
Computer Science Department

Technical Report
NWU-CS-05-03
February, 2005

Modeling Vehicular Traffic and Mobility for Vehicular Wireless
Networks

David Choffnes and Fabián E. Bustamante

Abstract

Ad-hoc wireless communication among highly dynamic, mobile nodes in a urban network is a critical
capability for a wide range of important applications including automated vehicles, real-time traffic
monitoring, and battleground communication. When evaluating application performance through
simulation, a realistic mobility model for vehicular ad-hoc networks (VANETs) is critical for accurate
results. This technical report discusses the implementation of STRAW, a new mobility model for
VANETs in which nodes move according to a realistic vehicular traffic model on roads defined by real
street map data. The challenge is to create a traffic model that accounts for individual vehicle motion
without incurring significant overhead relative to the cost of performing the wireless network
simulation. We identify essential and optional techniques for modeling vehicular motion that can be
integrated into any wireless network simulator. We then detail choices we made in implementing
STRAW.

Keywords: mobility, modeling, JiST/SWANS, simulation, street mobility, vehicular ad hoc networks,
wireless networks

Modeling Vehicular Traffic and Mobility for Vehicular Wireless
Networks

David R. Choffnes Fabián E. Bustamante
Department of Computer Science

Northwestern University
{drchoffnes,fabianb}@cs.northwestern.edu

Abstract

Ad-hoc wireless communication among highly dy-
namic, mobile nodes in a urban network is a criti-
cal capability for a wide range of important applica-
tions including automated vehicles, real-time traffic
monitoring, and battleground communication. When
evaluating application performance through simula-
tion, a realistic mobility model for vehicular ad-hoc
networks (VANETs) is critical for accurate results.
This technical report discusses the implementation
of STRAW, a new mobility model for VANETs in
which nodes move according to a realistic vehicu-
lar traffic model on roads defined by real street map
data. The challenge is to create a traffic model that
accounts for individual vehicle motion without in-
curring significant overhead relative to the cost of
performing the wireless network simulation. We
identify essential and optional techniques for model-
ing vehicular motion that can be integrated into any
wireless network simulator. We then detail choices
we made in implementing STRAW.

1 Introduction

Communication in mobile ad-hoc wireless networks
(MANETs) is the focus of extensive research due to

its ability to enable distributed applications among
mobile nodes in infrastructureless environments. Ve-
hicular ad-hoc networks (VANETs) are a particu-
larly challenging class of MANETs characterized by
nodes with relatively high mobility (speeds between
0 and 20 m/s). In addition, unlike many other mo-
bile ad-hoc environments where node movement oc-
curs in an open field (such as conference rooms and
caf́es), vehicular nodes are constrained to streets of-
ten separated by buildings, trees or other obstruc-
tions, thereby increasing the average distance be-
tween nodes and, in most cases, reducing the over-
all signal strength received at each node. Connectiv-
ity in this environment is essential for a wide range
of important applications including real-time traffic
monitoring, battleground communication and other
vehicular distributed systems.

We argue that a more realistic mobility model with
the appropriate level of detail [9] for VANETs is crit-
ical for accurate network simulation results. With
this in mind, we designed a new mobility model for
VANETs, STRAW (STreet RAndom Waypoint), that
constrains node movement to streets defined by map
data for real cities and limits their mobility according
to vehicular congestion and simplified traffic control
mechanisms.

In a separate paper [5], we are evaluating and

1

comparing ad-hoc routing performance for vehicular
nodes when using STRAW mobility in diverse urban
environments to the performance when nodes move
in an open field using the classical random waypoint
(RWP) model. Early results indicate that the perfor-
mance of wireless network protocols in urban en-
vironments is dramatically different than that in an
open-field/RWP scenario and, further, that the type
of urban environment can have a significant impact
on the performance of a protocol.

In this paper, we discuss STRAW’s design in
detail, describe a reference implementation for the
SWANS [3] network simulator and detail the per-
formance of SWANS for several interesting cases.
The following section motivates the need for car
mobility models in ad-hoc networks. In Section 3,
we describe the features of a realistic vehicular mo-
bility model. Section 4 details the implementation
of STRAW. In Section 5 we discuss and evaluate
STRAW’s performance and we conclude in Sec-
tion 6.

2 Background

Routing messages in MANETs has become the focus
of much research. Some of the routing protocols that
have achieved prominence include topology-based
protocols (e.g., DSDV [20], DSR [10], AODV [19]
and MRP [18]) that rely exclusively upon IP ad-
dresses to locate nodes and location-based protocols
(e.g., DREAM [4], GPSR [11]/GLS [14] [17]) that
use geographical position for this task.

Proposed protocols are compared against com-
peting or ideal ones in terms of metrics such as
packet delivery ratio, throughput, latency and over-
head. Due to the prohibitive cost and time constraints
of evaluating ad-hoc network protocols in real-world
deployments, most studies rely on simulators for ex-
perimentation (e.g. [15, 27, 2]).

When analyzing different protocols in simulation,
researchers often adopt a common set of configura-
tion parameters, such as:

• Nodes transmit signals that propagate with-
out error to other nodes within a radius of
250 m [13].

• Nodes move in an open field according to a ran-
dom waypoint model [26] or the Manhattan mo-
bility model [7] with arbitrary pause times and
often with arbitrary speed distributions between
0 and 20 m/s.

• The number of nodes is small (i.e.,≤ 100).

Such parameter settings are clearly inadequate for
many MANETs, and particularly for VANETs for
the following reasons:

• The relationship between distance and signal
reception between two nodes is, at best, weakly
correlated over large distances [13]. It is also
well known that radio transmission range does
not form a circle and, for commodity hardware,
rarely achieves a 250 m range in common envi-
ronments.

• Besides settings such as conventions in large
conference halls, it is difficult to imagine many
scenarios in which nodes move in a open field.
Even in such settings, node mobility is not accu-
rately modeled by random waypoints. Specif-
ically in VANETs, nodes must be constrained
to roads and adjust their velocities according
to traffic control mechanisms, speed limits and
the behavior of nearby vehicles. Further, in
VANETs, most vehicles attempt to follow paths
that minimize trip duration between origin and
destination.

2

• In VANETs, nodes in urban environments can
easily number in the thousands or tens of thou-
sands.

Recent interest in VANETs [23] [8] has encour-
aged researchers to design experiments that better
model real vehicular traffic scenarios. For exam-
ple, [12] studies the behavior of the MAC layer in
a vehicular environment using arbitrary road plans
while [25] and [24] use the CORSIM traffic mi-
crosimulator to provide mobility traces.

A small number of researchers have accounted for
street-constrained motion using real road plans in
their VANET simulations. In Saha and Johnson [22],
the authors state that a random waypoint model is
sufficiently similar to the street mobility in terms of
network connectivity. The authors reach this con-
clusion using a 500 m transmission range and an un-
specified path loss model. Further, their mobility
model does not account for realistic vehicular traffic
phenomena such as car-following and traffic control
at intersections.

In [24], the authors use CORSIM to provide a
highly accurate model of vehicular movement. How-
ever, in this case, the vehicular network simulator is
detached from the wireless network simulator, mak-
ing it difficult to close the feedback loop in applica-
tions such as “traffic advisory,” where participating
nodes may alter their routes based on real-time ob-
served traffic conditions. For example, in such an en-
vironment, the participating nodes are likely to alter
their route to reduce travel time if there is congestion
along their current routes. In this case, it is likely that
the density of participating nodes along such “faster
routes” will be higher than on slower routes, further
altering network connectivity by increasing interfer-
ence.

Many accurate models for simulating vehicular
traffic exist, so why build a new model? In wireless
network simulators, each node is treated individually

for purposes of sending and receiving messages and
repositioning the node on a field according to its mo-
bility model. Because wireless network performance
and location are tightly coupled, one cannot attain
accurate wireless network simulation results unless
the underlying mobility model is sufficiently accu-
rate. Unfortunately, in many vehicular traffic simula-
tors vehicles are treated individually only when they
enter or leave a segment; when inside a segment, all
vehicles are indistinguishable from each other. This
critical design choice necessitates an alternate traffic
model to ensure accurate wireless network simula-
tion results.

3 Vehicular Mobility Models

We now present vehicular mobility components that
can be included in a network simulator. Each com-
ponent supports variable levels of detail according
to the number of parameters that are defined for the
simulation. If tuned to empirical data, the parameters
can improve simulation accuracy, often at the cost of
increased simulation complexity and runtime.

For the purposes of this discussion, we divide
the mobility model in our simulator into an intra-
segment component, an inter-segment component
and a route management and execution component
(Fig. 1). We discuss these components in order.

3.1 Intra-segment Mobility

The intra-segment mobility component controls ve-
hicular motion from the point at which a vehicle en-
ters aroad segment, or link, (i.e., a portion of road
between two intersections) to the point at which it
exits the segment. For this component, we consider
only the well-knowncar-following modelof vehicu-
lar motion. At the simplest level, this model states
that a vehicle moves at or near the same speed as the

3

Figure 1: Illustration of vehicular mobility compo-
nents and their interactions in STRAW.

vehicle in front of it, if there is such a vehicle within
sufficient range of the current vehicle. Two impor-
tant parameters for this model are the speed of the
vehicle being followed and the space between the
followed and the the following vehicle. There are
many ways to determine this intervehicle distance,
though it is often modeled as a polynomial function
of velocity [21].

The car-following model does not specify a vehi-
cle’s behavior when there is no other (nearby) ve-
hicle to follow. We assume that if a vehicle is not
within a window of inter-vehicle spacing defined by
the car-following model, it accelerates at its speci-
fied rate until reaching the vehicle’s maximum speed
for the current segment. The acceleration rate can

be constant, dependent on the current speed or the
“type” of driver (e.g., aggressive or defensive driver,
hurried or “Sunday” driver). Similarly, a vehicle’s
maximum speed can be set to the the speed limit
of the segment being traversed, a value assigned ac-
cording to some distribution around that speed limit
or a value that is dependent on the aforementioned
“type” of driver.

The intra-segment component must also specify
how non-following vehicles behave when encounter-
ing traffic control. We consider two primary forms of
traffic control: stop signs and stoplights. Some forms
of traffic control, such as railroad crossing gates, can
be generalized to one of these types of traffic control;
others, such as yield signs and speed-limit changes
must be modeled differently. In the case of stop signs
or red stoplights, an approaching vehicle must come
to a stop. A yellow stoplight will cause a vehicle to
come to a stop only if it cannot cross the intersec-
tion before the light turns red. For all cases in which
a vehicle must come to a stop, the vehicle must de-
celerate to zero velocity before encountering the in-
tersection. This can be accomplished with a single,
global deceleration rate, a speed-dependent rate or a
rate that varies between vehicles according to some
distribution.

Another important component of intra-segment
mobility is the notion of lane changes. A vehicle can
change lanes only if there is space available in an
immediately adjacent lane. We consider two reasons
for lane changing: increasing speed and preparation
for turning.1 In the former case, if the average speed
in an adjacent lane is higher than the current lane, it
is likely that the lane change can occur. We contend
this is true because a higher average speed indicates
not only that the lane has less congestion, but that the

1Arguably, a third reason for changing lanes could be de-
scribed simply as “personal preference,” but we choose not to
discuss this model as it is difficult to model accurately.

4

inter-vehicle spacing is greater.
For the purposes of changing lanes to execute a

turn, it is quite likely that the turning vehicle will
cause the average speed of the current lane to de-
crease. In fact, in a highly congested network, there
may never be enough space to change lanes. To avoid
indefinite postponement, it is common for a driver
in one lane to allow space for a driver attempting
to change to the current lane. One can model this
scenario by implementing a “signaling” method that
causes a vehicle in the adjacent lane to make room
for the incoming vehicle with some probability.

3.2 Inter-segment Mobility

The inter-segment mobility component determines
the behavior of vehicles between road segments; i.e.,
at intersections. The inter-segment mobility compo-
nent can classify intersections according to the num-
ber of intersecting road segments, the types of road
segments, and the type of traffic control, if any, at the
intersection. In essence, the inter-segment mobility
component must perform admission control at each
intersection. The traffic-control rules vary according
to the intersection type. For the purposes of this dis-
cussion, we assume that the Route Management and
Execution component discussed in Section 3.3 has
already selected the next road segment before the ve-
hicle encounters the intersection and that the vehicle
discussed is not currently following another vehicle
when it determines the action to take at the intersec-
tion.

If there is no traffic control at an intersection,
we assume that there is a merging scenario (e.g.,
from an access ramp onto a highway). In this case,
the admission-control mechanism must determine if
there is enough space for the incoming vehicle to
enter the adjacent lane of the new road segment.
If so, the vehicle may enter; otherwise, the vehi-
cle must slow down until space becomes available.

Similar to the lane-changing component, this com-
ponent should include a mechanism to prevent in-
definite postponement.

If stop signs are present, the admission control
mechanism must consider the number of intersec-
tions containing the signs. For instance, if the in-
tersection is an “all-way” stop, a vehicle is admitted
into the next road segment only if there is room in
the next stop, and only after coming to a complete
stop and waiting until its turn to advance. To pre-
vent indefinite postponement, one may assign a total
linear ordering to streets in the intersection that de-
termine the order of release from the stopped posi-
tion. At some intersections, one road segment has a
stop sign, while cross traffic does not. In this case, a
vehicle at a stop sign can cross the intersection only
if moving to the next road segment would not cause
a collision with another vehicle (e.g., cross traffic).
Note that this condition accounts for the case where a
vehicle cannot enter an intersection because the next
road segment is already full.

If the intersection uses stoplights for traffic con-
trol, the inter-segment mobility component must
consider three cases: green, yellow and red lights. Of
these colors, there can be more than one type (e.g.,
a guarded turn signal). When a vehicle approaches
an intersection containing a red light, it should be-
gin to slow down at the location where the vehicle’s
deceleration rate curve would cause the vehicle to
stop just before the intersection. Upon encountering
a yellow light, the vehicle can cross the intersection
only if there is room on the next segment and if the
vehicle cannot safely come to a stop before the in-
tersection. Finally, upon encountering a green light,
the vehicle may cross the intersection without slow-
ing down, provided that the next road segment is not
full. If the light is green and the vehicle executes a
turn, the vehicle may proceed only if the next road
segment is not full and, in the case of a left turn,
there is no oncoming traffic; otherwise, the vehicle

5

must come to a stop at the intersection. Assuming
that the vehicle can make make the turn, it must slow
down to the maximum turning speed for that vehicle
before executing the turn.

3.3 Route Management and Execution

The Route Management and Execution (RME) com-
ponent determines the ordered set of road segments
that a vehicle will traverse during a simulation run.
It must ensure that the sequence of road segments
along a vehicles path are continuous. The segments
along a path can be chosen deterministically, sto-
chastically or a combination of both.

In this paper, we discuss two RME implemen-
tations for STRAW. The first is a simple, modi-
fied random waypoint model that requires no origin-
destination (OD) information. Unlike traditional ran-
dom waypoint models, this component determines
a vehicle’s trajectory at each intersection; namely,
a vehicle will make a turn at an intersection with a
specified probability that can be independently as-
signed to each vehicle.

The second implementation uses OD pairs and in-
terarrival times to drive the mobility in the network.
In this implementation, an OD pair is chosen for each
vehicle and routes are initially calculated according
to a minimum cost (e.g., fastest time, shortest dis-
tance). This implementation can be configured to re-
calculate a vehicle’s route if the cost of a path along
or near its precalculated route significantly changes,
thus enabling each vehicle to react to traffic informa-
tion.

Note that both implementations are independent
of the underlying vehicular mobility components.
We detail the implementation of these mobility com-
ponents in the next section.

4 Vehicular Traffic Simulation Im-
plementation

In this section, we describe the implementation-
specific elements to enable efficient interaction
among the various mobility model components. We
integrated our mobility model with the JiST/SWANS
network simulator. JiST (Java in Simulation Time) is
a discrete-event simulator that features high through-
put and automatic porting of application code to run
in simulation time [2]. SWANS (Scalable Wireless
Ad-hoc Network Simulator) is a modular and flexi-
ble wireless ad-hoc network simulator that runs atop
JiST [3]. Although our implementation is written in
Java, it can easily be ported to any language support-
ing user-defined types. Our vehicular mobility model
implementation extends interfaces provided by the
SWANS simulator in thejist.swans.field
package, including theField interface, which en-
capsulates functionality for mapping radios to loca-
tions, theMobility interface, which provides in-
terfaces for implementing the mobility model and the
Spatial interface, which provides interfaces for
locating nodes in theField. The classes that im-
plement our vehicular mobility model are contained
in thejist.swans.field.streets package.

Before discussing vehicular mobility components,
we present some basic concepts particular to our
simulation environment. In all of our simulations,
individual vehicles are identified by a unique integer
value that maps directly to the node id assigned to the
vehicle’s radio. We have also extended SWANS to
incorporate a notion of a penetration ratio; i.e., a per-
centage of vehicles in the network that are equipped
with radios. To enable integration with our network
simulator, we represent vehicles without radios sim-
ply as vehicles with radios that cannot send or re-
ceive. This enables vehicles that are not participating
in network communication to interact with all other

6

vehicles.

4.1 Model-independent implementation

This section details the implementation of model-
independent components of our vehicular mobil-
ity implementation. These components are en-
capsulated in theRoadSegment, StreetName,
Shape, Intersection andSpatialStreets
classes.

Before discussing the detailed implementation of
these classes, it is important to describe how map
data is loaded into the simulator. This is performed
by theStreetMobility abstract class, which im-
plements theMobility interface and is extended
by the RME components to determine the next road.

Upon initialization, theStreetMobility class
loads street information from files containing the
road segment information, road segment shape and
street name. Note that the following relationships
hold: each road segment has exactly one street name
and zero or one shape. Further, street names may be
assigned to one or more road segments, while shapes
are assigned to exactly one road segment. If the road
segment has no entry in the shape file, the segment
forms a straight line; else the points along the road
are described by information in the shape file. The
road segment, street name and shape data are stored
in flat files containing fixed-length records. Thus,
each road segment entry contains a pointer to its
corresponding shape record (if any) and street name
record.

When the StreetMobility constructor is
called, the user can specify, among other parame-
ters, the latitude-longitude of the bottom-left (South-
west) and top-right (Northeast) corners of the region
to which vehicle mobility should be limited. To
reduce memory consumption, only road segments
that contain both endpoints in the specified region
are loaded into the simulator. Similarly, only street

names and shapes associated with these road seg-
ments are loaded.

After each RoadSegment is loaded into the
simulator, a reference to that object is placed in
a Vector. The RoadSegment Vector allows
fast access toRoadSegments identified by its in-
dex (anint). This is particularly useful, for ex-
ample, when determining initial vehicle placement
using random road segments and for random OD
pairs. A reference to eachRoadSegment is also
loaded into a quad tree, or hierarchical grid, con-
taining aLinkedLists of Intersection ob-
jects as leaves. AnIntersection object con-
tains aLinkedList of RoadSegments, a lo-
cation representing its center (in latitude/longitude)
and a count of the number of streets. Because map
data may be imperfect, aRoadSegment is added
to an Intersection if one of its endpoints is
within a user-defined distance (5 m is usually suffi-
cient) from an existingIntersection. TheIn-
tersection class also provides fields and meth-
ods to facilitate the implementation of traffic control.
Because Java 1.4.x does not include a quad tree im-
plementation, we use theSpatialStreets class
(an extension of theSpatial class provided by
SWANS) to maintain the quad tree. The degree of
the quad tree can be specified by the user at runtime.

After loading RoadSegments and completing
the construction of the quad tree ofIntersec-
tions, theStreetMobility constructor loads
street names and shapes intoStreetName and
Shape objects. Because the number of streets and
segment shapes actually used in a simulation may
vary, but the street and shape indexes are constant
for a particular county,StreetName andShape
objects are placed inHashMap objects, where the
value of the index is the key and the reference to the
object is the value.

The RoadSegment class includes the follow-
ing fields containing information provided by the

7

USCB’s TIGER data files [16]2:

int startAddressLeft;

int endAddressLeft;

int startAddressRight;

int endAddressRight;

Location2D startPoint;

Location2D endPoint;

char roadClass;3

int numberOfLanesToStart;

int numberOfLanesToFinish;

Note that thestartPoint andendPoint val-
ues are assigned arbitrarily from theRoadSeg-
ments endpoints, but the values are consistent for
the duration of the simulation and are used to de-
termine the trajectory for each vehicle along the
segment. Also note that locations are currently
represented as two-dimensional points because the
TIGER data files do not supply altitude information.

TheRoadSegment class also contains the index
of the street name index, shape index and index in
theVector of RoadSegments as follows:

int streetIndex;

int shapeIndex;

int selfIndex;

2Note that the Tiger data files do not contain information
about whether a road segment is one way. Further, estimates
for the number of lanes and the speed limit for a segment are
inferred from its road class.

3This assists in estimating the speed limit for the segment.

TheRoadSegment class maintains several prop-
erties that aid in vehicle management within and be-
tweenRoadSegments, such as length of the seg-
ment, the maximum number of vehicles allowed on
a segment, the average vehicle size4, and following-
distance-related constants.

In addition to these constant values, theRoad-
Segment class contains properties for maintaining
runtime state about vehicles on eachRoadSeg-
ment. These include the number of vehicles on the
road segment, the number of lanes in the segment
and a linked list of vehicles for each lane in the seg-
ment:

int numberOfCars;

LinkedList carsToEnd [];

LinkedList carsToStart [];

The remaining classes mentioned in this section
are straightforward. TheStreetName class main-
tains a set ofStrings containing the street’s prefix
(e.g., N, S, E, W), name and suffix (e.g., Ln, Blvd,
etc.). TheShape class represents a multisegment
shape as an array of latitude/longitude pairs.

4.2 Initial Node Placement

Before the simulation can start, vehicles must be
placed on valid locations on the road plan for the
specified region. Currently, the simulator supports
a random placement component, implemented by
theStreetPlacementRandom class, which ex-
tends the SWANS simulator’sPlacement inter-
face. This simple component selects aRoadSeg-
ment at random, then chooses a direction and a lane
at random. To simplify the implementation, the first

4Our implementation currently supports only average vehicle
lengths but can be extended to support a distribution of vehicle
lengths, should the data become available to us.

8

vehicle in a lane is placed at the front of the lane
and subsequent vehicles assigned to that lane are
placed behind the last vehicle in the lane. All nodes
start with zero velocity. Though simple, this model
of placement is sufficiently realistic if vehicles are
provided a “warm-up” period during which vehicles
move, but no packet traffic is generated. This allows
the vehicles to reach cruising speeds and to change
streets before network performance is measured. We
routinely include a warm-up time of at least 30 sec-
onds in each of our simulation runs.

Future iterations of the node placement compo-
nent will include support for traffic flows such that
vehicles enter and exit the field at various times dur-
ing the simulation run. This implementation will also
include support for incoming flow rates at various lo-
cations.

4.3 Intra-segment mobility implementation

In this section, we detail the implementation of
our intra-segment mobility component. The imple-
mentation consists of theStreetMobility class,
which implements theMobility interface to pro-
vide a node’s position after each time step.

When the simulation starts, nodes move accord-
ing to thecar-following model such that nodes will
attempt to accelerate at a constant rate of up to 5 mph
per second to move with a speed equal to the max-
imum speed for the current driver.5 This speed is
equal to the speed limit for the current road plus a
Gaussian distributed value with a zero mean and a
(tunable) 4 mph standard deviation.6 The car will al-

5We acknowledge that acceleration rates are hardly uniform
in real life, but this simplifying assumption reduces program
and computational complexity. Future iterations of the mobil-
ity model will include more accurate acceleration curves.

6According to the NHTSA [1], traffic engineers take drivers’
perceptions into account in setting speed limits. A posted speed
limit is often set to the speed at which 85 percent of drivers travel
at or below. However, [6] reports that observed speeds are nor-

ter its speed according to the following rules:

• The car encounters an intersection and the next
road segment on which it will travel is full.In
this case, the car stops before the intersection
and remains stopped until there is room in the
next road segment.

• There is a car in front of the current car.In
this case, the node will slow down to the speed
necessary to maintain a speed-based following
distance between the current node and the node
in front of it. We use the simple formula cited
in [21]:

S = α + βV + γV 2, (1)

where

α = the vehicle length

β = the reaction time (we use 0.75 seconds)

γ = the reciprocal of twice the maximum av-
erage deceleration of the following vehi-
cle (we use the empirically-derived value,
0.0070104s2/m [21])

If the car in front of the current car is moving
faster than the current car, no speed adjustment
is necessary.

• The car encounters traffic control.In this case,
the car will slow down (at a uniform accelera-
tion) before an intersection with a red stoplight
or a stop sign; if the stoplight turns green, the
car attempts to accelerate if possible.

• The car turns onto a new street.In this case, the
car slows down before the intersection to make

mally distributed with a center at the posted speed limit. Un-
fortunately, we could not find a widely accepted mean for this
distribution.

9

the turn at a reasonable speed (5 mph), then ac-
celerates, if possible, to the highest speed it can
attain given the other constraints.

Because in our experiments nodes are constrained
to roads in downtown urban environments and there-
fore exhibit average speeds no larger that 12 m/s, we
update each node’s position once per second using
its current speed and direction. We intend to incor-
porate speed-based position updates in future itera-
tions of STRAW. Finally, it is also important to note
that lane changing has not been incorporated into our
simulator at this point.

4.4 Inter-segment mobility implementation

This section discusses the implementation of our
inter-segment mobility component. Our simulator
supports two levels of admission control at an inter-
section.

The first form of admission control simulates com-
mon traffic control mechanisms. Our simulator sup-
ports stop signs and timed traffic lights. (Lights for
guarded turns are not currently supported.) We ex-
pect that future iterations of the component will in-
clude triggered lights and guarded turns.

TheIntersection class provides traffic con-
trol functionality in our simulator. In addition to
maintaining the location of the center of the inter-
section, theIntersection object also contains
other state information, such as the list ofRoad-
Segments incident on the intersection, the number
and index of unique streets incident on the intersec-
tion and the number of streets of each road class for
this intersection. This class also contains fields to
facilitate the synchronization of nodes attempting to
cross an intersection.

The Intersection class performs admission
control via thegetPauseTime method, which re-
turns the number of seconds for which a node must

pause at the intersection. A nonzero value indicates
that a node must stop; a zero value indicates that the
vehicle may cross the intersection.

Because real-world, per-intersection traffic con-
trol information is unavailable, the simulator cur-
rently assigns traffic control according to the class
of road segments at each intersection. For exam-
ple, a stop sign controls traffic between two lo-
cal/neighborhood roads; access to the intersection
between “secondary” roads and state highways is
controlled by a timed stoplight. The types of traffic
control at various intersections is given in Table 1.
Our traffic light implementation currently supports
only two streets (up to four road segments) when us-
ing street lights. Although the simulation will run
if there are more than two streets in such an inter-
section, it will not correctly ensure that traffic flows
without collision.

If the light is red, thegetPauseTime method
returns the number of seconds until the light turns
green; otherwise, thegetPauseTime method re-
turns zero, indicating that the vehicle may cross the
intersection.

For simplicity, we used timed stoplights that turn
red and green at regular intervals that are dependent
on the simulation time. This means that all of the
stoplights for intersections of the same type are syn-
chronized, an assumption that is invalid in the real
world, in general.

If a vehicle encounters a stop sign, theget-
PauseTime method determines the vehicle’s stop
time according to the state of the intersection. In the
simplest case, if there are no vehicles currently at or
waiting to cross the intersection, the vehicle stops for
one second and then continues moving. If theIn-
tersection object has already selected a vehicle,
VA, to cross the intersection andVA has not yet done
so, a different vehicle on the same street, but on the
opposite side of the intersection fromVA, may cross.
Otherwise, the vehicle is added to the list of waiting

10

Road Class Interstate US Highway Secondary Urban/Rural Ramp

Interstate stoplight (30) stoplight (30) stoplight(15) stop sign no pause
US Highway stoplight (30) stoplight (30) stoplight (15) stop sign no pause
Secondary stoplight (45) stoplight (45) stoplight(30) stop sign stop sign

Urban/Rural no pause no pause no pause stop sign stop sign
Ramp no pause no pause no pause no pause no pause

Table 1: Table of traffic control and pause times according to intersecting street types. The column header
represents the current street type and the row header represents theintersecting street type. The values in
parentheses represents the number of seconds per green light at thatintersection.

vehicles and pauses for three seconds (allowingVA

to cross) before it can attempt to cross the intersec-
tion by callinggetPauseTime again.

To prevent indefinite postponement, theInter-
section object contains a field that specifies the
identifier of the next street on which vehicles can
cross the intersection. The “next street” is changed
after the previous street is serviced; the streets at an
intersection are serviced round robin. If there is no
contention at an intersection, however, the street with
one ore more vehicles is serviced immediately. Al-
though real drivers do not necessarily behave in such
a reasonable manner, we believe that this implemen-
tation is sufficiently accurate for modeling vehicle
interactions at stop-sign intersections.

Another type of admission control is regulated by
the capacity of the next road segment on which the
vehicle will travel. A node is not allowed to move to
the next segment unless there is enough room on that
segment. This admission control is performed only
after the traffic control admission permits the vehicle
to move to the next segment.

The addNode method in theRoadSegment
class performs admission control according to the ca-
pacity of lanes in that segment. In the current im-
plementation, this method first finds the lane with
the fewest vehicles. If there is room for the incom-
ing vehicle, the method adds the vehicle to the lane

and returns a reference to the linked list of vehicles
in that lane, for car-following purposes. If there is
not room, the method returnsnull. If a vehicle re-
ceivesnull from anaddNode call at an intersec-
tion boundary, it remains at the intersection thresh-
old until room becomes available. In particular, the
vehicle callsaddNode every 1/4 second of simula-
tion time until the method returns a valid reference.
At this point, the vehicle moves to the next segment
on its path, and the intra-segment mobility module
manages its motion.

4.5 Per-Vehicle State Information

To manage vehicular mobility efficiently, each ve-
hicle maintains state information in aStreetMo-
bilityInfo object. This state object allows the
user to configure per-vehicle settings such as its max-
imum speed, reaction time and acceleration rate, and
to maintain information vital to the car-following
and inter-segment mobility components, including
the road segment that the vehicle is currently on, the
direction it is moving, the next road segment it will
travel, the vehicle that it is following, the current
speed and the remaining distance to the end of the
current road segment.

11

4.6 Route Management and Execution

This section describes the implementations of the
Route Management and Execution (RME) compo-
nent for our STRAW mobility model. We consider
two types: simple intersegment mobility and mobil-
ity with origin-destination (OD) pairs. In the former
implementation, the next segment to which a vehicle
will move is determined stochastically at each inter-
section. In the latter one, the decision is based on
the precomputed shortest path between the vehicle’s
specified origin and destination.

4.6.1 Simple Intersegment Mobility

The simple intersegment mobility implementation
maintains a single value to determine the next seg-
ment on which a vehicle will travel: the probability
that it will turn at any given intersection. This prob-
ability can be shared among all vehicles, or can be
assigned differently to different vehicles. Although
this implementation does not represent any real car-
driving phenomenon, it is simple to implement and
incurs negligible storage and computation overhead
while producing a weak form of random waypoint
mobility.7

This component is implemented by theStreet-
MobilityRandom class, which extends theStreet-
Mobility abstract class by defining the inherited
setNextRoad method. This method returns the
next segment on the same street in the current di-
rection of motion with probability (1-p) and a road
segment on a different street (chosen at uniformly
at random) with probabilityp. The valuep for a
vehicle is maintained by theStreetMobility-

7We describe this motion as “constrained” random waypoint
because the set of possible waypoints and the set of possible tra-
jectories are constrained by the fixed street plan. This differs
from the random waypoint model in an open field, where way-
points and trajectories are chosen uniformly at random.

InfoRandom class, which extends theStreet-
MobilityInfo class.

4.6.2 Mobility with Origin-Destination Pairs

This scenario models vehicles that move from a start
point to an end point along a path that approximately
minimizes trip duration according to the speed limit
of the available roads. This implementation cur-
rently supports three types of motion: a single ori-
gin and destination for the duration of the exper-
iment, a sequence of randomly generated origin-
destination pairs and a sequence of predetermined
origin-destination pairs. In future iterations, we will
extend the simulator to support the abundance of ex-
isting empirical traffic information that is expressed
in flows of vehicles per unit time at a road segment.

When a vehicle is placed on a field and its initial
OD pair has been specified, the simulator computes
the shortest path between origin and destination. The
vehicle then follows the path until reaching the desti-
nation. If another OD pair is specified, then the new
path is calculated; otherwise, the node is considered
to have finished participating in the simulation and
is moved off the map (with its radio turned off) to
prevent interaction with other nodes.

This component uses theA* shortest pathalgo-
rithm to find a near-optimal shortest path while sig-
nificantly reducing the range of the problem space
explored by using a heuristic function that estimates
the distance to the goal. For the purposes of this com-
ponent, we use theManhattan distance(i.e., sum of
the distances along the two orthogonal axes between
origin and destination) between the current location
and the destination as the heuristic for computing the
estimated remaining distance. To reduce the num-
ber of turns along a path, and to increase the like-
lihood of a fast route, the algorithm penalizes turns
and non-interstate routes by increasing the costs of
paths meeting these criteria.

12

Mobility with OD pairs is implemented by the
StreetMobilityOD class, which implements
the StreetMobility abstract class by defin-
ing thesetNextRoad method, which returns the
next road segment along the vehicle’s current path.
The state for each vehicle is represented by the
StreetMobilityInfoOD class, which extends
the StreetMobilityInfo class to include the
destination location and the path (a linked list of road
segments) from origin to destination.

The A* search is implemented with theAS-
tarSearch class, which uses theSegmentN-
ode class to represent road segments as nodes in
a graph. TheSegmentNode class implements the
AStarNode abstract class to provide definitions for
the heuristic and cost functions. In the current im-
plementation, the cost of a particular road segment is
the estimated speed limit for that segment. In future
iterations of this component, we will include other
sources for cost analysis, such as current road and
traffic conditions.

It is important to note that the A* search is by far
the most computationally intensive part of our mo-
bility model. In the future, we will implement route
caching to improve performance in this area.

5 Performance

In this section, we provide a brief summary of
STRAW’s performance under JiST/SWANS by eval-
uating its overhead in comparison to the commonly
used open-field random-waypoint mobility mobility
model. For all of our figures, we simulated a 16-
minute experiment that included a 30-second warm-
up time and a 30-second resolution time typical of
network performance experiments. Each data point
represents the average of five simulation runs, and
error bars representing the standard deviation are in-
cluded if significant. We used the random place-

ment model described in Section 4.2 to determine
initial node placement. For STRAW mobility with
OD pairs, each time a node reached a destination,
we chose a new destination at random and computed
the shortest path to that location. These simulations
were run on a Linux server equipped with four Intel
Xeon 2 GHz processors, though the event dispatcher
is single-threaded and used only one of those CPUs.

Figure 2(a) illustrates simulation runtimes accord-
ing to numbers of nodes in the system. We com-
pare the performance of STRAW in Boston, MA and
Chicago, IL to that of the random waypoint model
in regions of similar size. As discussed in Sec-
tion 4.6.1, the “simple” STRAW mobility model in-
curs a small (approximately constant) factor of run-
time overhead compared to the random waypoint
model. The STRAW mobility with OD pairs model
requires a significantly longer execution time, which
is due to the high cost of computing shortest paths,
as we discuss later in this section. It is important to
note that runtimes for this mobility model eventually
decreased as the number of nodes increased in the
Chicago region. This occurs because there is signif-
icant congestion in the network (i.e., a traffic jam),
meaning that each node covers less distance per unit
of simulation time and thus will require fewer short-
est path searches.

Figure 2(b) illustrates simulation runtimes accord-
ing to size of the region used in the system. As
expected, the “simple” STRAW mobility model in-
curs a small (approximately constant) amount of run-
time overhead regardless of size of the region. The
STRAW mobility with OD pairs model is much more
sensitive to size, as the shortest path calculation’s
worst-case execution time isO

(

bd

)

, whereb is the
number of segments at each intersection andd is the
length of the route returned by the algorithm. Thus,
as the size of the map grows, the maximum distance
between two waypoints increases, which makesd

13

 10000

 1000

 100

 10

 1

 3200 1600 800 400 200 100 50

R
un

tim
e

(s
)

Number of Nodes

Runtime vs. Number of Nodes in Chicago and Boston (~5,000,000 m^2)

RWP (5,000,000 m^2)
STRAW Simple Chicago

STRAW OD Chicago
STRAW Simple Boston

STRAW OD Boston

(a) Effect of number of nodes on runtime for STRAW and a simple
random waypoint model (RWP).

 10000

 1000

 100

 10

 1
300.0200.0100.050.010.0

R
un

tim
e

(s
)

Size of Region (millions of m^2)

Runtime vs. Size of Region in Chicago and Boston (100 nodes)

STRAW Simple Chicago
STRAW OD Chicago

STRAW Simple Boston
STRAW OD Boston

(b) Effect of size of region on runtime for STRAW using 100 nodes.

Figure 2: Runtime performance for STRAW when varying the number of nodes and the size of the region.

larger. The curves in Fig. 2(b) show that the A*
search runtime does not increase exponentially, indi-
cating that the Manhattan distance heuristic improve
the scalability of the shortest path search.

Figure 3(a) demonstrates how the simulation’s
memory consumption varies according to the num-
ber of nodes in the system.8 We include the same
mobility models as in the previous figure. In this
case, the random waypoint model, which does not
load any map data, provides a baseline for the mem-
ory consumption in STRAW. Notice that the number
of nodes in the system has much smaller effect on
memory consumption than it does on runtime. This

8Note that we use the Java API’s memory reporting func-
tions to determine memory consumption. Due to Java’s garbage
collection implementation, it is difficult to determine how much
allocated memory is actually being consumed, though the num-
bers represent an upper bound to memory consumption. We
attribute anomalies in the memory consumption graph to this
property, not to any intrinsic properties of STRAW or the
SWANS simulator.

indicates that memory is not a significant factor when
scaling the system to large numbers of nodes.

Figure 3(b) shows that the most significant fac-
tor for memory consumption is the number of road
segments in the test region, which is directly corre-
lated to the size of the region. The curves indicate
that there is a small amount of memory overhead in-
curred to perform the shortest path calculations, but
that memory consumption for both STRAW mobil-
ity models is directly proportional to the size of the
region. In fact, when loading map data for the en-
tire city of Chicago (230 square miles containing
157,120 road segments, not shown), memory con-
sumption was approximately 92 MB. Although the
size of the data structures supporting STRAW varies
during the execution, the 92 MB value yields approx-
imately 58 bytes of memory perRoadSegment, on
average.

The results of our experiments demonstrate that,
in general, one can successfully model large-scale

14

10.0

5.0

4.0

3.0

2.0

1.0

0.5

 3200 1600 800 400 200 100 50

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

Number of Nodes

Memory Consumption vs. Number of Nodes in Chicago and Boston (~5,000,000 m^2)

RWP (5,000,000 m^2)
STRAW Simple Chicago

STRAW OD Chicago
STRAW Simple Boston

STRAW OD Boston

(a) Effect of number of nodes on memory consumption for STRAW and
a simple random waypoint model (RWP).

15.0

10.0

5.0

4.0

3.0

2.0

1.0
300.0200.0100.050.010.0

M
em

or
y

co
ns

um
pt

io
n

(M
B

)
Size of Region (millions of m^2)

Memory Consumption vs. Size of Region in Chicago and Boston (100 nodes)

STRAW Simple Chicago
STRAW OD Chicago

STRAW Simple Boston
STRAW OD Boston

(b) Effect of size of region on memory consumption for STRAW.

Figure 3: Memory performance for STRAW when varying the number of nodes and the size of the region.

realistic vehicular motion on commodity hardware.
Although STRAW with OD pairs does not scale as
well as other mobility models, its worst-case perfor-
mance is bounded by the finite capacity of the under-
lying road plan.

6 Conclusion and Future Work

This paper described the design principles and one
particular implementation of a realistic vehicular
mobility model for use in a wireless network sim-
ulator. We discussed the motivation for including a
realistic mobility model for correctly evaluating the
performance of vehicular ad-hoc networks. Then
we identified implementation-independent features
of vehicular mobility models and proposed a func-
tional decomposition of vehicular mobility models
into three components: intra-segment mobility, inter-
segment mobility and route management and execu-
tion. In this manner, each component can be devel-

oped and enhanced independently to improve real-
ism.

We detailed our implementation of the STRAW
(STreet RAndom Waypoint) vehicular mobility
model and its supporting components, such as the
street placement model, the car-following intra-
segment mobility implementation, basic traffic con-
trol implementations and the route management and
execution implementations. Based on this refer-
ence implementation, we demonstrated that STRAW
mobility provides reasonable runtimes and memory
consumption that scales fairly well with the size of
the simulation.

The described model is a significant improvement
over the random waypoint model and other similar
vehicular mobility models. There are, nonetheless,
several important details that may further improve
the realism of the mobility model. For example,
most empirical traffic data concerns traffic flows; i.e.,
counts of vehicles entering (and/or exiting) a road

15

segment per unit time. Another important aspect of
vehicular motion is lane changing. In the future, we
will implement flows of traffic, lane changing and
we will ensure that vehicles are located in the cor-
rect lane before turning at an intersection, for ex-
ample. We are also interested in implementing the
capability to calculate the shortest path between ori-
gin and destination by including the current average
vehicle speed on a segment to determine the cost
of a segment. Finally, we will continue to improve
STRAW’s memory and runtime performance.

References
[1] Speed Management Work Plan, 1997.
[2] BARR, R. An efficient, unifying approach to simulation

using virtual machines. PhD thesis, Cornell University,
2004.

[3] BARR, R. Swans - scalable wireless ad hoc network sim-
ulator. April 2004.

[4] BASAGNI, S., CHLAMTAC , I., SYROTIUK , V. R., AND
WOODWARD, B. A. A distance routing effect algorithm
for mobility (dream). InProc. of ACM/IEEE MobiCom
(1998).

[5] CHOFFNES, D. R., AND BUSTAMANTE, F. E. An in-
tegrated mobility and traffic model for vehicular wireless
networks. In preparation, 2005.

[6] CLARKE , R. The distribution of deviance and exceeding
the speed limit.Br J Criminol 36, 2 (1996), 169–181.

[7] F. BAI , N. SADAGOPAN, A. H. Important: A framework
to systematically analyze the impact of mobility on perfor-
mance of routing protocols for adhoc networks. InProc.
of IEEE INFOCOM(2003).

[8] GUIZZO, E. Network of traffic spies built into cars in at-
lanta. IEEE Spectrum(April 2004).

[9] HEIDEMANN , J., BULUSU, N., ELSON, J., IN-
TANAGONWIWAT, C., CHAN LAN , K., XU, Y., YE, W.,
ESTRIN, D., AND GOVINDAN , R. Effects of detail in
wireless network simulation. InProc. of SCS Multiconfer-
ence(2001).

[10] JOHNSON, D. B., AND MALTZ , D. A. Dynamic source
routing in ad hoc wireless networks. InMobile Computing,
Imielinski and Korth, Eds., vol. 353. Kluwer Academic
Publishers, 1996.

[11] KARP, B., AND KUNG, H. T. Gpsr: greedy perime-
ter stateless routing for wireless networks. InProc. of
ACM/IEEE MobiCom(2000).

[12] KORKMAZ , G., EKICI , E., ÖZGÜNER, F., AND

ÖZGÜNER, U. Urban multi-hop broadcast protocol for
inter-vehicle communication systems. InProc. of ACM
VANET(2004).

[13] KOTZ, D., NEWPORT, C., GRAY, R. S., LIU , J., YUAN ,
Y., AND ELLIOTT, C. Experimental evaluation of wireless
simulation assumptions. InProc. of ACM MSWIM(2004).

[14] L I , J., JANNOTTI , J., COUTO, D. S. J. D., KARGER,
D. R., AND MORRIS, R. A scalable location service for
geographic ad hoc routing. InProc. of ACM/IEEE Mobi-
Com(2000).

[15] MCCANNE, S., AND FLOYD , S. ns Network Simulator.
http://www.isi.edu/nsnam/ns/.

[16] M ILLER , C. L. UA census 2000 TIGER/Line files techni-
cal documentation, April 2002.

[17] MORRIS, R., JANNOTTI , J., KAASHOEK, F., LI , J.,AND
DECOUTO, D. Carnet: a scalable ad hoc wireless network
system. InProc. of ACM SIGOPS European Workshop
(2000).

[18] NAIN , D., PETIGARA, N., AND BALAKRISHNAN , H. In-
tegrated routing and storage for messaging applications in
mobile ad hoc networks.Mob. Netw. Appl. 9, 6 (2004),
595–604.

[19] PERKINS, C. Ad hoc on demand distance vector (aodv)
routing, 1997.

[20] PERKINS, C., AND BHAGWAT, P. Highly dynamic
destination-sequenced distance-vector routing (DSDV) for
mobile computers. InProc. of ACM SIGCOMM(1994).

[21] ROTHERY, R. W. Car following models. InTrac Flow
Theory (1992), Transportation Research Board, Special
Report 165.

[22] SAHA , A. K., AND JOHNSON, D. B. Modeling mobility
for vehicular ad-hoc networks. InProc. of ACM VANET
(2004).

[23] SMITH , T. Auto makers to create a car-to-car wlan by
2006. The Register (www.theregister.co.uk), December
2004.

[24] WU, H., FUJIMOTO, R., GUENSLER, R., AND HUNTER,
M. Mddv: a mobility-centric data dissemination algorithm
for vehicular networks. InProc. of ACM VANET(2004).

[25] Y IN , J., ELBATT, T., YEUNG, G., RYU , B., HABER-
MAS, S., KRISHNAN, H., AND TALTY, T. Performance
evaluation of safety applications over dsrc vehicular ad hoc
networks. InProc. of ACM VANET(2004).

[26] YOON, J., LIU , M., AND NOBLE, B. Sound mobility
models. InProc. of ACM/IEEE MobiCom(2003).

[27] ZENG, X., BAGRODIA, R., AND GERLA, M. Glomosim:
a library for parallel simulation of large-scale wireless net-
works. InProc. of PADS(1998).

16

