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Abstract

While P2P systems benefit from large numbers of

interconnected nodes, each of these connections provides

an opportunity for eavesdropping. Using only the con-

nection patterns gathered from 10,000 BitTorrent (BT)

users during a one-month period, we determine whether

randomized connection patterns give rise to communities

of users. Even though connections in BT require not only

shared interest in content, but also concurrent sessions,

we find that strong communities naturally form – users

inside a typical community are 5 to 25 times more likely

to connect to each other than with users outside. These

strong communities enable guilt by association, where

the behavior of an entire community of users can be

inferred by monitoring one of its members. Our study

shows that through a single observation point, an attacker

trying to identify such communities can uncover 50% of

the network within a distance of two hops. Finally, we

propose and evaluate a practical solution that mitigates

this threat.

1. Introduction

P2P has enabled a wide range of Internet applica-

tions ranging from large-scale data distribution to video

streaming and telephony. While much of the strength of

the P2P model lies in large numbers of interconnected

nodes, their connections offer multiple opportunities

for eavesdropping. In this paper, we show that these

connections erode privacy in a way that is ignored by

most distributed systems and invisible to end users.

This work focuses on the BitTorrent (BT) file-sharing

network where peers connect on the basis of common

and concurrent interest in the same content, rather than

on friendship, common language or geographic proxim-

ity. Using connection patterns gathered during a one-

month period (comprising a stable population of 10,000

BT users), we investigate the existence of communities –

collections of peers significantly more likely to connect

to each other than to a randomly selected peer. We show

that strong communities form naturally in BT, with users

inside a typical community being 5 to 25 times more

likely to connect to each other than with outside users.

Historically, this ability to classify users has been

abused by third parties in ways that violate individual

privacy. The existence of strong communities enables
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guilt by association, where the behavior of an entire

community of users can be inferred by monitoring one

of its members. We demonstrate that, through a single

observation point, an attacker trying to identify such

communities can reveal 50% of the measured network

using only knowledge about a peer’s neighbors and their

neighbors (i.e., peers within two hops of the attacker).

Further, an attacker monitoring only 1% of the network

can correctly assign users to their communities of interest

more than 86% of the time. Finally, we show how

to mitigate this threat by adding between 25 and 50%

additional random connections.

The remainder of the paper is structured as follows.

Section 2 describes how to identify communities of users

based on BT connection information. We show that

these communities of shared interest can be exploited

in a guilt-by-association attack in Sec. 3. To mitigate

this threat, Sec. 4 discusses an approach that weakens

and disrupts community analysis by adding random

connections. We cover related work in Sec. 5, and

conclude in Sec. 6.

2. Communities in BitTorrent

In this section, we describe our dataset, which contains

connection information for 10,288 peers during a one-

month period. We use this information to form a graph

and analyze whether there are distinct communities in

which users connect to each other more often than to

users outside the community.

2.1 Dataset

The data used in this study was collected from BT

users during the 31 days of March, 2008. Our dataset

contains the endpoints and durations of P2P connections

from each monitored host. In BT, a connection between

users means they share interest in some content; how-

ever, we do not collect any information that identifies the

particular content.

We restrict our analysis to a stable set of peers during

the measurement period. Specifically, we filter our

dataset to contain data only for hosts that have appeared

in our records before March 1, 2008 and after March 31,

2008 (based on data from July 15, 2007 to December 11,

2008). We are left with 10,288 users, with 3,029 online

users per day and 10,162 connections between them.

From this dataset, we create graphs of the connections

between peers. Namely, for each day of the month

we generate a graph, where each node is a peer that

is online during that day and each edge indicates that



there was at least one connection established between

the corresponding peers during that day. To avoid issues

with users that connect at regular intervals (e.g., every

Saturday), we aggregate the information into four weekly

graphs. These graphs consist of weighted edges where

the weight wij between nodes i and j indicates how

many days this pair establishes a connection.

2.2 Extracting Communities

In social networks, individuals decide with whom they

want to establish connections, so communities naturally

appear. These communities are usually a reflection of

past or present geographical colocation, shared interests,

or co-membership in organizations, and manifest them-

selves in the network as groups of nodes that are more

densely connected to each other than we would expect

by random chance [1, 21].

In contrast, nodes in many P2P networks, including

BT, establish connections according to a protocol that

selects peers at random from a pool of eligible hosts.

Intuitively, this randomness might disrupt opportunities

for community structure in P2P networks. However,

much as in social networks, the existence of a connection

between two users in a P2P network is a reflection of

shared interest – in BT, a connection indicates concurrent

shared interest in content. We now show this shared

interest is sufficient to form strong communities of users

in the BT network.

A successful approach for solving the community

identification problem is based on the maximization

of a quality function M, usually called modularity

[15]. For a given partition P of a weighted graph into

communities, the modularity is defined as

M(P) =
1

2L

∑

ij

[

wij −
sisj

2L

]

δmimj
(1)

where the sum is over all pairs of nodes, wij is the weight

of edge (i, j), si is the sum of the weights of all of node

i’s edges, L =
∑

i si, mi is the community to which

node i belongs (in partition P), and δij is the Kronecker

symbol (δab = 1 if a = b and δab = 0 otherwise).

The modularity function is a relative measure of how

much edge weight falls within communities, as opposed

to between communities. If there were no communities

in the network, the total connection strength si of each

node would be evenly distributed among all the other

nodes, so that the weights wij would be proportional

to si and sj . Positive modularities indicate systematic

deviations from the perfectly homogeneous null model.

Otherwise, modularity is nearly zero for a random parti-

tion of the nodes into communities, when all nodes are in

the same community, or when each node is in a different

community.

The problem of optimizing modularity to detect com-
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Figure 1: Density of connections within and between communities

(relative to the average density of connections in the network)

in a week-long network graph. Each row (column) corresponds

to a community, and the height (width) indicates the size of

the corresponding community. The density of connections within

communities is 5 to 25 times higher than between communities.

munities in graphs is NP-hard, since the space of possible

partitions of nodes into communities scales faster than

any power of the system size [3]. We use the heuristic

approach proposed by Duch et al. [9] to efficiently

explore the space of possible partitions, as the tech-

nique provides a compromise between accuracy and

speed [7]. We found its results were nearly identical to

other randomized heuristic algorithms such as simulated

annealing [10], and as we show in Sec. 4 it produces

consistent communities [14] across multiple runs for the

vast majority of nodes.

We use the extremal optimization method to inves-

tigate the community structure of the week-long graph

that spans from March 22-28. Fig. 1 shows the density

of peer connections that are inside and outside of their

communities. The density within communities is 5 to

25 times higher than between communities. Although

suggestive, these values do not necessarily mean that

the communities we identify are statistically significant

[12]. To address this issue, we compare our empirical

results with an ensemble of randomized networks in

which users connect with a uniform probability to each

other (preserving the number of connections for each

user). We find that the maximum modularity of the real

graph is M = 0.439, whereas the average maximum

modularity of the randomized networks is M = 0.168
with a standard deviation of 0.0012. With the real

modularity more than 250 standard deviations larger

than the random expectation (z > 250), we can safely

conclude that the discovered communities are significant.

For comparison, the modular structure of the world-

wide air transportation network has z ≈ 430, whereas

the modularity of the Internet at the autonomous system

level has z ≈ 80 [11, 13].

3. Community-Based Privacy Attacks

The BT network is already under privacy-intrusive at-
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tacks that entail using trackers and participating (rogue)

clients to identify users that share particular content (e.g.,

to detect violation of copyrights) [19]. These attacks are

limited by a number of factors, such as the number of

trackers and torrents that must be monitored and rogue

clients that must be run. In this section, we describe

an attack that eliminates many of these restrictions by

exploiting the BT community structure.

As we demonstrated in previous sections, nodes in the

BT network form well-defined communities of shared

interest. Given this, an attacker who identifies the content

that a BT user is sharing can determine that all users

in the same community are doing the same without

monitoring them directly. We refer to this as a guilt by

association attack – as first proposed by Cortes et al. [5]

for identifying fraudulent callers in a phone network. We

will show how this enables a small number of attackers

to classify large numbers of peers.

To realize this attack, we assume a threat model that

comprises two phases. First, the attacker discovers as

many connections as possible, then uses this information

to identify communities of users that share interests.

Because monitoring every P2P user is intractable, a

viable alternative is to use a local discovery method to

uncover the structure and the patterns of connections

between users. For example, an attacker can deploy

a number of participating clients to infiltrate the P2P

network or sniff packets from a number of monitored

hosts to observe connections.

In the second phase, the attacker extracts communities

of shared interest for guilt by association. This can be

accomplished using the same heuristic for finding modu-

larity in the network discussed in Sec. 2.2. Because their

analysis may be based on incomplete information, we

study the effectiveness of classification in this context.

3.1 Discovering user connections

There are several methods that attackers might use

to monitor the downloading activity of BT users. For

instance, they can monitor information collected by

trackers, acquire sets of peers connected to their neigh-

bors via the Peer Exchange (PEX) protocol [6] or crawl

the BT DHT for lists of peers connected to a torrent.

In the case of monitoring trackers, an attacker could

essentially reveal the entire network of connections,

making it trivial to determine the community structure

of users. However, recent developments, such as the

popular tracker site The Pirate Bay moving entirely to

DHT-based trackers [20], impact the effectiveness of

this approach. To determine the limits of the guilt-

by-association attack strategy, we analyze a worst-case

scenario for attackers, where an incomplete view of the

connectivity patterns in BT is revealed.

To this end, we model an attacker that crawls the
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(b) Exposed edges.

Figure 2: Fraction of exposed nodes and edges when a set of N =

1, 2, 4, 8, 16, 32, 64 attackers can monitor all nodes and edges within

a distance d during one week. Attacking nodes selected uniformly at

random. Symbols denote average over 100 Monte Carlo realizations

and whiskers denote 95% confidence intervals.

BT network to obtain connectivity information. In

particular, an attacker implements a breadth-first search

(BFS) approach to find all users within a distance d of a

rogue client, as acquired through the PEX protocol. By

using multiple rogue clients, the attacker should be able

to increase the coverage of peer connections.

To demonstrate the effectiveness of such an attack

strategy, we select N = 1, 2, 4, 8, 16, 32, 64 nodes uni-

formly at random from each of the weekly BT networks

and determine the fraction of nodes that they could

collectively monitor within a distance d of all attackers.

We repeat this Monte Carlo sampling 100 times to obtain

reliable estimates of how much information a small set

of attacking nodes could gather with such an approach.

Figure 2(a) shows the fraction of exposed nodes for

a different number of attackers within a monitoring

distance d. In this case, a single attack node observes, on

average, over 70% of all nodes within a distance d ≤ 3
and a coordinated attack mounted by a small 1% of nodes

observes, on average, over 80% of all nodes within a

distance d ≤ 2.

Of course, to optimize their effectiveness, attackers

exploiting a BFS strategy would try to connect to as

many users as possible to be able to monitor, first-hand,

as much of the network as possible. We demonstrate the

effectiveness of highly connected attackers by selecting

the N = 1, 2, 4, 8, 16, 32, 64 most connected nodes from

each of the weekly BT networks to determine the fraction

of nodes that they could collectively monitor within a

distance d of all of the attackers. Figure 3(a) shows

the fraction of exposed nodes for a different number of

attackers within a monitoring distance d, in this case for

highly connected attackers. Here, a single attack node

can observe over 80% of the network within a distance

d ≤ 2 and almost all of the network within a distance

d ≤ 3. As the figure shows, monitoring coverage grows

with the fraction of attack nodes.

As these strategies illustrate, an attacker can reveal a

large portion of the BT network’s connectivity patterns

without centralized information. Now we examine how
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(b) Exposed edges.

Figure 3: Fraction of exposed nodes and edges when a small set of

N = 1, 2, 4, 8, 16, 32, 64 attackers can monitor all nodes and edges

within a distance d during one week. Attacking nodes are the set of N

nodes with the largest degree.

this incomplete information can be used to determine

community structures.

3.2 Detecting community structure

In the next step of the guilt-by-association attack,

the attackers attempt to identify communities of shared

interests. With access to information about the whole

network, the community detection algorithm described

in Sec. 2.2 accurately identifies communities. We now

address how accurate community detection can be when

using incomplete information. Specifically, we measure

the probability p that two nodes are classified in the

same community in the full network given that they are

classified in the same community in the partial network.

First, we address how to confidently assign users i

and j to the same community given that our community

detection algorithm is nondeterministic. Our approach

is to run extremal optimization R times to obtain high-

modularity partitions {P1, P2, . . . , PR}. We then as-

sume that users i and j can be confidently associated with

each other if they are assigned to the same community

at least τ times. We choose R = 10 and explore two

different thresholds, τ = 5 and τ = 8.

Based on the analysis in Sec. 3, Table 1 shows p

calculated for different values of the fraction f of moni-

toring nodes and the distance d for exposed edges in the

network from March 22–28. For τ = 8, we find that if

0.01% of the nodes in the graph are attackers, they can

correctly classify users into communities more than 85%

of the time for d ≤ 3. If 1% of the nodes are attackers,

they can achieve the same accuracy by only monitoring

users that are within a distance d ≤ 2. We find similar

results for attackers that use a more relaxed threshold

for assigning users to the same community (τ = 5):

p = 0.819 for f = 0.0001 and d ≤ 3, and p = 0.805 for

f = 0.01 and d ≤ 2.

4. Hiding in the Crowd

The previous section showed that a small fraction of

attackers can accurately infer communities. The success

of this attack strongly depends on the assumption that

d

1 2 3

f
0.0001 0.131 0.485 0.859
0.001 0.214 0.703 0.855
0.01 0.343 0.864 0.902

Table 1: Similarity between the community structure of the real

network and a partial reconstruction of the network discovered using

a fraction f of attackers that observe to distance d (using τ = 8 and

R = 10).

attackers can reliably infer user interests based on the

connections that they have with other peers. We posit

that the best defense against this attack is simply to

introduce noise such that this assumption no longer

holds. Specifically, our approach is to add random edges

to disrupt an attacker’s ability to (i) correctly infer real

connections and thus (ii) infer community membership.

These edges come from connections to swarms for ran-

domly selected torrents (e.g., free software and media).

To determine the effectiveness of our defense strategy,

we simulate adding a varying number of random edges

between nodes. Since we expect that exceptionally active

users will have more incentive to hide their connectivity

patterns than infrequent users, we add random edges

proportional to the number of edges of each user. We

now quantify the effectiveness of this method.

First, we measure the undetectability of users: the

probability that any two users are not detected in the

same community after adding random edges, given they

are in the same community before adding random edges.

That is, if an attacker found two users i and j classified

in the same community without adding random edges,

undetectability quantifies the likelihood that an attacker

would correctly identify i and j in the same community

after adding random edges. Fig. 4(a) shows how ran-

dom edges increases undetectability. We again present

the results for two different thresholds for community

detection, a more restrictive one with τ = 8, and a less

restrictive τ = 5. For τ = 8 and only 10% additional

random edges, an attacker would incorrectly infer that

two users are in the same community more than 50% of

the time. For τ = 5, the same result is achieved with as

few as 50% random edges.

Second, we measure the deniability for users, i.e., the

probability that any two users are not detected in the

same community before adding edges, given that they are

in the same community after adding random edges. If an

attacker found two users i and j in the same community

after adding random edges, deniability quantifies the

likelihood that an attacker would incorrectly determine

that i and j in the same real community. Fig. 4(b) shows

how deniability increases for the same two thresholds

τ = 5 and τ = 8 as more random edges are added. For

both thresholds, adding 50% additional random edges

increases the deniability to 50%, meaning that attackers’
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Figure 4: Plots showing effectiveness of the attack mitigation

strategy. Undetectability (left) measures how well our approach

disrupts community identification while deniability (right) measures

the inaccuracy of communities that are identified.

classifications are wrong the majority of the time.

We also find that the modularity of the network formed

when adding two random links for each real link (M =
0.17) is statistically indistinguishable from that of a

completely randomized network. Thus, while there may

exist an algorithm that can extract communities despite

our proposed countermeasure, our approach is robust to

any technique relying on modularity.

These results demonstrate that by adding only a few

random edges (as few as 10 − 20%) we substantially

increase the privacy of the user by making it difficult

to correctly associate users that share the same type

of content and by reducing the credibility of guilt-by-

association attacks. We have implemented and deployed

software that implements this approach for the Vuze BT

client, which has been downloaded thousands of times

and is described in the associated technical report [4].

5. Related Work

There is a large body of previous work that addresses

privacy in distributed systems. For example, encryption

hides plaintext data in connections; however, Saponas

et al. [18] demonstrated several classes of devices and

attacks that allow an attacker to obtain information about

users. Another privacy layer is anonymization, which

entails disassociating user-identifiable information from

network flows [2, 8]. Unlike these solutions, which

hide senders and receivers, our approach hides a user’s

communities of interest, which does not itself require

hiding endpoints. An alternative to anonymity in open

networks is trusted identities in private (i.e., closed) net-

works [16]. Such “networks of friends” are susceptible

to community-based classification as described in this

paper (i.e., the network is the community) and the guilt-

by-association attack.

Our work is inspired by projects that share its spirit

but are applied in different contexts. Cortes et al. [5]

describe an approach for identifying communities of

interest to identify fraudulent callers in a phone network.

Crowds [17] hides a user’s Web request in a crowd of

other requests for the same content; similarly, our work

provides privacy by hiding user-generated BT traffic in a

crowd of random connections.

6. Conclusion

As P2P systems grow in size and popularity, privacy

becomes an increasingly important and challenging goal.

In this paper, we analyzed connection information from

real users in the BT network and revealed strong commu-

nities of shared interest. We showed that this information

can be exploited by an attacker to classify large numbers

of users with relatively little monitoring. To address

this threat, we designed and implemented a strategy to

disrupt attempts to classify users.
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