
1

Modeling and Taming Parallel TCP
on the Wide Area Network

Dong Lu Yi Qiao Peter A. Dinda Fabián E. Bustamante
{donglu,yqiao,pdinda,fabianb}@cs.northwestern.edu

Department of Computer Science, Northwestern University

Abstract— Parallel TCP flows are broadly used in the high
performance distributed computing community to enhance net-
work throughput, particularly for large data transfers. Previous
research has studied the mechanism by which parallel TCP
improves aggregate throughput, but there doesn’t exist any
practical mechanism to predict its throughput. In this work, we
address how to predict parallel TCP throughput as a function of
the number of flows, as well as how to predict the corresponding
impact on cross traffic. To the best of our knowledge, we are
the first to answer the following question on behalf of a user:
what number of parallel flows will give the highest throughput
with less than a p% impact on cross traffic? We term this
the maximum nondisruptive throughput. We begin by studying
the behavior of parallel TCP in simulation to help derive a
model for predicting parallel TCP throughput and its impact
on cross traffic. Combining this model with some previous
findings we derive a simple, yet effective, online advisor. We
evaluate our advisor through simulation-based and wide-area
experimentation.

I. INTRODUCTION

Data intensive computing applications require efficient man-
agement and transfer of terabytes of data over wide area
networks. For example, the Large Hadron Collider (LHC) at
the European physics center CERN is predicted to generate
several petabytes of raw and derived data per year for ap-
proximately 15 years starting from 2005 [6]. Data grids aim
to provide the essential infrastructure and services for theses
applications, and a reliable, high-speed data transfer service is
a fundamental and critical component.

Recent research has demonstrated that the actual TCP
throughput achieved by applications is, persistently, signifi-
cantly smaller than the physical bandwidth “available” ac-
cording to the end-to-end structural and load characteristics
of the network [39], [26]. Here, we define TCP throughput as
the ratio of effective data over its transfer time, also called
goodput [35].

Parallel TCP flows have been widely used to increase
throughput. For example, GridFTP [5], part of the Globus
project [16], supports parallel data transfer and has been
widely used in computational grids [6], [26].

A key challenge in using parallel TCP is determining the
number of flows to use for a particular transfer. This number

Effort sponsored by the National Science Foundation under Grants ANI-
0093221, ACI-0112891, ANI-0301108, EIA-0130869, and EIA-0224449. Any
opinions, findings and conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect the views of
the National Science Foundation (NSF).

affects both the throughput that the transfer will achieve and
the impact that it will have on other traffic sharing links with
these data flows. While there has been significant previous
work on the understanding of parallel TCP performance, no
practical parallel TCP throughput prediction techniques exist
and there is no analysis work or system that can support the
following API call:

struct ParallelTCPChar {
int num_flows;
double max_nondisruptive_thru;
double cross_traffic_impact;

};

ParallelTCPChar *
TameParallelTCP(Address dest,

double maximpact);

Here, the user calls TameParallelTCP() with the des-
tination of her transfer and the maximum percentage impact
she is willing to have on cross traffic. The call evaluates the
path and returns the number of parallel flows she should use
to achieve the maximum possible throughput, while causing
no more impact than the specified. We refer to this as the
maximum nondisruptive throughput (MNT).

The following sections address the implementation of such
a function. With this in mind, we look for answers to the
following questions:

• How does parallel TCP affect the throughput of the user’s
transfer, the throughput of cross traffic, and the combined
aggregate throughput, in different scenarios?

• How can these throughputs be predicted, online and with
a small set of measurements, as functions of the number
of parallel TCP flows?

• How can these predictions be used to implement the
TameParallelTCP() function?

To the best of our knowledge, we are the first to propose a
practical mechanism to predict the throughput of parallel TCP
flows and to answer TameParallelTCP()-like questions
by estimating the impact on the cross traffic.

We begin by reviewing related work in Section II. In
Section III we analyze parallel TCP throughput under different
scenarios via simulations. We derive a prediction model for
parallel TCP throughput and present results from an extensive
Internet-based evaluation in Section IV. In Section V we
outline a simple algorithm to estimate the effect of parallel
TCP on cross traffic as a function of the number of flows. We



2

evaluate our algorithm through simulation and later combine
it with our approach to throughput prediction in order to im-
plement the TameParallelTCP() call. Section VI presents
our conclusions.

Throughout the paper, we use “parallelism level” inter-
changeably with “the number of parallel TCP flows”.

A version of our TameParallelTCP()
implementation is available from
http://plab.cs.northwestern.edu/Clairvoyance/Tame.html.

II. RELATED WORK

The available bandwidth of a path is defined as “the
maximum rate that the path can provide to a flow, without
reducing the rate of the rest of the traffic.” [21], [22]. Available
bandwidth has been a central topic of research in packet
networks over the years. To measure it accurately, quickly, and
non-intrusively, researchers have developed a variety of algo-
rithms and systems. Tools that measure either the bottleneck
link capacity or the available bandwidth include cprobe [9],
Remos [27], pathload [22], [23], NCS, and pipechar [24],
among others [25], [11], [10], [41], [37], [21]. Most of these
tools use packet pair or packet train techniques to conduct the
measurements and typically take a long time to converge.

Previous research [25] has shown that, in most cases, the
throughput that TCP achieves is considerably lower than
the available bandwidth. Parallel TCP is one response to
this observation. Sivakumar et al. [39] present PSockets, a
library that stripes data over several sockets and evaluate its
performance through wide-area experimentation. The authors
concluded that this approach can enhance TCP throughput and,
in certain situations, be more effective than tuning the TCP
window size. Allcock et al. [6] evaluate the performance of
parallel GridFTP data transfers on the wide-area, and applied
GridFTP to the data management and transfer service in Grid
environments.

Considerable effort has been spent on understanding the ag-
gregate behavior of parallel TCP flows on wide area networks.
Shenker et al [38] were first to point out that a small number
of TCP connections with the same RTT and bottleneck can get
their congestion window synchronized. Qiu et al. [35] studied
the aggregate TCP throughput, goodput and loss probability
on a bottleneck link via extensive ns2-based simulations. The
authors found that a large number of TCP flows with the same
round trip time (RTT) can also become synchronized on the
bottleneck link when the average size of each TCP congestion
window is larger than three packets. A detailed explanation for
this synchronization was given in [35]. Therefore the parallel
TCP flows will share the same loss rate and therefore the same
throughput.

The work most relevant to ours is that of Hacker et al [18].
The authors observe that parallel TCP increases aggregate
throughput by recovering faster from a loss event when the
network is not congested. The authors go on to propose
a theoretical model for the upper bound of parallel TCP
throughput for an uncongested path. The model produces
a tight upper bound only if the network is not congested
before and after adding the parallel TCP flows. In this case

the aggregated throughput increases linearly with the number
of parallel TCP flows.1 Clearly this reduces the utility of
the model as networks often congested to different degrees.
In Section III, we conducted simulations in six different
scenarios, and only in two scenarios (Figures 7 and 8) can
their model be applied.

Hacker et al also concluded that, in the absence of conges-
tion, the use of parallel TCP flows is equivalent to using a large
MSS on a single flow, with the added benefit of reducing the
negative effects of random packet loss. They advise application
developers not to use an arbitrary large number of parallel
TCP flows, but conclude that it is difficult, if not impossible,
to determine the point of congestion in the end-to-end path a
priori, and therefore to decide on the proper number of parallel
TCP flows.

Most TCP throughput models have limited practical utility
due to the difficulty of obtaining accurate model parameters
such as TCP loss rate and RTT . For example, Goyal et
al [17] concluded that it is hard to obtain accurate estimates
of network loss rates as observed by TCP flows using probing
methods, and that polling SNMP MIBs on the routers can do
much better. However, the MIB statistics are for the aggregate
traffic crossing a interface on the router while it is well-
known that TCP has a bias against long round trip time
connections [35]. Hence each TCP flow will have a different
loss rate unless a RED-like queue management policy is used
on the bottleneck router. The SNMP MIB approach is thus
limited to those paths where the bottleneck router is using
RED. It is also necessary in this and similar approaches
to determine the bottleneck router on the end-to-end path
(a difficult problem) and have SNMP access to it (rarely
available today). Even if this is possible, with current models
for parallel TCP we would have to know the loss rate after
adding in n parallel TCP flows. However, even with the tools
like web100 [29], [4], we can not obtain this rate by simply
measuring the network.

Our work makes the following new contributions to the state
of the art:

• We predict throughput for both congested and uncon-
gested paths as a function of the level of parallelism.

• We estimate the impact of parallel TCP on cross traffic
as a function of the level of parallelism.

• We do so using only a small number of probes and no
additional tools.

It is widely believed that, under congested situations, par-
allel TCP flows achieve better performance by effectively
behaving unfairly, stealing bandwidth from cross traffic. This
has prompted some researchers to propose modifying TCP
in order to make it better suited for parallel transfers by
considering both efficiency and fairness [12], [19], [20]. We
believe it will be difficult to persuade people to modify their
TCP implementations just to use parallel TCP more fairly.
By relying on our prediction tools, a user or administrator
should be able to trade off a transfer’s throughput and its

1Their model can also be applied if the loss rate of each TCP flow is known
a priori. However, their work does not provide any mechanisms to obtain the
a priori loss rate in practice.



3

N1

N2

N3 N4

N5

N6

Bottleneck Link

L1

L2

L3

L4

L5

Fig. 1. Topology for simulations. Cross traffic goes from node N1 to N5,
while parallel TCP flows go from node N2 to N6. Cross traffic and parallel
TCPs share the same bottleneck link L3. Each simulation lasts 100 seconds
with individual TCP cross traffic flows starting randomly during the first 8
seconds, and all parallel TCPs starting simultaneously at time 10 sec.

degree of impact on cross traffic, achieving what we refer to
as the maximum nondisruptive throughput (MNT). All these
are at application level without requiring modifications to pre-
existing TCP implementations.

III. ANALYZING PARALLEL TCP THROUGHPUT

In this section, we use simulation to understand the be-
havior of parallel TCP under different scenarios. For all our
simulation-based studies we make use of the ns2 network
simulator [2].

A. Simulation Setup

In a simulation study on aggregate TCP throughput on a
bottleneck link, Qiu et al. [35] developed a simple yet realistic
topology model for wide-area Internet connections based on
the Internet hierarchical routing structure (Figure 1). We adopt
this same topology for our simulations. Each simulation is
100 seconds long, with cross traffic randomly starting during
the first 8 seconds and parallel TCP flows all starting at
10 seconds into the simulation. Cross traffic goes from N1
to N5, while parallel TCP flows go from N2 to N6. The
bottleneck link is L3. We employ TCP Reno [13] for both cross
traffic and parallel TCP flows, as this implementation makes
use of the most widely deployed TCP congestion control
algorithm. 2 Both DropTail and Random Early Detection
(RED) [15] queue management policies are studied as they
are the most commonly used queue management policies on
the Internet. DropTail and RED have similar performance in
most our simulations. The exception is in Scenario 1. Here,
when there are more than 10 cross traffic flows, the cross traffic
dominates the queue and starves the parallel TCP flows under
DropTail policy. Unless otherwise noted, we show results for
the DropTail policy.

We use TCP flows as cross traffic because of TCP’s dom-
inance in the current Internet, as reported in the the work by
Smith et al. [40], in which TCP accounted for 90-91% of the
packets and about 90-96% of the bytes transferred in traces
collected in 1999-2000 from a educational institution (UNC)
and a research lab (NLANR).

2Comparable results were obtained using TCP Tahoe.

We analyze Parallel TCP throughput under a variety of
representative scenarios including a typical slow connection
such as cable or DSL (Scenario 1), a coast-to-coast high-speed
Internet connection (Scenario 2) and a current (Scenario 3)
and next generation global-scale Internet connections (Sce-
nario 4). Two additional scenarios (Scenarios 5 and 6) are
used to represent cases where the TCP buffer has not been
appropriately tuned [42]. Figure 2 summarizes the different
simulation scenarios. For each scenario, we simulate from 1
to 31 parallel TCP flows with 5, 10, 15, 20, 25 and 30 random
TCP cross traffic flows.

B. Simulation results

Figures 3 to 8 plot the aggregated throughput of parallel
TCP as a function of the number of flows used for the different
scenarios. Plots are shown both without (left graph) and with
(right graph) cross traffic. In the latter case, we also plot the
cross traffic’s and total throughput, i.e. the sum of both the
parallel TCP and cross traffic throughputs.

Figure 3 shows our results for Scenario 1, used to represent
a typical slow connection. We show five cross traffic flows in
this case. It is clear from the graphs that, with such a low-
latency/low-bandwidth connection, the primary benefit from
parallel TCP comes from being able to steal bandwidth from
the existing cross traffic.

The results for Scenario 2, representing a current coast-to-
coast connection with low latency and medium bandwidth,
are shown in Figure 4. As it can be seen from the plots, there
are some limited benefits from using parallel TCP without
competition in this scenario. In the presence of cross traffic,
however, parallel TCP is an even stronger competitor. Notice
also how parallel TCP allows us to increase overall throughput,
albeit marginally.

Figure 5 illustrates the benefits of parallel TCP in Scenario
3, a long latency, medium bandwidth link representing a
current global-scale, fast Internet connection. In this case there
are significant benefits to using parallel TCP even in the
absence of cross traffic. The differences in the performance
of parallel TCP under scenarios 2 and 3, without cross traffic,
can be explained using Hacker’s theory [18]: parallel TCP
recovers faster than single TCP when there is a time out. This
effect is more important as the RTT increases, because the
time out will be longer and a single TCP cannot recover fast
enough.

The benefits of using parallel TCP, with and without cross
traffic, are very clear under Scenario 4 as Figure 6 shows. The
additional throughput in the presence of cross traffic, is mainly
due to the increase in overall throughput.

The advantage of parallel TCP is even more significant in
the two scenarios representing mistuned TCP buffers. Figure 7
shows this advantage for Scenario 5, a high bandwidth and
high latency link with a small socket buffer size. The benefits
of parallel TCP are quite obvious, regardless of the amount
of cross traffic. Furthermore, these gains come at no cost to
the existing cross traffic. Parallel TCP gains performance not
only by recovering faster after a time out, but also by providing
an effectively larger buffer size. Note that the throughput of



4

Scenario L3 latency L3 Bandwidth L1,L2 Bandwidth L4,L5 Bandwidth TCP buffer
1 20 ms 1.5 Mbps 10 Mbps 10 Mbps ≥ Bandwidth*RTT
2 20 ms 100 Mbps 1000 Mbps 1000 Mbps ≥ Bandwidth*RTT
3 50 ms 100 Mbps 1000 Mbps 1000 Mbps ≥ Bandwidth*RTT
4 50 ms 1000 Mbps 10000 Mbps 10000 Mbps ≥ Bandwidth*RTT
5 50 ms 1000 Mbps 10000 Mbps 10000 Mbps 60 KB
6 20 ms 100 Mbps 1000 Mbps 1000 Mbps 60 KB

Fig. 2. Bandwidth and latency configuration for different scenarios. The latency for L1 and L2 is fixed at 4 milliseconds, while the latency for L4 and L5

is fixed at 5 milliseconds. The buffer size on each node is fixed at 25 packets. Both DropTail and RED queue management policies are simulated.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 10 20 30

number of parallel TCP flows

T
h

ro
u

g
h

p
u

t (
B

yt
e

s/
se

co
n

d
)

parallel TCP

0

50000

100000

150000

200000

250000

0 5 10 15 20 25 30 35

number of parallel TCP flow s
T

hr
ou

gh
pu

t (
B

yt
es

/s
ec

on
d)

Parallel TCP
Cross traff ic
Overall throughput

(a) No cross traffic (b) 5 cross traffic

Fig. 3. Simulation results for scenario 1: latency of L3 is 20 ms; bandwidth of L3 is 1.5 Mbps; TCP buffer is properly tuned. Refer to Figure 2 for details.

0

2000000

4000000

6000000

8000000

10000000

12000000

0 10 20 30

number of parallel TCP flows

T
hr

ou
gh

pu
t 

(B
yt

es
/s

ec
on

ds
)

parallel TCP

0

2000000

4000000

6000000

8000000

10000000

12000000

0 10 20 30

number of parallel TCP flow s

T
hr

ou
gh

pu
t (

B
yt

es
/s

ec
on

d)

Parallel TCP
Cross traff ic
Overall throughput

(a) No cross traffic (b) 10 cross traffic

Fig. 4. Simulation results for scenario 2: latency of L3 is 20 ms; bandwidth of L3 is 100 Mbps; TCP buffer is properly tuned. Refer to Figure 2 for details.

parallel TCP flows eventually flatten out as more flows are
added into the simulation.

Similar benefits from parallel TCP can be observed in our
last scenario (Figure 8). As with Scenario 5, parallel TCP can
significantly improve throughput regardless of the degree of
traffic. In this case, the impact on cross traffic increases with
increasing parallelism, but remains relatively flat.

C. Observations

The dramatically different behaviors shown in the previous
section clearly illustrate the challenges in providing a sound
TameParallelTCP()-like call. The parallel TCP and cross

traffic throughput curves adopt a wide range of forms, depend-
ing on the topology of the network and the configuration of
endpoints. In addition, even if one were to disregard the almost
prohibitively high costs of directly measuring these curves, the
cross traffic impact would be very difficult to determine.

Without a priori knowledge of the parallel TCP loss rate, the
model proposed by Hacker, et al [18] only works in uncon-
gested networks like our Scenario 5. In contrast, our model
probes the network with 2 probes with different parallelism
levels and estimates the loss rate at other parallelism levels.
This allows it to be applied in both congested and uncongested
networks. In Section IV and Section V we evaluated the effec-
tiveness of our model via large scale wide area experiments



5

0

2000000

4000000

6000000

8000000

10000000

12000000

0 10 20 30 40

number of parallel TCP flows

T
h

ro
u

g
h

p
u

t 
(B

yt
es

/s
ec

o
n

d
)

Parallel TCP

0

2000000

4000000

6000000

8000000

10000000

12000000

0 10 20 30

number of parallel TCP f low s

T
hr

ou
gh

pu
t (

B
yt

es
/s

ec
on

d)
parallel TCP

0

2000000

4000000

6000000

8000000

10000000

12000000

0 10 20 30

number of parallel TCP flow s

T
hr

ou
gh

pu
t (

B
yt

es
/s

ec
on

ds
)

Parallel TCP
Cross traff ic
Oveall throughput

(a) No cross traffic (b) 10 cross traffic

Fig. 5. Simulation results for scenario 3: latency of L3 is 50 ms; bandwidth of L3 is 100 Mbps; TCP buffer is properly tuned. Refer to Figure 2 for details.

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

50000000

0 5 10 15 20 25 30 35

number of parallel TCP flow s

T
hr

ou
gh

pu
t (

B
yt

es
/s

ec
on

d)

parallel TCP

0

10000000

20000000

30000000

40000000

50000000

60000000

0 5 10 15 20 25 30 35

number of parallel TCP f low s

T
hr

ou
gh

pu
t (

B
yt

es
/s

ec
on

d)

parallel TCP

Cross traff ic

Overall throughput

(a) No cross traffic (b) 10 cross traffic

Fig. 6. Simulation results for scenario 4: latency of L3 is 50 ms; bandwidth of L3 is 1000 Mbps; TCP buffer is properly tuned. Refer to Figure 2 for details.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

0 10 20 30

number of parallel TCP flow s

T
hr

ou
gh

pu
t (

B
yt

es
/s

ec
on

d)

parallel TCP

0

5000000

10000000

15000000

20000000

25000000

0 10 20 30

number of parallel TCP flow s

T
hr

ou
gh

pu
t (

B
yt

es
/s

ec
on

d)

parallel TCP

Cross traff ic

Overall throughput

(a) No cross traffic (b) 10 cross traffic

Fig. 7. Simulation results for scenario 5: latency of L3 is 50 ms; bandwidth of L3 is 1000 Mbps; TCP buffer is not properly tuned. Refer to Figure 2 for
details.



6

0

2000000

4000000

6000000

8000000

10000000

12000000

0 10 20 30

number of parallel TCP flow s

T
hr

ou
gh

pu
t (

B
yt

es
/s

ec
on

d)

parallel TCP

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

0 5 10 15 20 25 30 35

number of parallel TCP flow s

T
hr

ou
gh

pu
t (

B
yt

es
/s

ec
on

d)

Parallel TCP
Corss traff ic
Overall throughput

(a) No cross traffic (b) 5 cross traffic

Fig. 8. Simulation results for scenario 6: latency of L3 is 20 ms; bandwidth of L3 is 100 Mbps; TCP buffer is not properly tuned. Refer to Figure 2 for
details.

that covered various scenarios and extensive simulations.

IV. MODELING AND PREDICTING PARALLEL TCP
THROUGHPUT

In this section we combine our simulation work together
with our analytic treatment of TCP performance to develop a
model that can be used to predict the throughput of parallel
TCP flows in practice. Our approach only needs to send
two probes at different parallelism levels and record their
throughput. We don’t need any additional tools to measure
the model parameters such as round trip time and loss rate,
which can be hard to obtain in practice as we discussed in
Section I.

A. Algorithm

Mathis et al. [30] developed a simple model for single flow
TCP Reno throughput on the assumption that TCP’s perfor-
mance is determined by the congestion avoidance algorithm
and that retransmission timeouts are avoided:

BW =
MSS

RTT

√

2bp
3

(1)

Here, p is the loss rate or loss probability, and b is the number
of packets that are acknowledged by a received message.
MSS and RTT are the maximum segment size and round
trip time respectively.

Padhye et al. [34] developed an improved single flow
TCP Reno throughput model that considers timeout effects.
Assuming that the TCP buffer is not the bottleneck (i.e., that
the socket buffer size is large or “rightsized” [14]), their model
is

BW =
MSS

RTT

√

2bp

3
+ T0min(1, 3

√

3bp

8
)p(1 + 32p2)

(2)

where T0 is the timeout.
Bolliger et al [8] show that Equations 1 and 2 are essentially

equivalent with packet loss rates less than 1/100, which was
validated on the current Internet by Zhang et al [44]. Hacker et

al. [18], based on Bollinger’s findings, present a model for the
upper bound of the throughput of n parallel TCP flows. The
authors assume that both MSS and RTT are stable. Hacker’s
upper bound model can be stated as:

BWn ≤ MSS

RTT
(

1√
p1

+
1√
p2

+ · · · + 1√
pn

) (3)

where pi is the packet loss rate for flow i. However, the authors
don’t provide any mechanism to estimate the loss rate at other
parallel levels for prediction purposes. Therefore, the authors
acknowledge that the upper bound is tight only when the
network is not congested and the loss rate doesn’t increase
with more parallel TCP flows. The model only has limited
utility otherwise.

In our model, we introduce the notion of the number of
cross traffic flows, m, and assume that m does not change dra-
matically over significantly large time periods3. Both previous
work [45] and our own work on characterizing, modeling, and
predicting single flow TCP throughput [28] have shown this
assumption to be a valid one. It is widely believed that the
TCP throughput shows statistical stability over considerable
period of time. Balakrishnan et al found that end-to-end TCP
throughput to hosts often varied by less than a factor of two
over timescales on the order of many tens of minutes, and
that the throughput was piecewise stationary over timescales of
similar magnitude [7]. Myers et al examined performance from
a wide range of clients to a wide range of servers and found
that bandwidth to the servers and server rankings from the
point of view of a client were remarkably stable over time [33].
Zhang et al [45] used Operational Constancy Region (OCR) to
evaluate the temporal locality of end-to-end TCP throughput,
which is defined as length of the period where the ratio be-
tween the maximum and minimum observed TCP throughput
is less than a constant factor ρ. They found that ≈ 60% of
OCRs are longer than 1 hour when ρ = 2 and > 80% of all
OCRs exceed 3 hours when ρ = 10. However, the Internet is
dynamically changing and resampling is necessary when the

3m is only used for better presentation, but not used in our derivations. In
other words, our model doesn’t require the knowledge of m.



7

TCP throughput has significantly changed. Network Weather
Service [43] periodically probes the network to resample the
TCP throughput. Instead, our work dynamically resamples the
path at each OCR [28]. Dynamic monitoring is beyond the
scope of this paper and is addressed in our other work [28].

We also assume that all of the parallel TCP flows see the
same loss rate and have the same RTT , although both are
functions of n and m. These two assumptions have been
independently verified [35], as discussed in Section II. We
denote with pn the loss rate after adding n parallel TCP
connections, and with RTTn the round trip time at this point.

Along different paths, the value of MSS can vary ranging
from the default 536 bytes to much larger values (for example
to support 9000 byte Ethernet jumbo frames on LANs). Our
prediction model does not depend on the a priori knowledge of
MSS. We do assume, however, that this value does not change
after connection establishment. This is a valid assumption as
both sides with either use path MTU discovery at connection
establishment time [31] or use the default 576 byte path MTU.
MSS will directly follow from this.

Based on Equation 1 and the assumptions discussed above,
we developed the following parallel TCP throughput model
that essentially sums n TCP flows:

BWn =
MSS

RTTn

n√
pn

c1
√

2b
3

(4)

The TCP flows share the same RTT and loss rate and thus the
same throughput. Both pn and RTTn are actually functions
of n and m. Given that we assume m is stable during a
period of time, we treat them as functions of n alone. c1 is a
constant in the range (0, 1] that we use to represent the effects
of TCP timeouts. In the following, we assume that c1 is stable
for a path over at least short periods4, so that our model is
equivalent to Equation 2. This assumption is firmly supported
by the numerous research on the statistical stability of TCP
throughput as discussed above.

If we had a model that could compute the relationship
between pn, RTTn and the parallelism level n based on a
small set of measurements, we could then use Equation 4 to
predict the throughput for any parallelism level. This is in
essence what we do. We developed several parametric models
for this relationship based on measurements.

Morris [32] and Qiu, et al [35], [36] independently found
that the loss rate is proportional to the square of the total
number of TCP connections on the bottleneck link, namely
(m+n)2. Through wide area experiments, Hacker, et al [18],
[19] showed that RTT on a given path is stable and can be
treated as constant. Similarly, we also assume that RTT is a
constant during a short period of time. Therefore we have

pn × RTT 2

n = a × (m + n)2 + b1 (5)

where b1 is a constant. Given that m is also a constant,
Equation 5 is equivalent to a full order 2 polynomial:

pn × RTT 2

n = a × n2 + b2 × n + c2 (6)

4c1 will be canceled in the following derivations, therefore our model
doesn’t require the knowledge of c1.

where b2 = 2am and c2 = am2 + b1. To use Equation 6,
we need to send three probes at different parallelism levels to
determine the value of a, b2 and c2. Clearly, there is a trade-
off between the sophistication of the model and the number
of measurements needed to fit it. Recognizing this trade-off,
we simplified the full order 2 polynomial to a partial order 2
polynomial as shown in Equation 7. This model requires only
two probes to determine the parameters a and b.

pn × RTT 2

n = a × n2 + b (7)

Here a and b are parameters to be fit based on measurements.
We could further simplify the partial order 2 model to a linear
model that also requires two probes.

pn × RTT 2

n = a × n + b (8)

We measured the performance of these three alternatives in
a wide-area testbed [3], and found that

1) Equations 6 and 7 are better models than Equation 8.
2) The full order two polynomial model (Equation 6) is not

significantly better than the partial order 2 polynomial
(Equation 7) and can occasionally be worse due to its
sensitivity to sampling errors caused by small network
fluctuations. Another problem with the full order two
polynomial model is that it is sensitive to the choice of
probe parallelism.

3) The full order 2 model requires three probes instead
of the two needed for the linear and partial polynomial
models.

As a result, we use Equation 7 for our system and the
discussion in the rest of the paper, unless otherwise noted.

In order to use the model in practice, we have to actively
probe a path at two different parallelism levels. The procedure
is derived as follows.

We denote c1√
2b

3

in Equation 4 as C. Note that C and MSS

are all constants under our assumptions. We define a new
variable p′n:

p′n = pn

RTT 2

n

C2MSS2
= a′n2 + b′ (9)

Combining Equations 4 and 9, we obtain:

BWn =
n

√

p′n
(10)

Based on Equation 10, we could use the TCP throughput at
two different parallelism levels to predict the TCP throughput
at other levels. Let n1 and n2 be the two parallelism levels
that are probed:

BWn1
=

n1
√

p′n1

=
n1√

a′n1
2 + b′

(11)

and
BWn2

=
n2

√

p′n2

=
n2√

a′n2
2 + b′

(12)

From which we can determine:

a′ =

n2
2

BWn2

2 − n1
2

BWn1

2

n2
2 − n1

2
(13)



8

and

b′ =
n1

2

BWn1

2
− a′n1

2 (14)

By substituting a′ and b′ in Equation 9 with the expressions
in Equations 13 and 14, we can now predict the TCP through-
put for other levels of parallelism based on Equation 10.

Notice how our prediction requires only two TCP through-
put probes, one for each of the two different parallelism levels
(n1 and n2). Both the probing and the calculation process are
simple and incur little overhead, the majority of which lies
in the communication cost of the two probes. We could use
least squares fit or spline fit if we have enough probes, but the
overhead is too high to be practical.

B. Evaluation

We evaluated our model extensively through online exper-
imentation on PlanetLab [3], a planetary-scale testbed. We
randomly choose 41 distinct end-to-end paths with end nodes
located in North America, Asia, Europe and Australia. For
each path, we conduct 10 rounds of experiments using Iperf [1]
to obtain our measurements. A round of experiment starts with
two probes for prediction purposes, immediately followed by
parallel TCP transfers with up to 30 parallel TCP flows.

We adopt the mean relative error as our performance metric.
Relative error is defined as:

relativeerror =
prediction − measurement

measurement
(15)

Mean relative error on a path is the average of all the relative
prediction errors on the path. Mean relative error for a given
number of parallel TCP flows is the average of the relative
prediction errors of all the experiments for that number of
parallel TCP flows.

Figure 9 shows two examples of prediction using our model.
The graphs show the actual and predicted throughput (based
on measurements at n1 = 1 and n2 = 10). It can be seen
that, for Example 1, predictions made based on the partial
order 2 and full order 2 polynomials are virtually identical and
have similar accuracy, while the prediction curve derived using
the linear model deviates significantly from the measurement
curve. In our second example, the prediction made using the
partial order 2 polynomial and the linear model are virtually
identical and equally accurate. The prediction curve generated
by the full order 2 polynomial, however, deviates significantly
from the measurement curve.

Figure 10 shows the performance of our parallel TCP
throughput predictor using two probes at parallelism levels
n1 = 1 and n2 = 10 for a wide range of PlanetLab pairs
located all over the world. Only the partial order 2 polynomial
model is used here. Each row in the table shows our relative
prediction error for a particular Internet path between two
hosts. The prediction quality is characterized by the mean
and standard deviation of the relative errors at each of the
different parallelism levels (ranging between 1 and 30). The
results presented in this table are quite encouraging: in most
cases, our predictions guarantee us a small mean and standard
deviation of relative prediction errors.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

ID of the End-to-End pathes

m
e

a
n

 p
re

d
ic

tio
n

 e
rr

o
r

probe1-8

probe1-10

probe1-15

Fig. 11. Prediction sensitivity to the selection of probes.

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30

number of parallel TCP flows 

m
ea

n
 r

el
at

iv
e 

p
re

d
ic

ti
o

n
 e

rr
o

r

Fig. 12. Relative prediction error for parallel TCP throughput as a function
of number of parallel TCP flows.

Our predictor is relatively insensitive to the particular level
of parallelism for the probes. Figure 11 shows the mean
relative error for our predictor using (1, 8), (1, 10) and (1, 15)
parallel probes. We can see that we obtain similar performance
in all cases. Of course, it is important not to use parallelism
levels that are too close together (such as (1, 2)), as such
probes are very sensitive to small fluctuations in the network
or the existing cross traffic.

As it can be seen from Figure 12, the mean relative error
for a given number of parallel TCP flows is not related to the
number of parallel TCP flows. The figure, a scatter plot of the
mean relative error versus the number of parallel TCP flows,
shows no clear trend. The correlation coefficient R between
the mean relative prediction error and the number of parallel
TCP flows is less than 0.1.

C. Outcome

Our experimental results have shown how, using the model
derived in this section, one can effectively predict the through-
put of parallel TCP for a wide range of parallelism relying only
on two active probes at different levels of parallelism. In the
following section we try to estimate the effect of parallel TCP
in the existing cross traffic for a given level of parallelism, the
last “piece” necessary to make the TameParallelTCP()
call possible.



9

0 5 10 15 20 25 30
15

20

25

30

35

40

45

50

55

60

65

Number of Parallel TCP Flows

T
hr

ou
gh

pu
t (

M
bp

s)

planetlab7.nbgisp.com to planet2.cs.ucsb.edu

Measurement
Linear
Partial Order−2 Polynomial
Full Order−2 Polynomial

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

Number of Parallel TCP Flows

T
hr

ou
gh

pu
t (

M
bp

s)

planetlab4.cs.berkekey.edu to planet02.csc.ncsu.edu

Measurement
Linear
Partial Order−2 Polynomial
Full Order−2 Polynomial

(a) Example 1: from nbgisp.com to ucsb.edu (b) Example 2: from berkeley.edu to ncsu.edu

Fig. 9. Parallel TCP throughput prediction. In example 1, the full order 2 polynomial model and partial order 2 polynomial model work well while the linear
model deviates from the measurements. In example 2, the partial order 2 polynomial model and linear model work well while the full order 2 polynomial
model deviates away from the measurements

Source Host Destination Host Mean Standard Deviation
planetlab2.postel.org planetlab-1.cmcl.cs.cmu.edu 0.0822 0.1264
planetlab2.it.uts.edu.au planetlab1.diku.dk 0.1110 0.4061
planetlab1.millennium.berkeley.edu planetlab3.cs.uoregon.edu 0.0910 0.1325
planetlab-1.it.uu.se planet2.cs.ucsb.edu 0.1302 0.2599
ds-pl1.technion.ac.il planetslug3.cse.ucsc.edu -0.0453 0.1084
planetlab-2.cs.princeton.edu planetlab9.cs.berkeley.edu 0.07049 0.15274
planetlab2.flux.utah.edu planet1.cs.ucsb.edu -0.1081 0.2583
planetlab2.chin.internet2.planet-lab.org planetlab5.millennium.berkeley.edu 0.0211 0.0594
planetlab2.frankfurt.interxion.planet-lab.org planet1.cc.gt.atl.ga.us -0.1676 0.2887
planetlab2.bgu.ac.il planetlab1.it.uts.edu.au -0.0533 0.1264
planetlab2.cs.berkeley.edu planetslug2.cse.ucsc.edu -0.0138 0.1033
planet1.calgary.canet4.nodes.planet-lab.org planetlab2.sanjose.equinix.planet-lab.org -0.1088 0.1331
planetlab2.cs-ipv6.lancs.ac.uk planetlab4.cs.berkeley.edu -0.0518 0.1514
planetlab2.cs.uoregon.edu planet02.csc.ncsu.edu -0.0522 0.0895
planetlab2.postel.org planetlab2.it.uts.edu.au -0.1208 0.2825
planetlab2.flux.utah.edu planetlab2.chin.internet2.planet-lab.org 0.1235 0.4334
planetlab2.frankfurt.interxion.planet-lab.org planetlab2.bgu.ac.il -0.0956 0.2232
planetlab9.millennium.berkeley.edu planetlab2.cs.berkeley.edu -0.0070 0.0111
planetlab2.cs-ipv6.lancs.ac.uk planetlab2.cs.uoregon.edu -0.2581 0.1828
planetlab-2.it.uu.se planetlab3.sanjose.equinix.planet-lab.org 0.0664 0.0848
pli1-pa-3.hpl.hp.com planetlab7.millennium.berkeley.edu 0.0400 0.1542
planetlab1.cs.berkeley.edu planetlab01.ethz.ch -0.1546 0.1937
planetlab3.cs.uoregon.edu planetlab02.cs.washington.edu -0.1346 0.1068
planetlab7.nbgisp.com planet2.cs.ucsb.edu 0.0033 0.0394
planetslug3.cse.ucsc.edu planetlab9.cs.berkeley.edu -0.2750 0.2743
planet1.cs.ucsb.edu planetlab5.millennium.berkeley.edu 0.0743 0.2118
planet1.cc.gt.atl.ga.us planetlab1.it.uts.edu.au -0.1753 0.3964
planetlab4.millennium.berkeley.edu planetslug2.cse.ucsc.edu 5.1483e-04 0.0028
planetlab4.cs.berkeley.edu planet02.csc.ncsu.edu -0.0136 0.0882
planetlab2.postel.org planetlab2.cs.berkeley.edu 0.002 9 0.1051
planetlab-2.cmcl.cs.cmu.edu planetlab2.cs.uoregon.edu 0.0258 0.0664
planetlab2.flux.utah.edu planetlab3.sanjose.equinix.planet-lab.org 0.1742 0.1491
planetlab2.frankfurt.interxion.planet-lab.org planetlab2.tau.ac.il 0.03886 0.2650
planetlab9.millennium.berkeley.edu planetlab1.flux.utah.edu 0.0922 0.1430
planetlab2.cs-ipv6.lancs.ac.uk planetlab7.millennium.berkeley.edu -0.1643 0.1345
planetlab-2.it.uu.se planetlab1.enel.ucalgary.ca -0.1604 0.1833
s2 803.ie.cuhk.edu.hk planetlab01.ethz.ch -0.0375 0 .5193
planet2.pittsburgh.intel-research.net planetlab02.cs.washington.edu 0.190 0.4300
planetlab2.millennium.berkeley.edu planetlab1.it.uts.edu.au -0.1769 0.1695
planetlab1.cs.berkeley.edu planetslug2.cse.ucsc.edu 0.0200 0.0912
planetlab7.nbgisp.com planetlab5.millennium.berkeley.edu 0.0093 0.0747

Fig. 10. Relative Prediction Error Statistics for Parallel TCP Throughput.



10

V. TAMING PARALLEL TCP

There are a number of considerable challenges when trying
to estimate the effect on cross traffic with an online system
running on the end points:

1) The available bandwidth on the bottleneck link(s) is
unknown.

2) The number of cross traffic flows and their loss rates and
bandwidths on the bottleneck link(s) (the offered load)
are unknown.

3) Making use of an additional network measurement tool
(such as Pathload [22], [23]) to determine the current
load on the path is problematic since it can take a
long time to converge. In addition, the measurement
accuracy cannot be guaranteed. One would like to avoid
any additional overhead beyond the required two active
probes necessary to predict the throughput of parallel
TCP flows.

In what follows, we make simplifying assumptions about
the cross traffic’s view of the shared links on the path in order
to provide an estimate of impact on the cross traffic from the
same two probes from which we derived the throughput curve
in the previous section.

A. Algorithm

We assume that all TCP connections, including our parallel
TCP flows and the cross traffic, share the same loss rate on
a bottleneck link. This assumption is valid as long as one of
the two following conditions can be satisfied:

1) The cross traffic has an RTT similar to our parallel TCP
flows. In that case, all connections are very likely to have
their congestion window synchronized, and thus share
the same loss rate. This fact has been independently
verified by other research groups [38], [35], [36].

2) The router on the bottleneck link is using Random
Early Detection (RED) [15] as its queue management
policy, something that is becoming increasingly more
common. Research has demonstrated that with RED,
different flows roughly experience the same loss rate
(the RED rate, which depends on the queue occupancy)
under steady state [15], [36].

Our approach to determining the effect of parallel TCP on
cross traffic is based on our algorithm to estimate the parallel
TCP throughput (Section IV). The key idea is to estimate pn×
RTT 2

n as a function of the number of parallel TCP flows.
Based on the assumption that cross traffic shares the same
loss rate as parallel TCP flows, we can then use the simple
TCP throughput model (Equation 1) to estimate the relative
change to the cross traffic throughput.

Recall in Section IV that we model pn × RTT 2

n with a
partial order 2 polynomial function a × n2 + b (Equation 7).
After having obtained the two necessary measurements, we
can calculate the value of a and b and are now able to estimate
the loss rate as a function of the number of parallel TCP flows.

Relying on our assumptions, we have also obtained the loss
rate of the cross traffic as a function of the number of parallel
TCP flows n given there are m cross traffic flows (recall that
m is relatively stable, see Section IV).

Thus, based on Equation 1, we can now estimate the relative
change on each of the individual TCP throughputs without
knowing m using the following equation:

relc =

MSS×C
RTTn1×

√
pn1

− MSS×C
RTTn2×

√
pn2

MSS×C
RTTn1×

√
pn1

(16)

= 1 −
√

pn1

pn2

(17)

= 1 −
√

a × n1
2 + b

a × n2
2 + b

(18)

Here, relc is the relative throughput change for each flow.
Equation 17 shows that all the flows share the same relc,
namely the relative throughput change. MSS and C are
constants as described in Section IV, and RTTn is stable as
was shown by Hacker, et al [18].

√

pn1

pn2

can be estimated using

Equation 7. Both a and b can be obtained with two probes as
we discussed in Section IV. Note that n1 and n2 can be any
parallelism levels. In practise, however, we are most interested
in estimating the relative throughput change after adding in n2

parallel TCP flows in comparison with adding in only one TCP
flow, therefore n1 equals 1 in this case.

In practice, we add another constraint to the
TameParallelTCP() function to avoid the potential
“diminishing returns” problem where more parallel
TCP flows bring only marginal benefits. With the
TameParallelTCP() function, we can estimate the
aggregate throughput at any parallelism level. We then check
to ensure that the performance gain is over an administrator-
determined threshold after adding in an additional TCP flow.
If the performance gain is below the threshold, we do not
add more flows even when the impact on cross traffic is
within the user’s limit. This is important because we can
avoid the system overhead and network overhead by avoiding
unnecessary TCP flows.

B. Evaluation

We have done a thorough ns2-based evaluation of our cross
traffic estimator. Simulation experiments allow us to analyze
our estimator under controlled, reproducible settings including
bottleneck bandwidth and cross traffic characteristics.

Our simulation configuration was already introduced in Sec-
tion III. We consider the same set of the scenarios presented
there. As in Section III, we employ Qiu et al’s [35] simulation
topology (Figure 1). The representativeness of this topology
was discussed in previous research [35], [36].

Figure 13 shows two examples, for Scenarios 4 and 6,
of the performance of our estimator. In these cases we can
accurately predict the impact on cross traffic as a function of
the parallelism level using only two probes, the same probes
we use to predict the throughput of the parallel flows as a
function of parallelism level.

We summarize our prediction results as a CDF of the
relative error in predicting the impact on cross traffic across
all of our scenarios in Figure 14. We can see that 90%
of predictions have relative prediction error less than 0.25.



11

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

50000000

0 10 20 30 40 50

number of parallel TCP f low s

T
hr

ou
gh

pu
t (

B
yt

es
/s

ec
on

d)

parallel TCP

cross traff ic

estimated cross traff ic

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

0 10 20 30 40 50

number of parallel TCP flows

th
ro

u
g

h
p

u
t 

(B
yt

es
/s

ec
)

parallel TCP

cross traff ic

estimated cross traffic

(a) Scenario 4 with 5 cross traffic (b) Scenario 6 with 15 cross traffic

Fig. 13. Examples of cross traffic estimation with simulations in section IV.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

relative prediction error

pr
ob

ab
ilit

y 
(e

rr
or

 <
 x

)

Fig. 14. Cumulative distribution function of relative prediction error for
cross traffic estimation for all the simulations with 6 scenarios as described
in Figure 2.

The cross traffic estimator is slightly biased. It conservatively
predicts a greater impact on the cross traffic on average.

To further evaluate our cross traffic estimation algorithm,
we designed a more complicated topology with two groups of
cross traffic. The topology and the simulation configuration is
shown in Figure 15. Each simulation is 100 seconds long with
cross traffic starting randomly between 0 and 8 seconds and all
the parallel TCP flows starting at 10 seconds. We applied our
same algorithm for estimation of cross traffic. The results are
presented in Figure 16, which clearly shows the effectiveness
of our approach.

We also tested the cross traffic estimator for scenarios in
which different TCP flows have different RTTs, and where
RED is not used on the routers. Our estimator shows the right
trend of the cross traffic throughput change, though accurate
prediction cannot be guaranteed as flows with longer RTT tend
to have higher loss rate than parallel TCP flows and vice versa.
In essence, in situations in which cross traffic RTT and loss
rate is unknown, our estimator is less accurate.

N1

N2 N3 N4

N5

N8

Bottleneck Link

L1

L2
L3

L4

L7
N7

L6

N6
L5

Fig. 15. Simulation topology for further evaluations of cross traffic es-
timation. L1 and L4 have latency 3ms, L2 and L5 have latency 6ms, L6
and L7 have latency 10ms. L3 have latency 50ms and bottleneck bandwidth
1000Mbits. N3 is using RED queue management policy. Parallel TCP flows
go from N2 to N6. Cross traffic group 1 goes from N7 to N8. Cross traffic
group 2 goes from N1 to N5.

0

2000000

4000000

6000000

8000000

10000000

12000000

0 5 10 15 20 25 30 35 40

number of parallel TCP f low s

th
ro

ug
hp

ut
 (

B
yt

es
/s

ec
on

d)

parallel TCP

cross traff ic g1

estimation of g1

cross traff ic g2

estimation of g2

Fig. 16. Estimation results with 14 TCP flows in cross traffic group 1 (g1)
and 14 TCP flows in cross traffic group 2 (g2).

C. Outcome

In this section, we have demonstrated the feasibility of
predicting the impact on cross traffic of a parallel TCP
transfer as a function of the degree of parallelism. Under
the assumption that all flows share the same loss rate, we
can accurately predict the relative impact using the same two
measurement probes used to predict the throughput of the
parallel TCP transfer as a function of the degree of parallelism.

Combining these two predictions, we can implement the
TameparallelTCP() API call:

1) Execute two probes at different parallelism levels.
2) Using the probe results, estimate the parallel TCP

throughput as a function of the number of parallel TCP



12

flows n using the techniques of the previous section.
3) Using the probe results, estimate the relative impact on

cross traffic as a function of n using the techniques of
this section.

4) Conduct a binary search on the cross traffic impact
function, looking for the degree of parallelism, l, that
has the largest impact less than that permitted in the
API call.

5) Return l, and the impact and throughput predictions at
parallelism l.

The cost of this implementation is dominated by executing the
two probes.

VI. CONCLUSIONS AND FUTURE WORK

We have shown how to predict both parallel TCP throughput
and its impact on cross traffic as a function of the degree
of parallelism using only two probes at different parallelism
levels. Both predictions are monotonically changing with par-
allelism levels. Hence, the TameParallelTCP() function
can be implemented using a simple binary search. To the best
of our knowledge, our work is the first to provide a practical
parallel TCP throughput prediction tool and to estimate the
impact on the cross traffic.

We have made a few simplifying assumptions about the
cross traffic in order to predict impact on it while having no
knowledge of the actual cross traffic. While these assump-
tions are reasonable in many cases, we are now working
on how to relax them. An implementation of a version
of our TameParallelTCP() function is available from
http://plab.cs.northwestern.edu/Clairvoyance/Tame.html.

Although the Internet paths show statistical stability, the
transient stability won’t hold over the long term. Either pe-
riodical resampling as what NWS [43] does or the dynamic
sampling rate adjustment algorithm [28] can be applied for the
long term monitoring.

REFERENCES

[1] http://dast.nlanr.net/projects/iperf/.
[2] http://www.isi.edu/nsnam/ns/.
[3] http://www.planet-lab.org.
[4] http://www.web100.org.
[5] ALLCOCK, W., BESTER, J., BRESNAHAN, J., CERVENAK, A., LIMING,

L., AND TUECKE, S. GridFTP: Protocol extensions to ftp for the grid.
Tech. rep., Argonne National Laboratory, August 2001.

[6] ALLCOCK, W., BESTER, J., BRESNAHAN, J., CHERVENAK, A., FOS-
TER, I., KESSELMAN, C., MEDER, S., NEFEDOVA, V., QUESNEL, D.,
AND TUECKE, S. Data management and transfer in highperformance
computational grid environments. Parallel Computing 28 (2002).

[7] BALAKRISHNAN, H., SESHAN, S., STEMM, M., AND KATZ, R. H.
Analyzing Stability in Wide-Area Network Performance. In ACM
SIGMETRICS (June 1997).

[8] BOLLIGER, J., GROSS, T., AND HENGARTNER, U. Bandwidth model-
ing for network-aware applications. In INFOCOM (3) (1999), pp. 1300–
1309.

[9] CARTER, R., AND CROVELLA, M. Measuring bottleneck link speed in
packet-switched networks. Performance Evaluation, 28 (1996), 297–
318.

[10] DOVROLIS, C., RAMANATHAN, P., AND MOORE, D. What do packet
dispersion techniques measure? In INFOCOM (2001), pp. 905–914.

[11] DOWNEY, A. B. Using pathchar to estimate internet link characteristics.
In ACM Sigcomm (1999).

[12] EGGERT, L., HEIDEMANN, J., AND TOUCH, J. Effects of ensemble-
TCP. ACM Computer Communication Review 30, 1 (2000).

[13] FALL, K., AND FLOYD, S. Simulation-based comparisons of Tahoe,
Reno and SACK TCP. Computer Communication Review 26, 3 (July
1996), 5–21.

[14] FISK, M., AND FENG, W. Dynamic right-sizing: Tcp flow-control
adaptation. In Supercomputing (SC01) (2001).

[15] FLOYD, S., AND JACOBSON, V. Random early detection gateways for
congestion avoidance. IEEE/ACM Transactions on Networking 1, 4
(1993), 397–413.

[16] FOSTER, I. Globus web page. Tech. Rep.
http://www.mcs.anl.gov/globus, Argone National Laboratory.

[17] GOYAL, M., GUERIN, R., AND RAJAN, R. Predicting tcp throughput
from non-invasive network sampling. In IEEE INFOCOM (2002).

[18] HACKER, T., ATHEY, B., AND NOBLE, B. The end-to-end performance
effects of parallel tcp sockets on a lossy wide-area network. In 16th
IEEE/ACM International Parallel and Distributed Processing Sympo-
sium (IPDPS) (2002).

[19] HACKER, T. J., NOBLE, B. D., AND D.ATHEY, B. The effects of sys-
temic packet loss on aggregate tcp flows. In IEEE/ACM Supercomputing
(2002).

[20] HACKER, T. J., NOBLE, B. D., AND D.ATHEY, B. Improving through-
put and maintaining fairness using parallel TCP. In IEEE Infocom
(2004).

[21] HU, N., AND STEENKISTE, P. Evaluation and characterization of
available bandwidth probing techniques. IEEE JSAC Special Issue in
Internet and WWW Measurement, Mapping, and Modeling 21, 6 (August
2003).

[22] JAIN, M., AND DOVROLIS, C. End-to-end available bandwidth: Mea-
surement methodolody, dynamics, and relation with tcp throughput. In
ACM SIGCOMM (2002).

[23] JAIN, M., AND DOVROLIS, C. Pathload: A measurement tool for end-to-
end available bandwidth. In Passive and Active Measurement Workshop
(2002).

[24] JIN, G., YANG, G., CROWLEY, B., AND AGARWAL, D. Network
characterization service (ncs). In 10th IEEE Symposium on High
Performance Distributed Computing, Aug. 2001. (2001).

[25] LAI, K., AND BAKER, M. Nettimer: A tool for measuring bottleneck
link bandwidth. In USENIX Symposium on Internet Technologies and
Systems (2001), pp. 123–134.

[26] LEE, J., GUNTER, D., TIERNEY, B., ALLCOCK, B., BESTER, J., BRES-
NAHAN, J., AND TUECKE, S. Applied techniques for high bandwidth
data transfers across wide area networks. In International Conference
on Computing in High Energy and Nuclear Physics, Beijing, China,
September 2001.

[27] LOWEKAMP, B., MILLER, N., SUTHERLAND, D., GROSS, T.,
STEENKISTE, P., AND SUBHLOK, J. A resource monitoring system
for network-aware applications. In Proceedings of the 7th IEEE
International Symposium on High Performance Distributed Computing
(HPDC) (July 1998), IEEE, pp. 189–196.

[28] LU, D., QIAO, Y., DINDA, P. A., AND BUSTAMANTE, F. E. Char-
acterizing and predicting tcp throughput on the wide area network.
Tech. Rep. NWU-CS-04-34, Northwestern University, Department of
Computer Science, 4, 2004.

[29] MATHIS, M., HEFFNER, J., AND REDDY, R. Web100: Extended tcp
instrumentation for research, education and diagnosis. ACM Computer
Communications Review 33, 3 (Julyt 2003).

[30] MATHIS, M., SEMKE, J., AND MAHDAVI, J. The macroscopic behavior
of the tcp congestionavoidance algorithm. Computer Communication
Review 27, 3 (1997).

[31] MOGUL, J., AND DEERING, S. A framework for defining empirical
bulk transfer capacity metrics, rfc3148, November 1990.

[32] MORRIS, R. TCP behavior with many flows. In ICNP (1997), pp. 205–
211.

[33] MYERS, A., DINDA, P. A., AND ZHANG, H. Performance characteris-
tics of mirror servers on the internet. In INFOCOM (1) (1999), pp. 304–
312.

[34] PADHYE, J., FIROIU, V., TOWSLEY, D., AND KUROSE, J. Modeling
tcp throughput: A simple model and its empirical validation. In ACM
SIGCOMM (1998).

[35] QIU, L., ZHANG, Y., AND KESHAV, S. On individual and aggregate
TCP performance. In ICNP (1999), pp. 203–212.

[36] QIU, L., ZHANG, Y., AND KESHAV, S. Understanding the performance
of many TCP flows. Computer Networks 37, 3–4 (2001), 277–306.

[37] RIBEIRO, V., RIEDI, R., BARANIUK, R., NAVRATIL, J., AND COT-
TRELL, L. pathchirp: Efficient available bandwidth estimation for
network paths. In Passive and Active Measurement Workshop (2003).



13

[38] SHENKER, S., ZHANG, L., AND CLARK, D. Some observations on
the dynamics of a congestion control algorithm. ACM Computer
Communication Review (1990).

[39] SIVAKUMAR, H., BAILEY, S., AND GROSSMAN, R. L. PSockets: The
case for application-level network striping for data intensive applications
using high speed wide area networks. In Supercomputing (2000).

[40] SMITH, F. D., HERNANDEZ-CAMPOS, F., JEFFAY, K., AND OTT, D.
What TCP/IP protocol headers can tell us about the web. In SIGMET-
RICS/Performance (2001), pp. 245–256.

[41] STRAUSS, J., KATABI, D., AND KAASHOEK, F. A measurement study
of available bandwidth estimation tools. In Internet Measurement
Conference (2003).

[42] TIERNEY, B. Tcp tuning guide for distributed application on wide area
networks. USENIX & SAGE Login 26, 1 (2001).

[43] WOLSKI, R. Dynamically forecasting network performance using the
network weather service. Cluster Computing 1, 1 (1998), 119–132.

[44] ZHANG, Y., BRESLAU, L., PAXSON, V., AND SHENKER, S. On the
Characteristics and Origins of Internet flow rates. In ACM SIGCOMM
(2002).

[45] ZHANG, Y., DUFFIELD, N., PAXSON, V., AND SHENKER, S. On the
constancy of internet path properties. In ACM SIGCOMM Internet
Measurement Workshop (November 2001).


