to the number of stripes,
achieves near optimal fairness with either 2 or 16 stripes.
The minor variations from the ideal outdegree of 1 can be
explained by small differences among nodes, with some
of them unable to deliver the full rate. As expected, the
performance-based variants of SplitStream, where the out-
degree of a node is set to value corresponding to their avail-
able bandwidth, sacrifice ideal, fair load sharing for perfor-
mance, resulting in more than 60% non-contributors.With-
out sacrificing end-to-end latency or delivery ratio, Magel-
lan achieves fairness close to the fair variant of SplitStream
with nearly zero non-contributors.

Table 2 offers a more complete picture comparing Mag-
ellan and SplitStream in terms of fairness, as indicated by
imbalance and delivery ratio. Imbalance, the standard de-
viation (stdev) of the outdegree, illustrates how much the
contributions of peers differ. Again, the fair variant of
SplitStream exhibits the lowest imbalance at a good de-
livery ratio. Magellan results in less imbalance than the
performance-optimized variant of SplitStream, but consid-
erably more than SplitStream’s fair variant. For delivery ra-
tio, Magellan employs a 1.6-second receiving window, i.e.
packet delivered later than 1.6 seconds out of order will not



Protocol Stripes
2 4 8 16

Imbalance Delivery Imbalance Delivery Imbalance Delivery Imbalance Delivery
Ratio Ratio Ratio Ratio

Magellan 1.706 0.97 0.982 0.97 0.749 0.97 0.657 0.97
SplitStream P 2.626 1.00 2.590 1.00 3.234 0.92 3.436 0.54
SplitStream F 0.394 1.00 0.212 1.00 0.105 1.00 0.145 1.00

Table 2. Imbalance and Delivery Ratio (Simulation, high bandwidth scenario).

0.01 0.1 1 10 100
Outdegree

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
[x

<
X

]

Magellan S2
Magellan S16
SplitStream S2-P
SplitStream S16-P
SplitStream S2-F
SplitStream S16-F

Figure 10. Outdegree CDF (Simulation, high
bandwidth scenario). S2-P and S16-P de-
note performance-optimized tree construc-
tions schemes, i.e. the outdegree is set
according to the peer’s available bandwidth,
while S2-F and S16-F stand for the fair con-
struction scheme, i.e. the outdegree is set
equal to the number of stripes.

be accounted as successfully delivered. Despite the time
constraints, Magellan delivers on average 97% of all pack-
ets.

Although we do not enforce the receiving window for
SplitStream,which could significantly reduce its delivery
ratio, the performance-based variant of SplitStream still has
a noticeable drop in delivery ratio when the number of strips
increases. We believe this is due to the appearance of hot
spots in the network. SplitStream assumes that bottlenecks
appear only at the end hosts and does not include a mecha-
nism to detect and react to bottlenecks inside the network.
These hot spots are created as a side effect of the tree con-
struction mechanism, which connects new peers to the de-
livery tree by routing a message toward the root. Since Pas-
try optimizes its routing table based on latency, it is likely
that the join messages are routed through the core of the net-
work and consequently are responded to by a peer located
in the center of the network. Packet losses arise from the
fact that the sum of all last mile capacities may be larger

0.45

0.56

0.66

0.42

1.32

0.73

M
ag

el
la

n 
S

2

M
ag

el
la

n 
S

16

S
pl

itS
tr

ea
m

 S
2-

P

S
pl

itS
tr

ea
m

 S
16

-P

S
pl

itS
tr

ea
m

 S
2-

F

S
pl

itS
tr

ea
m

 S
16

-F

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

D
el

iv
er

y 
La

te
nc

y 
[s

]

(54%)

Figure 11. Delivery Latency (Simulation, high
bandwidth scenario). S2-P and S16-P de-
note performance-optimized tree construc-
tions schemes, i.e. the outdegree is set
according to the peers available bandwidth,
while S2-F and S16-F stand for the fair con-
struction scheme, i.e. the outdegree is set
equal to the number of stripes.

than the capacity of the core links, thus creating hot spots
inside the stub network. Using fewer delivery trees, on the
other hand, reduces this effect and consequently prevents
the system from creating hot spots.

Figures 11 and 12 compare the different configurations
of Magellan and SplitStream in terms of delivery latency
without failures and delivery ratio with failures, respec-
tively. Figure 11 shows delivery latency for the differ-
ent configurations and variants. Magellan with two strips
clearly outperforms both variants of SplitStream. The Split-
Stream variants with 16 stripes offer a lower delivery la-
tency as a side-effect of the substantial number of dropped
packets. This large number of lost packets may result, at
least in part, from the fact that the performance-based vari-
ant of SplitStream looks only at the last mile capacity of the
peer, not accounting for a bottleneck that may arise within
the network. The fair SplitStream variant reduces delivery
latency as new stripes are added. This can be explained, in
part, from the fact that using more trees distribute the load
better and reduces the effect of queues inside the network.



0.93

0.85
0.81

0.42

0.73 0.75

M
ag

el
la

n 
S

2

M
ag

el
la

n 
S

16

S
pl

itS
tr

ea
m

 S
2-

P

S
pl

itS
tr

ea
m

 S
16

-P

S
pl

itS
tr

ea
m

 S
2-

F

S
pl

itS
tr

ea
m

 S
16

-F

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
el

iv
er

y 
R

at
io

 [%
]

Figure 12. Delivery Ratio with Failures (Sim-
ulation, high bandwidth scenario). S2-
P and S16-P denote performance-optimized
tree constructions schemes, i.e. the outde-
gree is set according to the peers available
bandwidth, while S2-F and S16-F stand for the
fair construction scheme, i.e. the outdegree
is set equal to the number of stripes.

Figure 12 shows the delivery ratios achieved by the Mag-
ellan’s and SplitStream’s different configurations. Magel-
lan achieves higher delivery ratios than the two SplitStream
variants. The trees in Magellan are not disjoint, and the de-
livery ratio decreases as a consequence of the growing de-
pendencies on single nodes. For the performance-optimized
SplitStream variant, which by opting for performance over
fairness does not create disjoint trees, the same dependen-
cies on single node result in a lower delivery ratio with more
trees. The fair SplitStream variant enforces fairness and dis-
jointness the best among all the protocols. Enforcing fair-
ness, however, yields deep unbalanced trees with the result-
ing overhead on application performance.

Throughout this section, we have evaluated two setups of
SplitStream: the fairness-optimized and the performance-
optimized variant. While a combination of these two vari-
ants could be employed, e.g. by relaxing the fair variant so
that every peer contributes at most twice the basic stream
rate, the performance of any mixed approach would be
bound by that of the performance of the optimized variant
which defines the lowest achievable delivery latency. Try-
ing to improve load distribution would certainly result on in-
creased delivery latencies, toward the upper bound defined
by the performance of the “pure” fair variant. Similarly, one
could explore the range of fairness/performance tradeoff in
Magellan, by changing the penalty for non-primary trees
(see Fig. 7). In sum, both Magellan and SplitStream enable
a fine grained control of the fairness/performance tradeoff,
although Magellan starts by offering lower delivery latency,

with high resilience under churn, at comparable fairness.

7. Conclusions and Future Work

We have presented Magellan, a performance-centric
multicast protocol capable of striking a balance between
fairness and performance in heterogeneous, cooperative en-
vironments. Simulation results show that Magellan, even
when relying on a very simple heuristic for forest creation,
achieves a high degree of fairness at significantly lower cost
in terms of application performance than comparable ap-
proaches. Furthermore, Magellan is able to honor heteroge-
nous bandwidth constraints without knowing them a priori.
We have studied the cost of using multiple trees in terms
of delivery latency and illustrated its advantage in distribut-
ing the load among all participating peers. Our evaluation
illustrates that even two stripes offer a high degree of fair-
ness, while providing significantly better performance than
DHT-based, fairness-optimized counterparts. Although, we
have presented and analyzed an implementation of Magel-
lan that relies on Nemo, Magellan’s design could potentially
be implemented with any other performance-centric multi-
cast tree protocol. We have started to evaluate the impli-
cations of alternative policies for forest creation and main-
tenance, as part of our future work. Beyond this, we plan
to thoroughly explore the performance/fairness tradeoff in
overlay multicast for cooperative environment.

References

[1] J. G. Apostolopoulos. Reliable video communication over
lossy packet networks using multiple state encoding and
path diversity. InVisual Communications and Image Pro-
cessing, January 2001.

[2] J. G. Apostolopoulos and S. J. Wee. Unbalanced multiple
description video communication using path diversity. InIn-
ternational Conference on Image Processing, October 2001.

[3] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scal-
able application layer multicast. InProc. of ACM SIG-
COMM, August 2002.

[4] A. R. Bharambe, V. Padmanabhan, and S. Seshan. Sup-
porting spectators in online multiplayer games. InProc. of
the 3rd Workshop on Hot Topics in Networks (HotNets-III),
November 2004.

[5] A. R. Bharambe, S. G. Rao, V. N. Padmanabhan, S. Seshan,
and H. Zhang. The impact of heterogeneous bandwidth
constraints on DHT-based multicast protocols. InProc. of
IPTPS, February 2005.

[6] S. Birrer and F. E. Bustamante. Resilient peer-to-peer mul-
ticast without the cost. InProc. of MMCN, January 2005.

[7] S. Birrer, D. Lu, F. E. Bustamante, Y. Qiao, and P. Dinda.
FatNemo: Building a resilient multi-source multicast fat-
tree. InProc. of IWCW, October 2004.

[8] J. W. Byers, J. Considine, M. Mitzenmacher, and S. Rost. In-
formed content delivery accross adaptive overlay networks.
In Proc. of ACM SIGCOMM, August 2002.



[9] K. L. Calvert, M. B. Doar, and E. W. Zegura. Modeling inter-
net topology.IEEE Communications Magazine, 35(6):160–
163, June 1997.

[10] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. Splitstream: High-bandwidth
multicast in cooperative environments. InProc. of the 19th
ACM SOSP, October 2003.

[11] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron,
M. Theimer, H. Wang, and A. Wolman. An evaluation of
scalable application-level multicast built using peer-to-peer
overlays. InProc. of IEEE INFOCOM, March 2003.

[12] M. Castro, A. Rowstron, A.-M. Kermarrec, and P. Druschel.
SCRIBE: A large-scale and decentralised application-level
multicast infrastructure.IEEE Journal on Selected Areas in
Communication, 20(8), October 2002.

[13] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling
conferencing applications on the Internet using an overlay
multicast architecture. InProc. of ACM SIGCOMM, August
2001.

[14] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for
end system multicast.IEEE Journal on Selected Areas in
Communication, 20(8), October 2002.

[15] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. InProc. of ACM SIGMETRICS, June 2000.

[16] S. E. Deering. Multicast routing in internetworks and ex-
tended LANs. InProc. of ACM SIGCOMM, August 1988.

[17] H. Deshpande, M. Bawa, and H. Garcia-Molina. Streaming
live media over a peer-to-peer network. Technical Report
2001-20, Stanford U., 2001.

[18] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balen-
siefen. Deployment issues for the IP multicast service and
architecture.IEEE Network, 14(1), January/February 2000.

[19] M. B. Doar. A better model for generating test networks. In
Proc. of Globecom, November 1996.

[20] P. Druschel, E. Engineer, R. Gil, J. Hoye, Y. C. Hu, S. Iyer,
A. Ladd, A. Mislove, A. Nandi, A. Post, C. Reis, A. Singh,
and R. Zhang. Freepastry 1.3.2. freepastry.rice.edu, Febru-
ary 2004.

[21] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-
based congestion control for unicast applications. InProc.
of ACM SIGCOMM, August 2000.

[22] P. Francis. Yoid: Extending the Internet multicast architec-
ture. http://www.aciri.org/yoid, April 2000.

[23] J. Gemmell, E. Schooler, and J. Gray. Fcast multicast file
distribution. IEEE Network, 14(1):58–68, January 2000.

[24] L. Gharai, C. Perkins, R. Riley, and A. Mankin. Large scale
video conferencing: A digital amphitheater. InProc. 8th In-
ternational Conference on Distributed Multimedia Systems,
September 2002.

[25] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. W. O’Toole Jr. Overcast: Reliable multicasting with
an overlay network. InProc. of the 4th USENIX OSDI, Oc-
tober 2000.

[26] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:
High bandwidth data dissemination using an overlay mesh.
In Proc. of the 19th ACM SOSP, October 2003.

[27] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Main-
taining high bandwidth under dynamic network conditions.
In Proc. of USENIX ATC, April 2005.

[28] D. Lu and P. A. Dinda. Synthesizing realistic computational
grids. InProc. of SC2003, November 2003.

[29] P. Maymounkov and D. Mazieres. Rateless codes and big
downloads. InProc. of IPTPS, February 2003.

[30] D. McGregor, A. Kaplka, M. Zyda, and D. Brutzman. Re-
quirements for large-scale networked virtual environments.
In Proc. of the International Conference on Telecommunica-
tions, June 2003.

[31] T. Nguyen and A. Zakhor. Distributed video streaming. In
Proc. of Multimedia Computing and Networking, San Jose,
CA, January 2002.

[32] T. Nguyen and A. Zakhor. Distributed video streaming with
forward error correction. InProc. of Packet Video Workshop,
Pittsburgh, PA, 2002.

[33] V. N. Padmanabhan, H. J. Wang, and P. A. Chou. Resilient
peer-to-peer streaming. InProc. of IEEE ICNP, November
2003.

[34] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sri-
panidkulchai. Distributing streaming media content using
cooperative networking. InProc. of NOSSDAV, May 2002.

[35] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI:
An application level multicast infrastructure. InProc. of
USENIX USITS, March 2003.

[36] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-level multicast using content-addressable net-
works. InProc. of NGC, November 2001.

[37] A. Rowstron and P. Drushel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. InIFIP/ACM Middleware, November 2001.

[38] Z. Wang and J. Crowcroft. Bandwidth-delay based routing
algorithms. InIEEE GlobeCom, November 1995.

[39] K.-F. S. Wong, S. G. Chan, W.-C. Wong, Q. Zhang, W.-
W. Zhu, and Y.-Q. Zhang. Lateral error recovery for
application-level multicast. InProc. of IEEE INFOCOM,
March 2004.

[40] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Networked Windows
NT system field failure data analysis. InProc. of PRDC,
December 1999.

[41] A. Young, J. Chen, Z. Ma, A. Krishnamurthy, L. Peterson,
and R. Wang. Overlay mesh construction using interleaved
spanning trees. InProc. of IEEE INFOCOM, March 2004.

[42] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and
J. D. Kubiatowicz. Bayeux: An architecture for scalable
and fault-tolerant wide-area data dissemination. InProc. of
NOSSDAV, June 2001.


